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Abstract
We test numerically the recently proposed linear relationship between the 
scale-invariant period Ts.i. = T|E|3/2, and the topology of an orbit, on several 
hundred planar Newtonian periodic three-body orbits. Here T is the period of 
an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, 
the period at unit energy |E| = 1. All of these orbits have vanishing angular 
momentum and pass through a linear, equidistant configuration at least once. 
Such orbits are classified in ten algebraically well-defined sequences. Orbits 
in each sequence follow an approximate linear dependence of Ts.i., albeit with 
slightly different slopes and intercepts. The orbit with the shortest period in 
its sequence is called the ‘progenitor’: six distinct orbits are the progenitors of 
these ten sequences. We have studied linear stability of these orbits, with the 
result that 21 orbits are linearly stable, which includes all of the progenitors. 
This is consistent with the Birkhoff–Lewis theorem, which implies existence 
of infinitely many periodic orbits for each stable progenitor, and in this way 
explains the existence and ensures infinite extension of each sequence.
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1.  Introduction

There is no general solution to the Newtonian three-body problem [1], so particular solutions, 
such as periodic orbits, are of special interest. Up until five years ago, only three topologically 
distinct families of periodic orbits were known [2–5], with the latest two discoveries being 
received with some fanfare. No theorem guaranteeing the existence of further periodic solu-
tions was known at the time. Indeed contradictory claims [6], and counterclaims [7] in the 
1950s and 1960s led to some confusion, which was (only partially) resolved by subsequent 
numerical discoveries—the corresponding formal existence proofs for these orbits are still 
being sought, and only in a few rare examples, have been supplied—for a brief history of this 
problem up to mid 1970’s see section 16 in Broucke [8], and for subsequent developments, 
see section I in [9].

The questions of existence, density and distribution of stable orbits is of some importance 
for astronomy: stable orbits have at least a fighting chance of being produced in astrophysi-
cal processes and, therefore, of being subsequently observed. These questions can only be 
addressed by explicit discovery, or construction of new stable orbits7. Therefore any reliable 
new source of information about periodic orbits, even if it is (only) empirical and incomplete, 
ought to be welcomed by the community and subjected to further tests.

Several hundred demonstrably distinct families of periodic orbits have been found by 
numerical means over the past few years [9–14]. This progress in numerical studies has led to a 
new, wholly unexpected insight into the distribution of periodic orbits, that was, at first, rather 
tentative: soon after the papers [5, 10] appeared a relationship between an orbit’s period and its 
topology was observed—at first just in one class of orbits [10], and then more generally [15]. 
The initial set of orbits was fairly ‘sparse’, consisting of only about 45 orbits, so the observed 
regularities had large gulfs yet to be filled. In the meantime we have continued our search for 
new orbits, as well as tests of their stability, amounting to more than 200 orbits, this time with a 
clear indication that their number grows without bounds as the scale-invariant period increases, 
and still following the linear dependence of an orbit’s period on its topology [9].

Here we present a new, detailed numerical test of the previously observed regularities, 
based on more than 200 orbits, as well as several new regularities regarding (probably) infi-
nite sequences of orbits. Moreover, we present a semi-empirical observation about the rela-
tion between stability of certain orbits and the existence of infinite sets of periodic orbits, as 

6 ‘However, the existence of periodic solutions for the general three-body problem has been considered a somewhat 
controversial question in the last few years. Vernić (1953) has published a detailed study containing a mathemati-
cal proof of the non-existence of periodic solutions other than the Lagrange solutions. Later it is seen that Merman 
(1956) and Leimanis (1958) have questioned Vernić’s non-existence proof. More recently Arenstorf (1967) has pub-
lished a new existence proof for periodic solutions of the general problem, although his work contains no examples, 
whereas Kolenkiewicz and Carpenter have numerically computed a periodic solution with masses and configuration 
of the Sun–Earth–Moon system. Jefferys and Moser (1966) have also published existence proofs for almost periodic 
solutions in the three-dimensional case. However, the most convincing explicit examples of periodic solutions 
have recently been obtained numerically by Szebehely and Standish (1969), and Peters (1967). Their publications 
definitely settle the question of whether the general problem has non-trivial periodic solutions, although all of their 
examples are rather specialized; i.e. collision orbits or zero total angular momentum orbits’.
7 Only roughly one out of ten of the newly discovered orbits are linearly stable [9, 14].
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related by the Birkhoff–Lewis theorem [16], as well as some analytic arguments about the 
causes of the linear relation between the period and topology, that still remain without rigor-
ous proofs. These arguments have evolved from the study [44] of the three-body system in 
the so-called strong Jacobi–Poincaré potential, which system is simpler than the Newtonian 
one, and therefore allows certain theorems about the existence of solutions to be proven and 
analytical arguments to be made. The extension of these analytic arguments to the Newtonian 
three-body system may seem straightforward at first, but a closer inspection might prove more 
complicated. We have tried and pointed out lacunae in our arguments, in the hope that experts 
will either complete the proofs, or definitely disprove the conjectures.

If our numerical and empirical arguments withstand a more rigorous mathematical scru-
tiny, they should have: (1) significant implications for the distribution of periodic three-body 
orbits in all homogeneous potentials with singularities at the two-body collision points: at 
least one such potential (the Coulomb one) is of direct physical interest; and (2) ready gener-
alizations for 4-, 5-, ... n-body periodic orbits in the Newtonian potential.

In this paper, after the present Introduction, in section 2 we provide the necessary preliminaries 
for our work. Then in section 3 we provide more than 200 periodic zero-angular-momentum 
orbits and identify their topologies using two integers, nw and n̄w, defined in section 2. There 
we test their Ts.i. versus (nw + n̄w) relationship(s) and refine the quasi-linear rule, equation (2), 
by classifying the new orbits into ten algebraically well-defined sequences. In section 4 we 
study the linear stability of three-body orbits, which leads us to the identification of six orbits 
as progenitors of ten sequences of orbits. There, we offer a possible explanation for the exist-
ence of infinitely many orbits in each sequence, in terms of the Birkhoff–Lewis theorem, 
which we do not prove in this case, however. In section 5 we offer a possible explanation of the 
observed linear regularities, using the virial theorem and the analyticity of the action. Finally, 
in section 6 we summarize and discuss our results, as well as present some open questions. 
Appendices A–E are devoted to various necessary technical topics, that would distract the flow 
of our arguments, if they were kept in the main text.

