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Computing dynamical response functions in interacting lattice models is a long-standing challenge in
condensed matter physics. In view of recent results, the dc resistivity ρdc in the weak-coupling regime of the
Hubbard model is of great interest, yet it is not fully understood. The challenge lies in having to work with
large lattices while avoiding analytical continuation. The weak-coupling ρdc results were so far computed at
the level of the Boltzmann theory and at the level of the Kubo bubble approximation, which neglects vertex
corrections. Neither theory was so far rigorously proven to give exact results even at infinitesimal coupling,
and the respective dc resistivity results differ greatly. In this Letter we develop, cross-check and apply two
state-of-the-art methods for obtaining dynamical response functions. We compute the optical conductivity
at weak coupling in the Hubbard model in a fully controlled way, in the thermodynamic limit, and without
analytical continuation. We show that vertex corrections persist to infinitesimal coupling, with a constant
ratio to the Kubo bubble. We connect our methods with the Boltzmann theory, and show that the latter
applies additional approximations that lead to quantitatively incorrect scaling of ρdc with respect to the
coupling constant.
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Strongly correlated electronic systems often display rich,
yet remarkably universal phase diagrams [1–10]. One of the
most puzzling universal phenomena is the strange-metallic
linear-in-temperature dc resistivity [9,11–19]. It appears in
unconventional and high-temperature superconductors, in
the regime where their critical temperature Tc is the highest
[1,11,12,16,19]. In other cases, strange metals are asso-
ciated with quantum critical points [9,17,20–22]. This
raises the question of whether there is an intimate con-
nection between criticality, transport properties, and the
magnitude of the superconducting Tc. To make sense of the
vast experimental data, one must be able to compute the
conductivity in interacting lattice models, which is a
difficult, long-standing task. The main challenge is to find
a way to obtain controlled results on the real frequency axis
and, at the same time, avoid finite lattice-size effects. Exact
diagonalization based methods [finite-temperature Lanczos
(FTLM) [23–25] ], linked cluster expansions [26–28], and
the density-matrix renormalization group [29] are all
inherently limited to small lattice sizes. Quantum
Monte Carlo methods, on the other hand, either require
analytical continuation [30–32] or are effectively limited to
atomic problems [33–37]. In the special case of Hall
resistivity, expansions in terms of thermodynamic quan-
tities allow for progress [38,39]. In this Letter, however, we
formulate a general and systematic way forward.

The workhorse model for the description of the cuprates
(and many other classes of correlated systems) is the
Hubbard model [2,7,10,14,21,40–43]. Early works [21]
have shown that the infinite-dimensional Bethe-lattice
Hubbard model roughly describes the normal phase resis-
tivity in LSCO at moderate to high temperature. However,
the physics at low temperature is expected to be dominated
by the dimensionality of the model, and thus of primary
interest is the Hubbard model on the 2D square lattice. At
very strong coupling and high temperature, small 2D
lattices become representative of the thermodynamic limit,
and FTLM was used to obtain numerically exact results
[23,24]. However, to address the questions of strange-
metallic behavior and its connection to quantum critical
points [1,12,13,16,18,20,22], one must be able to perform
computations at lower temperature and, perhaps, lower
coupling, a regime where small-cluster methods fail.
Recent works [32,44] have indicated that the ground-

state phase diagram of the (nearest-neighbor hopping)
square-lattice Hubbard model features a quantum critical
line, delineating an ordered stripe ground state. The
quantum critical line passes through zero coupling at zero
doping (i.e., half-filling). At this point, charge and spin
susceptibility diverge [45], and both the Boltzmann theory
[46,47] and the Kubo bubble [45] predict a linear-in-
temperature resistivity down to the lowest accessible
temperature. This finding is in line with numerous
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observations of linear resistivity in the vicinity of quan-
tum critical points [12,13,16,18,20,22]. Kiely and Muller
[46] have argued that the linear-resistivity strange metal
observed at half-filling and weak coupling is connec-
ted to the strange metal in the cuprates, corresponding to
the strong coupling and finite doping regime of the
Hubbard model.
However, our recent results [45] have shown a strong

quantitative disagreement between Boltzmann theory and
the Kubo bubble, casting doubt on whether either of the
theories captures correctly even the qualitative behavior of
resistivity. To resolve the phenomenology at weak cou-
pling, better methods are needed.
In this Letter, we address the conductivity in the square

lattice Hubbard model. We develop two state-of-the-art
methodologies and fully avoid finite-size effects and the
uncontrolled analytical continuation [24,31,48].
First, we make use of the real-frequency diagrammatic

