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Abstract
We investigate geometric resonances in Bose–Einstein condensates by solving the underlying
time-dependent Gross–Pitaevskii equation for systems with two- and three-body interactions
in an axially symmetric harmonic trap. To this end, we use a recently developed analytical
method (Vidanović et al 2011 Phys. Rev. A 84 013618), based on both a perturbative
expansion and a Poincaré–Lindstedt analysis of a Gaussian variational approach, as well as a
detailed numerical study of a set of ordinary differential equations for variational parameters.
By changing the anisotropy of the confining potential, we numerically observe and analytically
describe strong nonlinear effects: shifts in the frequencies and mode coupling of collective
modes, as well as resonances. Furthermore, we discuss in detail the stability of a
Bose–Einstein condensate in the presence of an attractive two-body interaction and a repulsive
three-body interaction. In particular, we show that a small repulsive three-body interaction is
able to significantly extend the stability region of the condensate.

(Some figures may appear in colour only in the online journal)

1. Introduction

The experimental discovery of Bose–Einstein condensation
[1–6] has instigated extensive experimental and theoretical
studies of ultracold atoms and molecules. In particular,
many experiments have focused on collective excitations of
harmonically trapped Bose–Einstein condensates (BECs), as
their frequencies can be measured to the order of a few per mill
[7–10] and calculated analytically [11–17], and thus provide a
reliable method for extracting ultracold system parameters.

A wide variety of interesting nonlinear phenomena
are observed in collective excitations of BECs, including
frequency shifts [18, 19], mode coupling [18, 20, 21], damping
[9, 22], nonlinear interferometry [23], as well as collapse and

revival of oscillations [18, 24, 25]. The collective oscillation
modes can be induced in a BEC by modulating the external
potential trap [7, 8, 18, 26–39], the s-wave scattering length
[19, 40–43] or three-body interactions [42, 44].

Resonant coupling between collective modes in a BEC
was experimentally observed [20, 45], and it was shown that,
when the parity quadrupole mode is excited by changing the
trap anisotropy parameter above a certain value, it is possible to
achieve an energy transfer between modes at a rate [21] which
is comparable to the collective mode frequency. In [18], the
frequency shift of collective modes due to the trap anisotropy
in a generic axially symmetric geometry was studied, and
it was shown that the collective modes exhibit a resonant
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behaviour for specific values of the trap anisotropy, which are
called geometric resonances, and that the strong effects can be
observed even for oscillations of relatively small amplitude.
The excitations and coupling of quadrupole and scissor modes
in two-component BECs were investigated in [46]. Recently,
also a coupling of the dipole, breathing and quadrupole modes
close to a Feshbach resonance was analysed in [47].

In this paper, we study geometric resonances and resonant
mode coupling in BECs with two- and three-body contact
interactions. Theoretical studies of collective excitations are
usually focused on two-body contact interactions due to the
diluteness of quantum gases [10, 18–21, 41, 48]. However,
the experimental progress with BECs in atomic waveguides
and on the surface of atomic chips, which involve a strong
increase in the density of BECs, also necessitates the study of
three-body interactions [49–51]. Theoretical and experimental
studies [49, 52, 53] for a BEC of 87Rb atoms indicated
that the real part of the three-body interaction term can be
103–104 times larger than the imaginary part. The imaginary
part, which arises from three-body recombinations, limits
the lifetime of the condensate. However, even for a small
strength of the three-body interaction, the region of stability
for the condensate can be extended considerably according to
[54–57]. We study this in more detail and provide a
phase diagram which demonstrates the significantly enhanced
stability of BECs due to three-body interactions.

Due to the three-body interaction, the density profile [56],
the excitation spectrum of the collective oscillations [59, 58]
as well as the modulation instability of a trapped BEC [60]
is modified. The effects of the three-body interaction were
furthermore studied in ultracold bosonic atoms in an optical
lattice [51, 61–68], BCS-BEC crossover [69], complex solitons
BEC [70] and vortex BEC [71]. In addition, an extensive
work was done on the study of cubic–quintic nonlinear
equations, most notably in the context of nonlinear optics and
superfluid helium. Even though these studies were done in
uniform systems, many of the results are quite relevant for
trapped systems as well. In particular, we mention studies of
cavitation [72], droplets [73], as well as dynamics, solitary
waves and vortex nucleation [74]. The transition temperature,
the depletion of the condensate atoms and the collective
excitations of a BEC with two- and three-body interactions
in an anharmonic trap at finite temperature are studied in
[75]. Reference [76] shows that the frequency of the collective
excitation is also significantly affected by the strength of the
three-body interaction and the anharmonicity of the potential.
In [77], the authors investigated the collective excitations and
the stability of a BEC in a one-dimensional trapping geometry
for the case of repulsive or attractive three-body and repulsive
two-body interactions.