2.  Preliminaries: topology and period of periodic three-body orbits

For a quantitative relationship between topology and period to be possible one has to have an 
algebraic method for the description of an orbit’s topology. There are several such methods in 
the literature, variously based on the braid group B2, [2], on the free group F2 on two elements 
[17], and on three symbols [18], see appendices B and C.

The original discovery of the linear relationship between period and topology was based on 
Montgomery’s free group method [17], which was used to identify and label periodic orbits.

The topology of a periodic three-body orbit O can be algebraically described by a finite 
sequence of symbols, e.g. letters (a, b) and (A, B), that we shall call ‘word’ wO

8, as defined in 
[17], and presented in detail in [19], and briefly reviewed in appendix B. For an alternative 
method of assigning symbols to a topology, see appendix C.

With such an algebraic description one could, for the first time, search for relations between 
topological and dynamical properties of orbits. At first, the curious approximate linear func-
tional relation

Ts.i.(wk
8)

Ts.i.(w8)
≡ T(wk

8)|E(wk
8)|3/2

T(w8)|E(w8)|3/2 � k = 1, 2, 3, ... ,� (1)

8 More precisely, the conjugacy class of the free group element.
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was noticed between the periods T, energies E and the free-group elements w8 = (ab)(AB) 
for the figure-eight orbit [3] and their topological-power satellite orbits with topologies 
wk = [(ab)(AB)]

k, (k = 1, 2, 3, · · ·). We define ‘topological-power satellite’ orbits as those 
whose topologies can be described as k times repeated topology, i.e. integer powers wk of 
the simplest (‘progenitor’) orbit described by the word w [10]. Here ≃ means equality within 
the estimated numerical precision of [10]. In the meantime, with improved numerics, several 
cases have been found where this relation breaks down at higher decimal places.

Initially, only the ‘topological-power satellites’ of the figure-eight orbit were known9, but, 
in the meantime new examples of topological-power satellites10 have been found to obey equa-
tion  (1) within their respective numerical errors. This naturally raises the question: why do 
only some orbits have topological-power satellites and not others? We shall argue below that 
the linear stability of the shortest-period (‘progenitor’) orbit plays a crucial role in this regard.

Following this observation, [15] investigated all of the 45 orbits known at the time and not 
just the topological-power satellites, and observed the following more general11 quasi-linear 
relation

Ts.i.(w)
Ts.i.(wp)

� Nw

Nwp

=
nw + n̄w

nwp + n̄wp� (2)
for three-body orbits with zero angular momentum. Here Nw = nw + n̄w is one half of the 
minimal total number of letters12, in the free group element w = w(O) characterizing the 
(family of) orbit O, and similarly for wp = w(progenitor), the word describing the progeni-
tor orbit in a sequence, where nw is the number nw = 1

2 (na + nb), of small letters a, or b, and 
n̄w = 1

2 (nA + nB) is the number of capital letters A, or B.
Equation (2) suggested ‘at least four and at most six’ distinct sequences among the 45 

orbits considered in [15]. Precise algebraic definitions of these sequences, analogous to the 
definition wk of the topological-power satellites, were not known at the time, again due to the 
dearth of distinct orbits13. This clearly demanded further, finer searches to be made.

Equation (2) predicts (infinitely) many new, as yet unobserved orbits together with their 
periods; if true, even approximately, equation (2) would be a spectacular new and unexpected 
property of three-body orbits, that would open new insights into the Newtonian three-body 
problem, as well as provide help in practical searches to find new orbits. Therefore equa-
tion (2) merits a thorough investigation, which we shall attempt below. The scope, of course, 
is limited by the number and type of available orbits.

3.  Classification of orbits in sequences

Using equation (2) we predicted the periods and numbers of letters of new orbits, and then 
searched for them, with the results first reported in [9]. We did so by first identifying the 
linearly stable orbits among the original 13 orbits, and then by ‘zooming in’ our search on 
smaller windows around the stable orbits. Thus we found new periodic orbits that have ‘filled’ 

9 With one exception: the yarn orbit wyarn = (babABabaBA)3 = w3
moth I, where wmoth I = babABabaBA in [5].

10 E.g. of the ‘moth I’ orbit, as well as several topological-power satellites of three other orbits, see [9, 20, 39].
11 Equation (1) is manifestly a special case of equation (2).
12 Here, by ‘minimal total number of letters’ we mean the number of letters after all pairs of adjacent identical small 
and capital letters, such as aA, have been eliminated, as explained in [9].
13 Many distinct satellite orbits’ points almost overlapped on the Ts.i. − Nw graph, due to identical values of Nw and 
similar periods, which further reduced the number of distinct data points. Moreover, there were significant ‘gaps’ 
between the data points, as well as one ‘outlier point’ (orbit), in figure 1 in [15], that was roughly 8% off the conjec-
tured straight line.
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many of the ‘gaps’ in the older versions of the Ts.i. − Nw graph, see figure 1(a), the website 
[20] and the supplementary notes (stacks.iop.org/JPhysA/51/315101/mmedia). The ‘outlier’ 
point, in figure 1 in [15], has become just another orbit in a new sequence with a slightly 
steeper slope on the same graph. The totality of the Ts.i. − Nw points is shown in figure 1.
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Figure 1.  (a) Left panel: the scale-invariant periods |E|3/2T(w) of more than 200 
presently known zero-angular-momentum three-body orbits versus one half of the 
number of all letters in the free-group word w describing the orbit, Nw = nw + n̄w, 
where nw is the number of small letters a, or b, and n̄w is the number of capital letters 
A, or B in the word w. (b) Right panel: same as (a), only in terms of the number of 
symbols n123 in the sequence of symbols (1,2,3) describing the topology of the orbit, 
see appendix C. Color code: (1) red  =  sequence I—butterfly I; (2) green  =  sequence 
II—dragonfly; (3) dark blue  =  sequence III—yin-yang; (4) pink  =  sequence IVa—
moth I; (5) light blue  =  sequence IVb—butterfly III; (6) yellow  =  sequence IVc—
moth III; (7) black  =  sequence V—figure-eight; (8) orange  =  sequence VI—yarn; (9) 
grey  =  sequence VII—moth; (10) empty circles  =  other.