Monte Carlo (RFDiagMC) [49–52], which relies on con-
structing a power-series expansion for a given physical
quantity; the resulting Feynman diagrams are computed up
to a given order and then the series is (re)summed. The
imaginary-time integrals in Feynman diagrams are solved
analytically (which circumvents analytical continuation),
while spatial degrees of freedom are summed over using
(quasi) Monte Carlo [36,53,54]. The thermodynamic limit
is treated directly.
Next, we devise three different nonequilibrium proto-

cols, where we perturb the system with small external fields
and compute the current response as a function of time; we
then use the results to reconstruct the optical and dc
conductivity in a manner of “inverse linear response
theory.” In practice, we solve the Kadanoff-Baym equations
to obtain the Green’s function, given an approximation for
the self-energy as input. We do this calculation for lattices
as large as 60 × 60 and confirm convergence of the results
with lattice size.
Our diagrammatic series expansion and the correspond-

ing non-equilibrium results are in excellent agreement,
which confirms the validity of both implementations. As
the coupling constant approaches zero, we observe that
vertex corrections to dc conductivity do not vanish, but
rather diverge with the same power-law scaling as the Kubo
bubble contribution, meaning that they remain quantita-
tively important even at infinitesimal coupling. Vertex
corrections are, however, not very big relative to the
Kubo bubble. Nevertheless, neither the Kubo bubble
approximation nor the Boltzmann equation yield quanti-
tatively correct results, even at infinitesimal coupling.
Model—We are treating the square lattice Hubbard

model. The Hamiltonian reads

H ¼ −t
X

hiji;σ
c†σ;icσ;j − μ

X

σ;i

nσ;i þU
X

i

n↑;in↓;i; ð1Þ

where i; j enumerate lattice sites, c†=c are creation or
annihilation operators, σ ¼ ↑;↓ denotes spin, t is the
nearest-neighbor hopping amplitude, set to t ¼ 0.25. The
particle-number operator is denoted nσ;i ¼ c†σ;icσi, and μ is
the chemical potential, which is used to tune the average
occupancy of the sites. The coupling constant is denotedU.
In practice, we absorb the Hartree shift in the chemical
potential, μ̃ ¼ μ −Uhni;σi, and thus μ̃ ¼ 0 corresponds to
half-filling. We assume ℏ ¼ e ¼ 1.
Nonequilibrium approach—We consider the time evo-

lution of the Hubbard model, which was in a thermal state
at times t < 0, and was then subjected to an external
perturbation starting from time t ¼ 0. Given an approxi-
mation for the self-energy, the Green’s function can be
computed by solving the Kadanoff-Baym equations [we
use the code package NESSi [55] and cross-check with our
own implementation; see Supplemental Material (SM) [56]
for details]. Kadanoff-Baym equations are formulated on
the three-piece time contour as [57]

Gðt; t0Þ½−i ∂ t0 − hðt0Þ� −
Z

C
dt̄Gðt; t̄ÞΣðt̄; t0Þ ¼ δC: ð2Þ

Here,G is the full Green’s function,Σ is the self-energy, andh
is the single-particle Hamiltonian, which introduces an
external electric field through the vector potentialA, namely
E ¼ −∂tA. We restrict ourselves to fields along the x
direction [assuming site positions to be ri ¼ ðxi; yiÞ, with
xi; yi ∈Z] and the corresponding longitudinal response [58].
The time-diagonal elements in the lesser component of
the Green’s function contain information about the uni-
form current, i.e., hjðtÞi ¼ −ði=NÞPσ;k vk−AðtÞG<