Motivated by this, we study here the dynamics of the
condensate with both two- and three-body contact interactions
in general and its collective oscillation modes in particular
by changing the geometry of the trapping potential. Within a
Gaussian variational approach, the partial differential equation
of Gross and Pitaevskii is transformed in section 2 into a set of
ordinary differential equations for the condensate widths. We
then discuss in detail in section 3 the resulting stability of the

condensate. First, we consider the case of an attractive two-
body interaction and a vanishing three-body interaction, and
afterwards the case of attractive two-body and repulsive three-
body interactions. In section 4, we study geometric resonances
and derive explicit analytic results for the frequency shifts
for the case of an axially symmetric condensate based on
a perturbative expansion and a Poincaré–Lindstedt method.
This frequency shift is calculated for a quadrupole mode in
subsection 4.1, for a breathing mode in subsection 4.2 and the
derived analytical results are then compared with the results
of numerical simulations in subsection 4.3. In that subsection,
we also compare results of numerical simulations for radial
and longitudinal condensate widths and the corresponding
excitations spectra with the analytical results obtained using
perturbation theory. Then, in section 5, we analyse the resonant
mode coupling and the generation of second harmonics of
the collective modes. Finally, in section 6 we summarize our
findings and present our conclusions.

2. Variational approach

The dynamics of a Bose–Einstein-condensed gas in a trap
at zero temperature is well described by the time-dependent
Gross–Pitaevskii (GP) equation [76–81]. Usually, only two-
body contact interactions are considered due to the diluteness
of the gas. In this paper, however, we study systems where also
three-body contact interactions have to be taken into account
[82, 52]. In that case, the GP equation has the form

i�
∂

∂t
ψ(r, t) =

[
− �

2

2m
� + V (r) + g2N |ψ(r, t)|2

+ g3N2 |ψ(r, t)|4
]
ψ(r, t), (1)

where ψ(r, t) denotes a condensate wavefunction normalized
to unity and N is the total number of atoms in the condensate.
On the right-hand side of the above equation, we have a
kinetic energy term, an external axially symmetric harmonic
trap potential V (r) = 1

2 mω2
ρ

(
ρ2 + λ2z2

)
with the anisotropy

parameter λ = ωz/ωρ , while the parameters g2 and g3

account for the strength of two-body and three-body contact
interactions, respectively. The two-body interaction strength
g2 = 4π�

2a/m is proportional to the s-wave scattering length
a, where m denotes the mass of the corresponding atomic
species.

The three-body interaction strength g3 becomes important
not only for large values of the s-wave scattering length, but
also for small values of a close to the ideal gas regime. It
is well known that the stability against the collapse of 85Rb
cannot be described by using only the two-body scattering
[83]. The three-body scattering also plays an essential role
in understanding the Efimov physics, where three bosons
form a bound state [84, 85]. Braaten and Nieto [86] have
used an effective field theory to calculate the strength of the
three-body interaction, which effectively arises from the two-
body interaction, and obtained the result g3(κ) = 384π(4π −
3
√

3)[ln κa+B]�2a4/m, where κ is an arbitrary wave number
and B is a complex constant, both being suitably fixed in
[86]. Thus, in general, the effective three-body coupling
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strength represents a complex number, where its imaginary
part describes recombination effects. However, its real part
turns out to be much larger, and the fit to experimental data for
85Rb and 87Rb gives typical values for Re(g3)/� of the order
of 10−27 to 10−26 cm6 s−1 [87, 75, 88].