Table 1.  Typical (non-minimal) free group elements’ w structure for orbits in various 
sequences, their progenitors, the line parameters c1, c2, where the Ts.i.(Nw) dependence 
is fitted as f (x) = c1x + c2. Not all words w(ni) in any particular sequence need have 
the presented structure, however, see supplementary notes.

Sequence  
number and 
name Free group elementw(n) progenitor c1 c2

I butterfly I (n, n) (AB)2(abaBAB)n(ab)2(ABAbab)n Schubart 9.957 ± 0.011 −0.2 ± 0.2
II dragonfly 
(n, n)

bA(baBA)naB(abAB)n isosceles 9.194 ± 0.004 0.04 ± 0.06

III yin-yang 
(n, n)

(abaBAB)na(babABA)nA S-orbit 9.8667 ± 0.0003 0.002 ± 0.004

IVa moth I 
(n, n + 1)

(abAB)nA(baBA)nB moth I 9.34 ± 0.06 0.7 ± 0.7

IVb butterfly III 
(n, n + 1)

[(ab)2(AB)2]nb[(ba)2(BA)2]na butterfly III 9.967 ± 0.012 −0.3 ± 0.3

IVc moth III 
(n, n + 1)

(babABA)nA(abaBAB)nB Schubart 9.94 ± 0.04 −1.2 ± 0.7

V figure-eight 
(n, n)

(abAB)n figure-8 9.2377 ± 0.0014 −0.03 ± 0.02

VI moth I—yarn 
(2n, 3n)

[(abAB)A(baBA)B]n moth I 9.683 ± 0.002 0.01 ± 0.02

VIIa moth (n, n) (abAB)(n+1)a(baBA)nb Schubart 9.61 ± 0.07 −0.2 ± 0.7

VIIb moth (n, n) (abaBAB)(n+1)b(babABA)na Schubart 9.88 ± 0.04 −0.7 ± 0.5

V Dmitrašinović et alJ. Phys. A: Math. Theor. 51 (2018) 315101
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It is clear that the scale-invariant periods Ts.i. do not lie on one straight line, but rather on 
several lines with slightly different slopes, emerging from a small ‘vertex’ area, forming a 
(thin) wedge-like structure in figure 1. All the newly found orbits passing through an Euler 
configuration, see supplementary notes, fit into one of ten sequences, where the fourth (‘moth 
I’) sequence in [15] has now been divided into three: (a) ‘moth I (n, n + 1)’; (b) ‘butterfly 
III–IV (n, n + 1)’; (c) ‘moth III (n, n + 1)’. Moreover, we found two entirely new sequences: 
(1) ‘VIIa moth (n, n)’ and (2) ‘VIIb moth (n, n)’, and one sequence of pure ‘topological-power 
satellites’ of the moth I orbit.

Each of these ten sequences has an algebraic pattern of free-group elements, see table 1, 
associated with it. Here we use the sequence label (n, m) to denote the general form of 
(nw, n̄w) in that sequence: for example (n, n) means that nw and n̄w are equal integers: 
n = nw = n̄w = 1, 2, 3, . . .. Then, n can be used to label orbits within the sequence, see supple-
mentary notes. By setting n  =  0, or n  =  1, in the second column of table 1, in each sequence, 
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Figure 2.  The scale-invariant periods |E|3/2T(w) of zero-angular-momentum three-body 
orbits versus one half of the number of all letters in the free-group word w describing 
the orbit, Nw = nw + n̄w, where nw is defined as in figure 1. (a) Top left: sequence I—
butterfly I, ; (b) top right: sequence II—dragonfly; (c) center left: sequence III—yin-
yang; (d) center right: sequence IVa—moth I; (e) bottom left: sequence IVb—butterfly 
III; (f) bottom right: sequence IVc—moth III. The blue points at the lower ends of 
sequences are the progenitors of the respective sequences, see the text. Progenitors of 
sequences II, III and IVc, that involve collisions were not used in the fitting procedure, 
so the validity of the linear Ansatz for these sequences can be evaluated by inspection.
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we can read off the topology of their respective progenitor, which is shown in the third column 
of table 1.

The individual Ts.i. − Nw graphs are shown in figures 2 and 3, and their free-group patterns 
are in table 1. The agreement of separate sequences with the linear functional Ansatz, equa-
tion (2), see figures 1(b)–(d), is much better than for the aggregate of all orbits, Figure 1, but 
the (root-mean-square) variations of line parameters (c1, c2) reported in table 1 are generally 
larger than the estimates numerical errors, thus indicating that equation (2) is still approximate,  
and not exact, even in these sequences.

Whereas the approximate empirical rule equation  (2) now appears established, and its 
extension to ever-longer periods just a technical difficulty, some deeper questions remain 
open. For example, the raison d’être of so many periodic orbits remains obscure, let alone the 
linear relation among their periods.

4.  Linear stability and progenitor orbits

Perhaps the first hint at a solution to this puzzle was given in [39], where it was noticed that the 
topological satellite orbits in the Broucke–Hadjidemetriou–Hénon (BHH), [8, 35, 36, 40–43], 
family of orbits with non-zero angular momentum, exist only when their progenitor is linearly 
stable. There is a theorem, due to Birkhoff and Lewis [16], see also section 3.3 (by Jürgen 
Moser) in [25], which holds for systems with three degrees-of-freedom and implies the exis-
tence of infinitely many periodic orbits14. So, whereas the Birkhoff–Lewis theorem might solve 

Figure 3.  Same as in figure 2, except for the following sequences: (a) top left: sequence 
V—figure-eight; (b) top right: sequence VI—yarn; (c) bottom left: sequence VIIa—
moth III (n, n); (d) bottom right: sequence VIIb—moth III (n, n). The progenitors of 
sequence VIIa and VIIb were not used in the fitting procedure.