σ;kðt; tÞ
[57,59], and vk is the x component of the velocity of an
electron in the plane-wave state k.
On the other hand, the time evolution of the current

following application of a weak electric field can be
computed based on the knowledge of the retarded cur-
rent-current correlation function in equilibrium [60], Λ, as

hjðtÞi ¼
Z

t

−∞
dt0Λðt − t0ÞAðt0Þ − KAðtÞ; ð3Þ

with K ¼ −hEkini=2, i.e., minus the average kinetic energy
per site per spatial dimension. The first term is the para-
magnetic part of the current; the second term is the
diamagnetic part (see SM for details). Alternatively, if
one knows the optical conductivity σ, the current response
is computed as

hjðtÞi ¼
Z

t

−∞
dt0σðt − t0ÞEðt0Þ: ð4Þ

The current-current correlation function is related to the
optical conductivity through σðtÞ ¼ KθðtÞ − R

t
0 dt

0Λðt0Þ, or
∂tσ ¼ −Λ (for t > 0). The optical conductivities in time
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and frequency domains are connected via Fourier trans-
formation σðωÞ ¼ R∞

−∞ dteiωtσðtÞ, and the dc conductivity
is simply σdc ≡ σðω ¼ 0Þ.
We devise nonequilibrium protocols that will allow us to

invert the linear response [Eqs. (3) and (4)] for ΛðtÞ and
σðtÞ, compute them based on the current response, and
reconstruct σðωÞ. The three protocols are (a) constant
electric field, (b) short pulse of electric field and (c) short
pulse of vector potential. The corresponding expressions
for the vector potential AðtÞ are given in Fig. 1. We use
weak fields and make sure we probe the linear response
regime (see SM for details).
Self-energy approximation—We compute the self-

energy perturbatively in powers of U, and truncate at
second order. The first-order self-energy in the Hubbard
model is instantaneous (the Hartree shift) and can be
absorbed in the single-particle Hamiltonian h. What
remains to be computed is a single Feynman diagram,

Σijðt; t0Þ½G� ¼ U2Gijðt; t0ÞGijðt; t0ÞGjiðt0; tÞ: ð5Þ

However, one may still choose to compute the diagram self-
consistently or not, i.e., the propagator appearing in the
self-energy diagram can be considered to be the fully
dressed propagator (G) or the bare propagator (G0). The
self-consistent approximation corresponds to an approxi-
mation of the Luttinger-Ward functional and is guaranteed
to respect charge and energy conservation laws. The two
approximations for the self-energy must become indistin-
guishable as U → 0, but at any finite U, they may yield
different results.
Results—Our nonequilibrium theory is illustrated in an

example in Fig. 1. We find that the three protocols yield
perfectly consistent results [e.g., in Figs. 1(a) and 1(c) we
show in red the comparison to the protocol (b) result].
However, the two self-energy approximations lead to
drastically different results. Most importantly, the Σ½G0�
approximation yields infinite conductivity. This manifests

differently in the three different protocols. In the case of
constant electric field, this means there is no stationary state
and the current keeps growing with time. In the short
electric field pulse case, the current does not decay to zero,
but to a finite constant instead [as shown on Fig. 1(a), the
constant is in perfect agreement with the slope of the linear
growth of the current in the protocol (a)]. This indicates that
the infinite conductivity is due to a finite charge stiffnessD,
which is when the optical conductivity can be separated in
two parts as σðtÞ ¼ σregðtÞ þDθðtÞ, with the regular part
σregðtÞ decaying to zero at long times [60,61]. In frequency
domain this means ReσðωÞ ¼ πDδðωÞ þ ReσregðωÞ. In the
short vector potential pulse case, the current does decay
to zero, but the charge stiffness can be deduced from
the obtained current-current correlation function based
on the relation

R∞
0 dtΛðtÞ ¼ K −D. Regardless of the Σ

approximation, the optical sum rule σðt ¼ 0þÞ ¼ K ¼
ð1=πÞ R dωReσðωÞ is satisfied [Fig. 1(b), SM]. To confirm
that our results indicate charge stiffness, rather than a large
conductivity, we have studied how σðωÞ changes in the
presence of a small fermionic bath (see SM).
Cross-checking with RFDiagMC—To cross-check the

nonequilibrium results, we employ our new implementa-
tion of the RFDiagMC method for the computation of
correlation functions in equilibrium. To do this, we first
need to determine the diagrammatic content of the current-
current correlation function that we effectively compute in
our nonequilibrium calculations (in principle, in neither the
Σ½G0� nor the Σ½G� case will the diagrammatic content
correspond to the bold perturbation theory for the current-
current correlation function). Given an approximation for
the self-energy, one can express the generalized two-
particle susceptibility χ as a functional derivative of the
Green’s function with respect to an applied external field,
χ ¼ ðδG=δϕÞ [62]. In the case of the Σ½G� approximation,
this yields the self-consistent Bethe-Salpeter equation,
with χ appearing on both sides of the equation. In the
case of Σ½G0�, one finds a closed expression where the