Equation (1) can be cast into a variational problem, which
corresponds to the extremization of the action defined by the
Lagrangian L(t) = ∫

L(r, t) dr, with the Lagrangian density

L(r, t) = i�

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− �

2

2m
|∇ψ |2 − V (r)|ψ |2

− g2N

2
|ψ |4 − g3N2

3
|ψ |6. (2)

In order to analytically study the dynamics of BEC systems
with two- and three-body interactions, we use the Gaussian
variational ansatz, which was introduced in [15, 16]. For an
axially symmetric trap, this time-dependent ansatz reads

ψG(ρ, z, t) = N (t) exp

[
−1

2

ρ2

uρ (t)2
+ iρ2φρ(t)

]

× exp

[
−1

2

z2

uz(t)2
+ iz2φz(t)

]
, (3)

where N (t) = 1/

√
π

3
2 u2

ρ (t)uz(t) is a normalization factor,
while uρ (t), uz(t), φz(t) and φρ(t) are variational parameters,
representing radial and axial condensate widths and the
corresponding phases. The ansatz (3) describes dynamics of
the condensate in terms of the time-dependent condensate
widths and phases, while no centre-of-mass motion is
considered here. A similar variational ansatz including the
centre-of-mass motion has been studied in [89], and would be
suitable to investigate how the centre-of-mass motion couples
to the collective oscillation modes in the presence of three-
body interactions.

If we insert the Gaussian ansatz (3) into the
Lagrangian (2), we obtain the Lagrange function

L(t) = −�

2

(
2φ̇ρu2

ρ + φ̇zu
2
z

) − mω2
ρ

2

(
u2

ρ + λ2 u2
z

2

)

− �
2

2m

[(
1

u4
ρ

+ 4φ2
ρ

)
u2

ρ +
(

1

u4
z

+ 4φ2
z

)
u2

z

2

]

− g2N

2(2π)3/2u2
ρuz

− g3N2

9
√

3π3u4
ρu2

z

. (4)

From the corresponding Euler–Lagrange equations, we obtain
the equations of motion for all variational parameters. The
phases φρ and φz can be expressed explicitly in terms of first
derivatives of the widths uρ and uz according to

φρ = mu̇ρ

2�uρ

, φz = mu̇z

2�uz
. (5)

Inserting equations (5) into the Euler–Lagrange equations for
the widths, we obtain the second-order differential equation
for uρ and uq. After introducing the dimensionless parameters

ω̃i = ωi/ωρ, ũi = ui/�, t̃ = ωρ t (6)

with the oscillator length � = √
�/mωρ , we obtain a system

of two second-order differential equations for uρ and uz in the

dimensionless form

üρ + uρ − 1

u3
ρ

− p

u3
ρuz

− k

u5
ρu2

z

= 0, (7)

üz + λ2uz − 1

u3
z

− p

u2
ρu2

z

− k

u4
ρu3

z

= 0, (8)

where, for simplicity, we drop the tilde sign in the
dimensionless widths. In the above equations,

p = g2N

(2π)3/2�ωρ�3
=

√
2

π

Na

�
(9)

denotes the dimensionless two-body interaction strength,
while the parameter

k = 4g3N2

9
√

3π3�ωρ�6
(10)

is the dimensionless three-body interaction strength, which
can also be expressed in terms of p as

k = 32

9
√

3

g3�ωρ

g2
2

p2. (11)

For N = 105 atoms of 87Rb [45, 51] in a trap with
ωρ = 2π × 112 Hz, the two-body interaction strength is
g2 = 5� × 10−11 cm3 s−1, yielding p = 426. The three-body
interaction is of the order of g3 ≈ � × 10−26 cm6 s−1 [51],
which gives the dimensionless three-body interaction value
k = 1050.

Although the value of k is larger than that of p, the
corresponding terms in equations (7) and (8), i.e. k/u5

ρu2
z and

k/u4
ρu3

z , are suppressed by the factor u2
ρuz compared to the

respective p-terms. The value of this factor can be estimated
by taking into account the equilibrium positions uρ0 and uz0,
which are obtained by solving the stationary equations

uρ0 = 1

u3
ρ0

+ p

u3
ρ0uz0

+ k

u5
ρ0u2

z0

, (12)

λ2uz0 = 1

u3
z0

+ p

u2
ρ0u2

z0

+ k

u4
ρ0u3

z0

. (13)