14 In [12], it was conjectured that the topological-power satellites of the figure-eight orbit are a consequence of the 
Poincaré–Birkhoff theorem [22], see also section 24 in [23] and section 2.7 in [24], as applied to the figure-eight 
orbit. That conjecture is incorrect, however, because the Poincaré–Birkhoff theorem applies only to systems with 
two degrees-of-freedom, to which class the planar three-body problem does not belong.

V Dmitrašinović et alJ. Phys. A: Math. Theor. 51 (2018) 315101
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one part of the puzzle, it does not say anything about the relation of topologies and periods. 
There is, however, another (the so-called ‘twist’) condition underlying this theorem, which 
we shall not try to check here—we simply conjecture that the Birkhoff–Lewis theorem holds 
for the linearly stable periodic three-body orbits. Linear stability of periodic orbits is tested 
numerically, see below, and thus the conjecture of Birkhoff–Lewis theorem can be falsifed.

We have analyzed linear stability of all zero-angular-momentum three-body orbits and 
tabulated the linearly stable ones in table 2. The Floquet exponents νj, and the linear stability 
coefficients λj = exp(±2πiνj), are the standard ones, as defined in [9]. We note that two orbits, 
‘butterfly III’ and ‘moth I’, lie at the origins of two ‘linear sequences15’ of ‘non-topological-
power satellite’ orbits observed among the original 13 orbits [15].

Thus, the manifest candidates for progenitors are: (1) ‘figure-eight’ for the sequence V 
‘figure-eight (n, n)’; (2) ‘butterfly III’ for the sequence IVb ‘butterfly III (n, n + 1)’; and (3) 
‘moth I’ for the sequences IVa ‘moth I (n, n + 1)’ and VI ‘moth I—yarn (2n, 3n)’. These three 
progenitors are collisionless orbits with three degrees-of-freedom, that are linearly stable.

Next we extend this reasoning to sequences of periodic three-body orbits with collisional 
progenitors.

	(1)	�The parent orbit of sequence II ‘dragonfly (n, n)’ is Broucke’s isosceles triangle orbit  
[37, 38], that involves two-body collisions. This orbit always stays in an isosceles triangle 
configuration, thus eliminating one degree-of-freedom, and is linearly stable [37, 38], so 
it also satisfies the Poincaré–Birkhoff theorem.

	(2)	�The parent orbit of the ‘yin-yang’ sequence is the collisional ‘S-orbit’ of [4, 11]16.

Table 2.  The Floquet exponents νj, where λj = exp(±2πiνj) define the linear stability 
coefficients of linearly stable periodic three-body orbits.

Label ν1 ν2

S-orbit 0.131 093 0.470 591
Moore 8 0.298 093 0.00 842 275
NC1 (87) 0.27 216 0.158 544
V.17.H (O13  =  817) 0.31 573 0.0002 988

V.17.I (O14  =  817) 0.0435 411 0.00 262 681

V.17.J (O15  =  817) 0.0435 411 0.00 262 681
II.11.A (bumblebee) 0.137149 0.0325 135
IVa.2.A (moth I) 0.159013 0.491 881
IVa.4.A (moth II) 0.108 451 0.0886 311
IVb.3.A (butterfly III) 0.378 728 0.00 173 642
I.5.A 0.170 764 0.001 476
I.14.A 0.443 006 0.000 121 435
II.17.B 0.138 698 0.0335 924
III.13.A.β 0.175 816 0.000 655 417
IVb.9.A 0.194 186 0.000 561 819
IVc.12.B 0.0863 933 0.00 394 124
IVc.17.A 0.0442 047 0.00 206 416
VIIa.11.A 0.416 228 0.0088 735
VIIb.7.A 0.27 753 0.0360 425
VIIb.9.A 0.216 455 0.0584 561
VIIb.13.A 0.0621 421 0.0141 894

15 The orbits ‘moth I’ and ‘moth II’ have different topologies, but belong to the same sequence.
16 See the initial condition #20 in table I in [11].
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	(3)	�The Schubart orbit [34] is the progenitor of four sequences: I, IVc, VIIa and VIIb, see 
table 1 and supplementary notes. The Schubart orbit is linearly stable in three spatial 
dimensions, [35, 36], but due to its collinear nature, it has only two degrees-of-freedom. 
As it has two degrees-of-freedom, it satisfies the Poincaré–Birkhoff theorem [22–24], 
which also predicts the existence of infinitely many orbits17.

Thus, we have shown a definite correlation between the sequences in table 1 and linear 
stability of the progenitor orbit in each sequence.

5.  Virial theorem and analyticity of the action

The remaining mysteries are: (i) why are the Ts.i.(Nw) graphs linear, and (ii) why are the slopes 
of different sequences so close to each other? 

Our answers to these questions are still not proven in a sufficiently rigorous way. Therefore, 
we shall present them here in the same, or similar way, as they were discovered; otherwise the 
motivation, and the weak points of our arguments might be lost.

It should be clear that the mere formulation of Ts.i. = T|E|3/2 depends crucially on the 
homogeneity of the Newtonian potential: the exponent 3/2 follows from the Newtonian poten-
tial’s degree of homogeneity α = 1, see [15, 19]. So, one may ask if the same, or similar behav-
iour occurs in other homogeneous potentials? A (partial) answer to this question was provided 
in [44], where periodic three-body orbits in the so-called strong potential Vα=2(r) � −1/r2 
and their relation to topology were studied, which has led to our proposed answer to question 
(i). The strong potential Vα=2(r) � −1/r2, is also homogeneous, see appendix D.

It was shown in [44] that the periodic solutions to the three-body problem in the strong 
potential form sequences, very much like those in the Newtonian potential shown in section 3, 
but their periods do not increase linearly with the topological complexity Nw of the orbit. 
Rather, it is the action integral, Smin � Nw, that rises linearly with Nw, which fact can be under-
stood using Cauchy’s residue theorem, which is based on the analyticity of the action integral,

Sα=2
min = −2

∫ T

0
Vα=2(r(t))dt,

where r(t) is a periodic solution to the equations-of-motion (e.o.m.) at fixed energy E  =  0, 
see appendix E.