FIG. 1. Example of nonequilibrium, inverse linear response theory. Plots show current responsevs time in three different nonequilibrium
protocols: (a) constant electric fieldE, (b) short pulse of electric field, and (c) short pulse of vector potentialA. Protocol (a) allows to extract
σdc; (b) and (c) yield the full σðtÞ [and thus σðωÞ]. Different curves correspond to different self-energy approximations, namely Σ½G� and
Σ½G0�. The red dashed lines in panels (a) and (c) are comparisonswith the protocol (b). In protocol (c), we show the paramagnetic part of the
current jp as only this part is relevant. All three protocols yield consistent results. In the Σ½G0� approximation, we observe a finite charge
stiffness D. The inset in panel (b) enlarges the long-time tail, showing clearly that σðt → ∞Þ ¼ D.
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noninteracting χ0 ¼ G0G0 appears on the rhs instead. The
current-current correlation function Λ is obtained by
connecting the legs of the generalized susceptibility χ to
two current vertices v. We see that in the case of Σ½G�, Λ
effectively contains infinitely many skeleton diagrams of
all even orders with all propagators being the full Green’s
functions. Up to second order, all nonzero bold-skeleton
diagrams are captured. However, odd orders are not
captured, and at order 4 and above not all skeleton diagrams
are captured. In the Σ½G0� case, one obtains only three
second-order diagrams, which are skeleton, but all propa-
gators except two are bare. See Fig. 2 and SM for details.
The Λ diagrams from Fig. 2 can be computed using

RFDiagMC, and we denote these theories as Σ½G� and
Σ½G0�. The comparison with nonequilibrium results is then

made by comparing σregðωÞ and D. Both can be computed
from Λ, namely Reσregðω ≠ 0Þ ¼ ImΛðωÞ=ω, σregdc ¼
½∂ ImΛðωÞ=∂ω�jω→0 and D ¼ K − ReΛðω ¼ 0Þ. The
results are presented in Fig. 3(a). We see excellent agree-
ment. In the case of Σ½G� effective Λ diagrams, it was
enough to do only second-order vertex correction diagrams
to reach agreement, which means that fourth and higher
order diagrams are all negligible. In the case of Σ½G�, the
charge stiffness was found to be below statistical error. In
the case of Σ½G0�, the charge stiffness entirely comes from
vertex corrections.
Perturbation theory for Λ—Now that we have estab-

lished the validity of our implementation, we can also use
RFDiagMC to solve the perturbation theory for the current-
current correlation function. We take a given self-energy
approximation, construct the dressed Green’s function, and
then compute all the bold-skeleton diagrams, up to a given
order (including the odd orders). We denote such theories
as Λ-pert. with a given Σ approximation. We find that third-
order diagrams are practically negligible at U ¼ 0.1 (see
SM), and the series is most likely converged already at
second order. Therefore, our Λ-pert. Σ½G� theory gives the
same result as the noneq. Σ½G� theory. However, the Λ-pert.
Σ½G0� approximation is different from the nonequilibrium
Σ½G0� theory because the vertex correction diagrams we
compute are different. The results for all three distinct
theories (as well as the Boltzmann theory) are compared in
Fig. 3(b).
Discussion and prospects for future work—We observe a

clear trend that Λ-pert. Σ½G0� and Σ½G� results become the
same as U → 0 [Fig. 3(b)]. This indicates that the Λ-pert.

FIG. 2. Diagrammatic content of the current-current correlation
function effectively computed in our nonequilibrium theory
based on different diagrammatic approximations for the self-
energy.