For the anisotropy λ = 3/2, one numerically obtains uρ0 ≈
3.69 and uz0 ≈ 2.47, yielding the value u2

ρ0uz0 ≈ 33.6.
This shows that the terms proportional to k have the effective
coupling k/33.6 ≈ 31.2, which makes them small corrections
of the order of 7% to the leading two-body interaction
terms. However, if the system exhibits resonances, this may
no longer be true, and three-body interactions can play a
significant role for the system dynamics. In this paper, we
study geometric resonances, where it turns out to be necessary
to take into account effects of three-body interactions. The
s-wave scattering length can be tuned to any value, large
or small, positive or negative, by applying an external
magnetic field, using the Feshbach resonance technique
[90, 91]. Therefore, in this paper we will consider a range of
experimentally realistic values for dimensionless interaction
strengths p and k.

Using the Gaussian approximation enables us to
analytically estimate frequencies of the low-lying collective
modes [15, 16, 19]. This is done by linearizing equations (7)
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Figure 1. Frequencies (in units of ωρ) of collective oscillation modes for (a) breathing and quadrupole modes and (b) the radial quadrupole
mode versus the trap aspect ratio λ for p = 1, k = 0.001 (solid red lines) and p = 10, k = 0.1 (dashed blue lines).

and (8) around the equilibrium positions. If we expand the
condensate widths as uρ (t) = uρ0 + δuρ (t) and uz(t) =
uz0 + δuz(t), insert these expressions into the corresponding
equations and expand them around the equilibrium widths
by keeping only linear terms, we immediately obtain the
frequencies of the breathing and the quadrupole modes,

ω2
B,Q =

m1 + m3 ±
√

(m1 − m3)2 + 8m2
2

2
, (14)

where the abbreviations m1, m2 and m3 are given by

m1 = 4 + 2k

u6
ρ0u2

z0

, m2 = p

u3
ρ0u2

z0

+ 2k

u5
ρ0u3

z0

,

m3 = 4λ2 − p

u2
ρ0u3

z0

, (15)

and the corresponding breathing and quadrupole mode
eigenvectors are given by

uB,Q = 1√
m2

2 + (
ω2

B,Q − m1
)2

(
m2

ω2
B,Q − m1

)
. (16)

The quadrupole mode has a lower frequency and is
characterized by out-of phase radial and axial oscillations,
while in-phase oscillations correspond to the breathing
mode. Another low-lying collective excitation is the radial
quadrupole mode, which is characterized by out-of-phase
oscillations in the x and y directions, while in the z direction
there are no oscillations. As this mode breaks the cylindrical
symmetry, it can only be calculated by using the three-
dimensional equations of motion. The frequency turns out to
be

ω2
RQ = 2 + 2

u4
ρ0

, (17)

and the corresponding three-dimensional eigenvector is

uRQ = 1√
2

⎛
⎝ 1

−1
0

⎞
⎠ . (18)

Figure 1 shows the frequencies of all collective oscillation
modes as functions of the trap aspect ratio λ. We see that
the collective mode frequencies depend relatively strongly on
the trap anisotropy, whereas a variation of the dimensionless
interaction strengths p and k yields only marginal changes.

3. Stability diagram

In this section, we discuss the stability of a BEC in the
mean-field framework for systems with two- and three-body
contact interaction in an axially symmetric harmonic trap. It is
well known that BEC systems with an attractive two-body
interaction are unstable against collapse above the critical
number of atoms (i.e. for a sufficiently large negative value of
p) in the condensate [80, 81]. For smaller numbers of atoms,
the zero-point kinetic energy is able to counter the attractive
inter-atomic interactions; however, when the number of atoms
sufficiently increases, this is no longer possible, and the system
collapses to the centre of the trapping potential.

We find that, for a pure two-body interaction, the
condensate is stable only above a critical stability line pc(λ),
while the presence of even a small repulsive three-body
interaction leads to the stabilization of the condensate. On the
other hand, we find that an attractive three-body interaction
further destabilizes the condensate.