But, in the Newtonian potential the action of (any) periodic orbit is proportional to its 
period Sα=1

min (T) = 3|E|T , see equation (D.5), derived in appendix D.2. So, the scale-invariant 
period Ts.i. must depend in the same way on the topological complexity Nw of the orbit as the 
corresponding action Sα=1

min (T). The question now arises if the same argument as in [44], about 
the analyticity of the action Sα=1

min (T) can be extended to the Newtonian potential? 
In the Newtonian potential this argument becomes more complicated because the hyper-

radius R = |Z| is not constant in Newtonian three-body orbits, and the problem becomes one in 
the calculus of two complex variables, see appendices A and E. This leads to new possibilities 
that have not been considered thus far. Indeed, the second complex variable in the Newtonian 
potential immediately leads to the possibility that there is a pole in the second complex vari-
able Z, which could lead to non-zero contributions to the integral, and thus change the Ts.i.(Nw) 
functional dependence, under right conditions.

Assuming that the variation of periodic orbits in the second complex variable Z is limited 
such that no new poles arise in the action integral, see appendix E, we may conclude that

17 We see that one colliding orbit is the progenitor of more than one sequence of collisonless orbits.
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Sα
min =

(
α+ 2
α− 2

)
E T � Nw.

This cannot be true in general, however: a moment’s thought shows that the linear depend
ence cannot hold in the harmonic oscillator, as all harmonic oscillatory motions have the 

same period there. More formally, equation Sα
min =

(
α+2
α−2

)
E T , implies that the action of a 

periodic orbit in the harmonic oscillator always vanishes Sα=−2
min = 0. Moreover, we note that 

the action integral equation (D.4) must have (at least one) pole if the residue theorem should 
hold. Consequently, there is an upper bound on the exponent: α � 0, for which this kind of 
action-topology dependence can exist.

These arguments provide also a (possible) answer to question (ii) above, as the slope of of 
the Ts.i.(Nw) graph depends on the residue(s) at the same poles in all sequences, the main dif-
ference being the ordering of circles around the poles, i.e. of the Riemann sheet(s) one is on 
(‘crossings of branch cuts’), see appendix E.

Of course, the foregoing arguments do not constitute a mathematical proof—the miss-
ing dots on the i’s and crosses on the t’s, or, perhaps more interestingly, counter-arguments/
proofs—ought to be supplied by the interested reader.

6.  Summary, discussion and outlook

We have shown that:

	(1)	�The presently known periodic three-body orbits with vanishing angular momentum and 
passing through an Euler configuration, can be classified into 10 sequences according to 
their topologies. Each sequence probably extends to infinitely long periods, and emerges 
from one of six linearly stable (shortest-period) progenitor orbits.

	(2)	�Numerically, the scale-invariant periods of orbits in each sequence obey linear depend
ences on the number of symbols in the algebraic description of the orbit’s topology.

	(3)	�There is a possible explanation for the existence of this infinity of periodic orbits, in the 
form of Birkhoff–Lewis theorem, provided that each progenitor orbit also satisfies the 
‘twist’ condition [16].

	 (4)	�Some of the longer-period orbits are linearly stable: (a) the seventh satellite of ‘figure-eight’ 
orbit18; (b) moth II, which lies in, but is not the progenitor of the ‘moth I’ sequence; and (c) 
the ‘bumblebee’ orbit, which lies in, but is not the progenitor of the ‘dragonfly’ sequence.

We note that in 1976 [35], Hénon established the linear stability of many orbits with non-
vanishing angular momenta (L �= 0) in the Broucke–Hadjidemetriou–Hénon family. The top-
ological-power satellites of these linearly stable BHH orbits were discovered only recently 
[39], where an L �= 0 version of the period-topology linear dependence equation  (2) was 
checked numerically, as well. The agreement there is also (only) approximate, as a small, but 
numerically significant discrepancy exists.

Furthermore, [44] indicates that a linear dependence of the action, but not of the period, 
on the topology exists also in the case of periodic three-body orbits in the so-called strong 
Jacobi–Poincaré potential, which is in agreement with the virial theorem, see appendix D. The 
argument in [44] can be extended to the Newtonian potential, but it becomes a complicated 
question in the calculus of two complex variables19.

18 The stability of ‘figure-eight’ orbit was established in [32, 33].
19 Indeed, the second complex variable in the Newtonian potential immediately leads to new possibilities: there is 
a pole in the second variable, which could lead to non-zero contributions, and thus change the Ts.i.(Nw) function, 
under right conditions.
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Our results are generic, so they imply that similar linear relations may be expected to hold 
for 3-body orbits in the Coulombian20, and in all other homogeneous potentials containing 
poles.

Moreover, similar functional dependences might also hold for 4-, 5-, 6-body etc orbits in 
the Newtonian potential.

Our results also raise new questions:

	(1)	�Each of the six progenitors generates a family of orbits, at different masses and non-
vanishing angular momenta, e.g. the Schubart colliding orbit [34], generates the BHH 
family of collisionless orbits with non-zero angular momenta, that describe the majority 
of presently known triple-star systems. The remaining five progenitors may now be 
viewed as credible candidates for astronomically observable three-body orbits, provided 
that their stability persists under changes of mass ratios and of the angular momentum. 
Those dependences need to be explored in detail.

	(2)	�Checking the ‘twist’ condition of the Birkhoff–Lewis theorem, for each progenitor orbit, 
is a task for mathematicians, as is the explanation of the topologies of the so-predicted 
orbits: why do these sequences exist and not some others? 

	(3)	�The question of existence of other stable two-dimensional colliding orbits, and of new 
sequences of periodic orbits that they (may) generate. Rose’s new linearly stable colliding 
orbits [13] are particularly interesting in this regard. Turning the foregoing argument 
around, one can use any newly observed sequence of orbits to argue for the the existence 
of its, perhaps as yet unknown, progenitor.