FIG. 3. Main results showing the comparison between different theories and the divergence of vertex corrections in the U → 0 limit.
(a) Cross-check between equilibrium and the corresponding nonequilibrium theories showing perfect agreement in terms of the regular
part of the dc conductivity σregdc (main panel), optical conductivity ReσregðωÞ (lower inset), and the charge stiffness D (upper inset). The
lower inset also shows the contribution of the vertex corrections to ReσregðωÞ (positive in Σ½G� approximation, negative in Σ½G0�
approximation, vanishing at high frequency). (b) Comparison between two possible Λ-perturbation (Λ-pert.) theories (brown and
green), the theory consistent with nonequilibrium (noneq.) Σ½G0� approximation (blue), and the Boltzmann theory(red), showing that
different Λ-pert. theories become indistinguishable as U → 0, while the noneq. Σ½G0� and the Boltzmann remain different. (c) Small-U
scaling of the results. Gray lines display the strict U → 0 scaling: the dashed gray line denotes the bubble computed in this limit, using
the approach explained in [45]; the full gray line is a fit to the total result (full green line); the dash-dotted line is inferred from the
previous two; the scaling of Boltzman results is taken from [46].
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series is not sensitive to the precise choice of the Σ
approximation—as our second-order Σ½G� and Σ½G0�
converge in the weak-coupling limit, so do the correspond-
ing low-order bold-skeleton perturbation theories for Λ.
However, we observe that (non)eq. Σ½G0� and Boltzmann
theory results remain different as U → 0.
To understand this, it is important to note that the Λ

diagrams that are effectively being computed in our noneq.
Σ½G0� theory do not form a proper low-order perturbation
theory. Even though Σ½G0� becomes exact as U → 0 (and is
even expected to perform best at low but finite coupling
[63,64]; see also SM), the current response one gets from it
is most likely never exact, no matter how low the value of
U. The vertex corrections introduced this way subtract from
σregdc , which is opposite to what is found in noneq. Σ½G� and
the previous work with FTLM [24]. The failure of Σ½G0� is
relevant for Ref. [48] where in a similar theory, at low
doping and high temperature, vertex corrections are also
found to suppress dc conductivity instead of enhance it
(see SM).
On the other hand, the Boltzmann theory is equivalent to

our noneq. Σ½G� theory, plus additional approximations.
Most importantly, the Green’s function appearing in the
collision integral and the second-order self-energy is
simplified by the quasiparticle approximation (leading to
expressions formally similar to our Σ½G0�; see SM for
details). Therefore, the Boltzmann theory cannot be more
accurate than our noneq. Σ½G� theory, and the additional
approximations likely lead to the quantitatively wrong
scaling we observe at U → 0.
Our main finding is that the vertex corrections to dc

conductivity do not vanish, even as U → 0. It appears that
both the bubble and the vertex corrections diverge at small
U as 1=U2, but with a different prefactor, meaning that, as
U is reduced, the ratio between the bubble and the vertex
corrections remains fixed. This happens despite the U2

prefactor in second-order vertex correction diagrams
(VC2). The reason is that the frequency dependence
ImΛVC2ðωÞ=U2 becomes singular at ω ¼ 0 as U → 0
(we have checked this by computing Λ diagrams with
the bare propagators; see SM). It is possible that a similar
scenario happens at higher orders as well, and that all
orders of perturbation contribute to σdc even at infinitesimal
coupling. Our results, however, suggest that third-order
vertex corrections to σdc at U ¼ 0.1 are at least 2 orders of
magnitude smaller than second order. At U ≈ 0.1–0.25, the
difference between Λ-pert. Σ½G� and Λ-pert. Σ½G0� results
appears to be only due to the difference in the self-energy,
not due to lack of convergence of the Λ series.
Our findings show that neither the Boltzmann theory nor

the Kubo bubble are exact in the weak-coupling limit. To
fully confirm the strange-metal phenomenology that these
two theories predict atU → 0 and half-filling [45], we need
to be able to do calculations at temperatures of order 0.001–
0.1. This will require further optimization in both our

RFDiagMC and noneq. Σ½G� theories, which are currently
limited to about T > 0.05. Our nonequilibrium approach
can be pushed to lower temperatures by using compression
methods [65,66], and the preliminary results are encour-
aging. With additional optimization outside of the scope of
the current Letter, we should also be able to push
RFDiagMC to lower temperatures and stronger coupling.
The path forward is clear, at least in principle: one should
attempt to converge the bare series for the equilibrium
Σ½G0�, then use it to dress the Green’s function, and then try
to converge the bold-skeleton series for Λ.
Computations were performed on the PARADOX super-

computing facility (Scientific Computing Laboratory,
Center for the Study of Complex Systems, Institute of
Physics Belgrade).

Acknowledgments—We acknowledge useful discussions
with Hugo Strand, Nenad Vukmirović, Rok Žitko, Antoine
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