To study in detail the effects of the three-body interaction
on the stability of BEC systems, we consider several
cases of interest: repulsive and attractive pure two-body
interactions, attractive two-body and repulsive three-body
interactions, and attractive two- and three-body interactions. If
the corresponding system of equations does (not) have positive
and bounded solutions of equations (7) and (8) in the vicinity
of positive equilibrium widths determined by equations (12)
and (13), then the condensate is considered stable (unstable).
This is equivalent to performing a linear stability analysis
and determining the stability of positive equilibrium widths
by examining frequencies of the corresponding collective
oscillation modes (14) and (17). The solution is only stable
if frequencies of all low-lying collective modes are found to
be real; otherwise the solution is unstable.

For the case of a pure repulsive two-body interaction, we
will immediately see that the condensate is always stable. For
the case of an attractive two-body interaction, the situation
is quite different: the above system of equations can have no
equilibrium, or it could have up to three equilibrium solutions.
The results of a detailed numerical analysis are summarized in
figure 2.

The dashed red line in figure 2(a) represents the critical
stability line as a function of the trap aspect ratio λ for a
pure two-body interaction (k = 0). Below the critical stability
line, there are no stable solutions and the system is unstable.
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Figure 2. Stability diagram of a BEC as a function of a trap aspect ratio λ for different values of dimensionless two-body and three-body
contact interaction strengths p and k. (a) λ–p stability diagram for k = 0, where the dashed red line represents the critical stability line,
below which there are no solutions (N). Above this line, for p < 0, there is one stable and one unstable solution (1S+1U), while for p � 0
there is only one stable solution (1S). (b) λ–p stability diagram for k = 0.005, where two cases exist: the small region with two stable and
one unstable solution (2S+1U), while otherwise only one stable solution exists (1S). For comparison, in the inset we combine the critical
stability line for k = 0 with the stability diagram for k = 0.005. (c) λ–k stability diagram for p = −0.5. For k � 0, there are two regions: the
one without solutions (N), and the one with one stable and one unstable solution (1S+1U). For k > 0, there are also two regions: the small
region with two stable solutions and one unstable solution (2S+1U), while otherwise there is only one stable solution (1S). As we can see, a
non-vanishing value of the three-body interaction k substantially enhances the stability of a condensate.
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Figure 3. Condensate width uρ0 = uz0 = u0 for λ = 1 and (a) k = 0, as a function of p; (b) k = 0.005, as a function of p; (c) p = −0.5, as a
function of k. The solid red lines represent the stable solution with minimal energy, the dotted black lines represent another stable solution
and the dashed blue lines represent the unstable solution.

Above the critical stability line, the system has one stable and
one unstable solution for an attractive two-body interaction
(p < 0), and only one stable solution for a repulsive two-body
interaction (p � 0). For λ = 0, which corresponds to the limit
of a cigar-shaped condensate, we have the critical value of two-
body interactions pc = −0.6204, which coincides precisely
with the value from [16]. For the isotropic case, when λ = 1,
the critical value is pc = −0.535, which again coincides with

the value from the literature [6, 16, 87, 57]. Figure 3(a) shows
solutions for the isotropic condensate as a function of p.

Now, if we consider the case of an attractive two-body
interaction and a small repulsive three-body interaction, then
the results of the stability analysis are quite different. The
system can either have one or three solutions, as shown in
figure 2(b). The presence of a positive three-body interaction
k, however small, leads to the existence of at least one stable
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Figure 4. Frequencies (in units of ωρ) of low-lying collective excitation modes: breathing (B), radial quadrupole (RQ) and quadrupole (Q),
as functions of an attractive two-body interaction p for the trap anisotropy λ = 117/163 and (a) k = 0, (b) k = 0.005.

solution in the whole range of values of λ and p. In the small
area designated by 2S+1U in figure 2(b), two stable solutions
and one unstable solution exist. Out of these two stable
solutions, only the one with the minimal energy is physically
relevant and could be realized in an experiment. Figure 3(b)
shows solutions for λ = 1, k = 0.005 as a function of p. As we
can see, a minimal-energy stable solution exists for any value
of p. However, for large negative values of p this solution tends
to zero, which practically represents a collapsed condensate.
Therefore, although within the given mathematical model the
condensate is always stable, physically this is valid only up
to a critical number of atoms, which has to be determined
by considering in detail the corresponding condensate density.
However, as we can see from figure 3(b), the dependence u0(p)

for large negative values of p is quite flat, which means that the
stability region can be significantly extended in the presence
of a small positive value of k compared to the case of pure
two-body interaction.