	(4)	�A remaining mystery is why are the slopes of different sequences so close to each other? 
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Appendix A. Three-body variables

The graphical representation of the three-body system can be simplified with the use of trans-
lational and rotational invariance—by changing the coordinates to the Jacobi ones [30]. Jacobi 
or relative coordinates are defined by two relative coordinate vectors, see figure A1:

20 Several such periodic orbits have been found in [45, 46], but their topological classification was not considered.
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ρ =
1√
2
(r1 − r2), λ =

1√
6
(r1 + r2 − 2r3).� (A.1)

Three independent scalar variables can be constructed from Jacobi coordinates: ρ2, λ2  and 

ρ · λ. The overall size of the orbit is characterized by the hyperradius R =

√
ρ2 + λ2 . These 

scalar variables are connected to the unit vector with Cartesian components [17]:

n̂ =

(
2ρ · λ

R2 ,
λ2 − ρ2

R2 ,
2(ρ× λ) · ez

R2

)
.� (A.2)

Therefore, every configuration of three bodies (shape of the triangle formed by them, inde-
pendent of size) can be represented by a point on a unit sphere. This sphere is called the 
shape-sphere.

Every relatively periodic orbit of a three-body system is therefore represented on the shape-
sphere by a closed curve (collisionless solutions), a finite open section of a curve (free-fall 
and colliding solutions), or a point (Lagrange–Euler solutions). One example, the figure-eight 
orbit, is illustrated in figure A2.

Figure A1.  The two three-body Jacobi coordinates ρ,λ.

Figure A2.  The shape-space sphere: the figure-eight orbit (solid black curve); three 
two-body collision points (red), singularities of the potential, lie on the equator.
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The north and the south pole of the shape-sphere correspond to equilateral triangles, while 
the equator corresponds to degenerate triangles, where the bodies are in collinear configura-
tions (syzygies). There are three points on the equator that correspond to two-body collision 
points—the singularities of the potential, see figure A2.

Two orbits with identical representations on the shape-sphere are considered to be the 
same solution. For example, periodic orbits subjected to symmetry transformations, such as 
translations, rotations, dilations, reflections of space and time, all have identical curves on the 
shape-sphere and are counted as one.

Size or energy scaling, r → αr, and the equations  of motion imply t → α3/2t  [31]. 
Therefore, the velocity scales as v → v/

√
α , the total energy scales as E → α−1E, and the 

period T as T → α3/2T . Consequently, the combination |E|3/2T is invariant under scale trans-
formations and we call it scale invariant period Ts.i. = |E|3/2T . It is always possible to remove 
one of the three scalar variables by changing the hyper-radius to the desired value by means 
of these scaling rules.

Appendix B.  Montgomery’s topological identification method

A curve corresponding to a collisionless periodic orbit can not pass through any one of the 
three two-body collision points. Stretching this curve across a collision point would there-
fore change its topology. The classification problem of closed curves on a sphere with three 

Figure B1.  The two elements (a, b) of the free group.

Figure B2.  Stereographic projection of a sphere onto a plane. Three two-body collision 
points (solid red) lie on a meridian (dashed circle), with one of them being at the north 
pole (denoted by the letter N).
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punctures is given by the conjugacy classes of the fundamental group, which is in this case the 
free group on two letters (a,b), see figure B1.

This abstract notation has a simple geometric interpretation: it classifies closed curves in 
a plane with two punctures according to their topologies. The shape sphere can be mapped 
onto a plane by a stereographic projection using one of the punctures as the north pole, see 
figure B2. The selected puncture is thusly removed to infinity, which leaves two punctures in 
the (finite) plane. Any closed curve on the shape sphere (corresponding to a periodic orbit) can 
now be classified according to the topology of its projection in the plane with two punctures. 
Topology of a curve can be algebraically described by a ‘word’—a sequence of letters a, b, A 
and B—which is, more formally, an element of the free group F2. Here a denotes a clockwise 
full turn around the right-hand-side puncture, b the counter-clockwise full turn around the 
left-hand-side puncture (see figure B1), and the upper case letters denote their inverse ele-
ments a-1  =  A and b-1  =  B.

A specific periodic orbit can be equally well described by several different sequences of 
letters. As there is no preferred starting point of a closed curve, any other word that can be 
obtained by a cyclic permutation of the letters in the original word represents the same curve.

The conjugacy class of a free group element (word) contains all cyclical permutations of 
the letters in the original word. For example, the conjugacy class of the free group element aB 
also contains the cyclically permuted word Ba. The class of topologically equivalent periodic 
orbits therefore corresponds not merely to one specific free group element, but to the whole 
conjugacy class.

Time-reversed orbits are represented by the inverse elements of the original free group ele-
ments. Naturally, they correspond to physically identical solutions, but they generally form 
different words (free group elements) with different conjugacy classes.

Another ambiguity is related to the choice of the puncture to be used as the north pole of 
the stereographic projection (of the sphere onto the plane). A single loop around any one of the 
three punctures on the original shape sphere (denoted by a or b) must be equivalent to the loop 
around either of the two remaining punctures. But as can be seen in figure B2, a simple loop 
around the third (‘infinite’) puncture on the shape sphere corresponds to aB, a loop around 
both poles in the plane. Therefore, aB must be equivalent to a and b.

Some periodic solutions have free group elements that can be written as wk = wk (a, b, 
A, B), where w = w (a, b, A, B) is a word that describes some solution, and k is an integer. 
Such orbits will be called topological-power satellites. For example, the orbits with free group 
element (abAB)k are called figure-eight (k) satellites, and are all free from the stereographic 
projection ambiguity.

Appendix C. Tanikawa and Mikkola’s (syzygy) method of topological 
identification

There is an alternative method of assigning a sequence of three symbols, in this case three 
digits (1,2,3), to any given ‘word’ in the free group F2. It has been proposed for collisionless 
orbits, by [18], see also [21], to use the sequence of syzygies (collinear configurations) as a 
symbolic dynamics for the 3-body problem.