We also analyse the stability of a BEC system as a
function of the three-body interaction k. Figure 2(c) shows
the corresponding stability diagram for an attractive two-
body interaction p = −0.5. For a repulsive three-body
interaction (k > 0), as expected, we see a small region
with two stable solutions and one unstable solution (2S+1U),
as well as a region with only one stable solution (1S),
similar to figure 2(b). For an attractive three-body interaction
(k < 0), the stability region with one stable and one unstable
solution (1S+1U), which corresponds to the 1S+1U region in
figure 2(a), gradually shrinks until it disappears as k becomes
sufficiently negative. Therefore, we see that an attractive three-
body interaction has the same destabilizing effect on a BEC
as an attractive two-body interaction. This can also be seen
in figure 3(c), where the stable minimal-energy solution for
p = −0.5 exists only for a limited range of negative values
of k.

To further illustrate the findings of the above stability
analysis, we plot in figure 4 the frequencies of the low-
lying collective excitation modes as functions of an attractive
two-body interaction for the trap anisotropy λ = 117/163
[3]. Figure 4(a) corresponds to the case when three-body
interactions are neglected, i.e. k = 0, and we can see
that the condensate collapses for pc = −0.561, when the
expression for ω2

Q from equation (14) becomes negative. For a
small repulsive three-body interaction k = 0.005, figure 4(b)
shows the frequencies corresponding to stable minimum-
energy solutions. From figure 3(b) we see that for pc = −0.486

there is a jump from one to another solution branch due to the
minimal energy condition, which is reflected in figure 4(b)
by a corresponding jump in the frequencies of the collective
modes.

4. Shifts in frequencies of collective modes

Close to geometric resonances, the nonlinear structure of
the GP equation (1) leads to shifts in the frequencies of
collective oscillation modes compared to the respective values
in equation (14), which are calculated using a linear stability
analysis. Here we apply the standard Poincaré–Lindstedt
method [92–95, 19] in order to develop a perturbation theory
and calculate these frequency shifts.

4.1. Quadrupole mode

We start with working out a perturbation theory for the BEC
dynamic, which is based on the set of ordinary differential
equations (7)–(8), by expanding the condensate widths in the
series

uρ (t) = uρ0 + εuρ1(t) + ε2uρ2(t) + ε3uρ3(t) + · · · , (19)

uz(t) = uz0 + εuz1(t) + ε2uz2(t) + ε3uz3(t) + · · · , (20)

where the smallness parameter ε stems from the respective
initial conditions. Here we study the system dynamics with
the initial conditions in the form

u(0) = u0 + εuQ, _u(0) = 0, (21)

when the system is close to the equilibrium position u0, and is
perturbed in the direction of the quadrupole oscillation mode
eigenvector uQ, determined by equation (16). By inserting
expansions (19) and (20) into equations (7) and (8), we obtain
the following system of linear differential equations:

üρn(t) + m1uρn(t) + m2uzn(t) = χρn(t), (22)

üzn(t) + 2m2uρn(t) + m3uzn(t) = χzn(t), (23)

where the index n takes integer values n = 1, 2, 3, . . .,
and the quantities m1, m2 and m3 are already defined by
expressions (15). The functions χρn(t) and χzn(t) depend
only on the solutions uρi(t) and uzi(t) of lower orders i,
i.e. those corresponding to i < n. Therefore, the above
system of equations can be solved hierarchically, and at each
level n of this procedure, we use the initial conditions from
equations (21).
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In order to decouple the system of equations (22)–(23),
we use the linear transformation

uρn(t) = xn(t) + yn(t), (24)

uzn(t) = c1xn(t) + c2yn(t) (25)

with the coefficients

c1,2 =
m3 − m1 ∓

√
(m3 − m1)2 + 8m2

2

2m2
, (26)

which leads to two independent linear second-order
differential equations:

ẍn(t) + ω2
Qxn(t) + c2χρn(t) − χzn(t)

c1 − c2
= 0, (27)

ÿn(t) + ω2
Byn(t) + χzn(t) − c1χρn(t)

c1 − c2
= 0. (28)

From this we see that xn(t) and yn(t) correspond to quadrupole
and breathing mode oscillations, respectively. Although
the system is initially perturbed only in the direction of the
quadrupole mode eigenvector, due to the nonlinearity of the
system, the breathing mode is excited as well. The solutions
of the above equations depend essentially on the nature of
the inhomogeneous terms, which are given by polynomials of
harmonic functions of ωQt, ωBt and their linear combinations
(kωQ + mωB)t. Therefore, compared to linear systems, the
important difference here is that higher harmonics and linear
combinations of the modes emerge due to the structure of the
GP equation.