The rules for converting ‘words’ consisting of letters a, b, A, B into ‘numbers’ con-
sisting of three digits—(1, 2, 3)—are as follows: (i) make the substitution a  =  12, A  =  21, 
b  =  32, B  =  23; (ii) 11  =  22  =  33  =  empty sequence (‘cancellation in pairs rule’). So, for 
example:
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	(1)	�The symbolic sequence corresponding to the BHH family of orbits, aB  =  1223  =  13 
is equivalent, by way of cyclic permutations, to: a  =  12 and to B  =  23, as one 
would expect intuitively. Thus we see that the ‘lengths’ Nn, i.e. the number of sym-
bols in a sequence are identical for all three symbolic sequences representing the 
BHH family, Nn(13) = Nn(12) = Nn(23), unlike the Montgomery’s method, where 
Nw (aB)  �=  Nw (a)  =  Nw (B). This indicates that the ‘lengths’ Nn(w) are good algebraic 
descriptors of the complexity of an orbit’s topology.

	(2)	�The symbolic sequence abAB  =  (12)(32)(21)(23)  =  12322123  =  123123  =   
(123)2 corresponding to the figure-eight orbit is now manifestly invariant under cyclic 
permutations, 1 → 2 → 3 and 1 → 3 → 2, whereas it is so only in a non-manifest way in 
the two-letter scheme. Here, also, the ‘length’ Nn(w) is also a good algebraic descriptor of 
the complexity of an orbit’s topology.

Note that:

	 1.	�As stated above, the numbers 1, 2, and 3 can be viewed as denoting syzygies, i.e. crossings 
of the equator on the shape sphere, in one of three corresponding segments on the said 
equator, where the index of the body passing between the other two is used as a symbol.

	 2.	�Each symbol is its own inverse, which accounts for the ‘cancellation in pairs’ rule21. 
This circumstance leads to the reduction (by a factor of two) of the number of symbolic 
sequences denoting one topology, as the time-reversed orbit has an identical symbolic 
sequence to the original one (which is not the case in the two-letter scheme); and

	 3.	�That the cyclic permutation symmetry indicates irrelevance of which syzygy is denoted 
by which digit.

In this way, we have restored the three-body permutation symmetry of the problem into the 
algebraic notation describing the topology of a periodic three-body orbit, albeit at the price of 
having three symbols, rather than two. This restoration of permutation symmetry also implies 
an absence of the ‘automorphism ambiguity’ [15]. Such three-symbol sequences have been 
used e.g. in [18, 21] to identify the topology of periodic three-body orbits.

The length of a sequence of symbols necessary to describe any given topology generally 
increases by a factor close to 1.5 as one switches from two letters Nw to three digits Ns, as 
symbols used, i.e. Ns � 1.5Nw. The precise value of this proportionality factor (�1.5) is not 
important for our purposes, as we shall be concerned with the length(s) of symbolic sequences 
with a well-defined algebraic form, such as w1(w2)nw3(w4)n , where n = 1, 2, 3, · · ·. In such a 
case, the following relation holds N[w1(w2)

nw3(w4)
n] � N[w1w3] + nN[w2w4] using either set 

of symbols for wi. Only the value of the slope parameter changes as one switches from one set 
to another. Of course, it is an additional mystery if and when the slopes of different sequences 
happen to coincide.

Appendix D.  Virial theorem and the action of periodic orbits in homogeneous 
potentials

D.1. The Lagrange–Jacobi identity and the virial theorem

We know that the Lagrange–Jacobi identity [30],

21 This is only possible for periodic orbits that form closed loops on the shape sphere; otherwise one would have to 
define one symbol for crossing the equator from above and another one for crossing from below.
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1
2

dG
dt

= 2Ktotal + αVα
total,� (D.1)

where G =
∑N

i=1 qi · pi is the so-called virial, gives a relation between kinetic Ktotal =
∑

i Ki 
and potential energy Vα

total, for homogeneous potentials with homogeneity degree −α. One 
example of such a homogeneous potential is the sum of two-body terms 

∑
i<j Vα(rik), where 

Vα(rik) � −1/rαik  is a power-law interaction . Here rik is the distance between two particles, 
and α is a positive real number.

For periodic motions, with period T, this identity can be integrated to yield

1
2

∫ T

0
dt

dG
dt

=
1
2
(G(T)− G(0)) = 0

=

∫ T

0
(2Ktotal + αVα

total)dt
�

(D.2)

which tells us that the time integral of the kinetic energy is related to the time integral of the 
potential energy:

∫ T

0
dtKtotal = −α

2

∫ T

0
dtVα

total.

Energy conservation

E = Ktotal + Vα
total

implies

E =
1
T

∫ T

0
(Ktotal + Vα

total)dt =
1
T

∫ T

0
(−α

2
Vα

total + Vα
total)dt

which leads to the equipartition of energy (or ‘virial’) theorem:

E =

(
α− 2
−2

)
1
T

∫ T

0
Vα(r(t))dt ≡

(
α− 2
−2

)
〈Vα(r)〉� (D.3)

E =

(
α− 2
α

)
1
T

∫ T

0
K(ṙ(t))dt ≡

(
α− 2
α

)
〈K(ṙ(t))〉� (D.4)

which holds exactly for periodic orbits. This, in turn, reduces the action S to one or another 
time integral.

D.2. The action for three-body orbits in a homogeneous potential

The (minimized) action of a periodic n-body orbit in a homogeneous potential Vα(r) � −1/rα 
is

Smin =

∫ T

0
L(q(t), q̇(t))dt =

∫ T

0
(T(ṙ(t))− Vα(r(t))) dt,

leads to

Sα
min(T) =

(
α+ 2
α− 2

)
E T ,� (D.5)
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which depends only on the energy E and period T of the orbit. Note the singularity on the 
right-hand-side of equation (D.5) at α = 2, which demands that E  =  0 in that case. For the 
Newtonian case, α = 1, equation (D.5) leads to

Sα=1
min (T) = −3ET = 3|E|T ,

as claimed in [15].

Appendix E.  Complex variables and analytic properties of the action

Here we follow closely appendix C in [44]. The minimized action Sα
min =

∫ T
0 L(q(t), q̇(t))dt of 

a periodic orbit q(t) in the homogeneous (power) potential Vα(r), written as a time integral of 
twice the kinetic energy K over period T,

Sα
min(T) =

(
α+ 2
α

) 3∑
i=1

∫ T

0

p2
i

2m
dt =

(
α+ 2
α

) 3∑
i=1

∫ ri(T)

ri(0)
pi · dri� (E.1)

where m  =  1, can be expressed as a closed-contour integral of two complex variables. After 
shifting to the relative-motion variables, (ρ,λ), one finds

Sα
min(T) =

(
α+ 2
α

)(∫ ρ(T)

ρ(0)
pρ · dρ+

∫ λ(T)

λ(0)
pλ · dλ

)
.

The real Jacobi two-vectors ρ and λ may be replaced with two complex variables

zρ = ρx + iρy, zλ = λx + iλy,

so that the action Sα
min, can be rewritten as a (double) closed contour integral in two complex 

variables:

Sα
min(T) =

(
α+ 2
α

)(∫ zρ(T)

zρ(0)

ż∗ρdzρ +
∫ zλ(T)

zλ(0)
ż∗λdzλ

)
.

Note that the periodicity of motion ρ(0) = ρ(T), λ(0) = λ(T) implies zρ(T) = zρ(0) and 
zλ(T) = zλ(0), which makes this integral a closed contour one

Sα
min =

(
α+ 2
α

)(∮

Cρ

ż∗ρdzρ +
∮

Cλ

ż∗λdzλ

)
.

If there were only one complex variable, then the so-defined function would be analytic. 
Indeed, the action of two-body elliptic motion in the Newtonian potential has been evaluated 
using Cauchy’s residue theorem in section 18.16 of [26], and in section 11.8 in [27]. With two 
complex variables, there is no such guarantee, however. Moreover, the residue theorem for 
functions of two complex variables is a more complicated matter, see [48–51].

The existence and positions of poles in this (double) contour integral are not mani-
fest in its present form; the same integral is given by equation  (D.3) in appendix D.2, 

Sα
min(T) =

(
α+2
−2

) ∫ T
0 Vα(r(t))dt, due to the virial theorem, however, where the potential 

Vα(r(t)) is known to have three singularities (simple poles) at three binary collisions and the 
time-evolution dependence r(t) of the periodic orbit, which parametrizes the contour. For the 
Newtonian potential α = 1 the binary collisions are regularizable, and this integral has been 
studied by Sundman [28] with the result that the functions rk(u), 1 � k � 3, are holomorphic 
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in a strip |Im u| < δ of the complex plane u ∈ C  which contains the real axis, see section 2.3 
in [29]. Since Sα=1

min (T) = S(T) = −
( 3

2

)
u(T), we know that the trajectories rk(S), 1 � k � 3 

are holomorphic functions of the action S in a strip |Im S| < δ of the complex plane S ∈ C  
which contains the real axis.

Note the following implications of this result: (1) for non-singular potentials (α < 0) there 
are no poles in the potential, and consequently no poles encircled by the contour, so the resi-
due vanishes; (2) for singular potentials (2 > α > 0) there are poles in the potential, but the 
residue depends on the integration contour, i.e. on the trajectory on the shape sphere and its 
topology w; (3) if the integration contour, i.e. the trajectory on the shape sphere repeats k times 
the topologically equivalent path, then, for singular potentials (2 > α > 0), the residue equals 
k times the single path residue.

Next, we switch from the real (ρ,λ), or complex (zρ, zλ) Cartesian Jacobi variables to 
the curvilinear hyper-spherical variables: the real hyper-radius R and the overall rota-
tion angle Φ = 1

2 (ϕρ + ϕλ), and the two angles parametrizing the shape-sphere, e.g. 
(θ = (ϕρ − ϕλ),χ = 2Tan−1( ρλ )). Here (ϕρ,ϕλ) are the angles subtended by the vectors 
(ρ,λ) and the x-axis. Equivalently, we may use the complex variables Z, defined by (R,Φ) and 
z, defined by way of a stereographic projection from the shape-sphere parametrized by (θ,χ).

The variable Z has limited (bounded) variation for all periodic orbits (with zero angular 
momentum) studied in this paper. Indeed, the value of R = |Z| = 0 occurs only in the ‘tri-
ple collision’ (‘der Dreierstoss’) orbits, which does not happen in our case. The condition 
Φ  =  const. is trickier, however, because there are ‘relatively periodic’ solutions with vanish-
ing angular momentum (L  =  0) and a non-zero change ∆Φ �= 0 of angle Φ over one period. 
All of the orbits considered in this paper are absolutely periodic, i.e. they have ∆Φ = 0 over 
one period, so this caveat does not apply. Therefore one may eliminate the complex variable 
Z from further consideration, at least for the orbits considered here, and the problem becomes 
(much) simpler.

Thus, we see that the complex integration contour Cz relevant to Cauchy’s theorem, 
Smin = 2iπ

∑
Res, for the considered periodic orbits, is determined solely by the orbit’s tra-

jectory on the shape sphere: the only poles relevant to this contour integral are the two-body 
collision points on the shape sphere. Consequently, the periodic orbits’ minimized action 
(integral) is determined (predominantly) by the topology of the closed contour on the shape 
sphere, i.e. by the homotopy group element of the periodic orbit, unless there is a closed con-
tour in the Z = (R,Φ) variable, as well.

Repeated k-fold loops of the contour lead to k times the initial integral, i.e. 
Smin(wk) = 2kiπ

∑
Res = kSmin(w), or, equivalently Ts.i.(wk) = kTs.i.(w), as observed in 

topological satellite orbits in section 3. Crossings of branch cuts22 provide for the change of 
residue(s) of the pole(s) at different values of k, which may account for the different values of 
Res, i.e. for different slopes of Ts.i.(Nw) graphs in different sequences.

Detailed study of analytic properties of the action should be a subject of interest to pure 
mathematicians, however, [47].
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