A careful analysis also reveals the important conclusion
that secular terms will start appearing at the level n = 3. As
usual, they can be absorbed by a shift in the quadrupole mode
frequency [19, 92–95]. At level n = 3, equations (22)–(23)
can be written as

ü3(t) + Mu3(t) + IQ,3 cos ωQt + · · · = 0, (29)

with the matrix M defined as

M =
(

m1 m2

2m2 m3

)
, (30)

and the dots represent the inhomogeneous part of the equation,
which does not contain linear terms proportional to harmonic
functions in ωQt. The expression for IQ,n can be calculated
systematically in the Mathematica software package [96].

The frequency shift of the quadrupole mode is found to
be quadratic in ε:

ωQ(ε) = ωQ + �ωQ = ωQ − ε2
(uL

Q)T IQ,3

2ωQ
, (31)

where uL
Q is the left-hand quadrupole mode eigenvector of the

matrix M. After a detailed calculation, the frequency shift of
a quadrupole mode to lowest order in ε is found to be

�ωQ = −ε2 fQ,3(ωQ, ωB, uρ0, uz0, p, k, λ)

2ωQ(ωB − 2ωQ)(ωB + 2ωQ)
, (32)

where fQ,3 is a regular function, without poles for real values
of its arguments. The above expression (32) has a pole for
ωB = 2ωQ. Taking into account the fact that ωQ < ωB, as

we can see from equation (14) and figure 1, as well as the
fact that collective frequencies depend on the trap aspect ratio
λ, the condition ωB = 2ωQ can, in principle, be satisfied.
This is denoted as a geometric resonance, since it is obtained
by simply tuning the geometry of the experiment through λ.
Higher-order corrections to �ωQ in ε could, in principle, be
obtained systematically by using the developed perturbation
theory.

4.2. Breathing mode

In a similar manner, we also study the dynamics of a
cylindrically symmetric BEC system when initially only the
breathing mode is excited,

u(0) = u0 + εuB, u̇(0) = 0. (33)

Applying again the Poincaré–Lindstedt perturbation theory,
we calculate the breathing mode frequency shift,

ωB(ε) = ωB + �ωB = ωB − ε2

(
uL

B

)T
IB,3

2ωB
, (34)

where again the expression (uL
B)T IB,3 is calculated in

Mathematica. In this way, we finally yield the following
analytic formula for the frequency shift of the breathing mode

�ωB = −ε2 fB,3(ωQ, ωB, uρ0, uz0, p, k, λ)

2ωB(2ωB − ωQ)(2ωB + ωQ)
, (35)

where the function fB,3 is a regular function of its arguments.
Naively looking at this expression, one would say that it
exhibits a pole for 2ωB = ωQ. However, from equation (14)
and figure 1 we see that ωQ < ωB, and, therefore, the condition
2ωB = ωQ is never satisfied. In the following subsection, we
numerically demonstrate that a geometric resonance does not
occur, and verify the analytical result for the frequency shift
of the breathing mode.

4.3. Comparison with numerical results

In order to verify our analytical results, we perform high-
precision numerical simulations [97–105]. At first we focus on
a description of the BEC dynamics, and compare our analytical
results for the radial and longitudinal widths of the condensate
obtained perturbatively to the direct numerical solutions of
equations (7)–(8). To this end, we consider a BEC in the initial
state corresponding to the perturbed equilibrium position,
where the small perturbation is proportional to the eigenvector
of the quadrupole mode according to equations (21). Examples
of the condensate dynamics are shown in figure 5 for a pure
two-body interaction p = 1, k = 0 with ε = 0.1, and in
figure 6 for p = 1, k = 0.001, ε = 0.1.

In both figures, we plot analytical and numerical solutions
for uρ and uz as functions of the dimensionless time parameter
ωρt for different values of the trap aspect ratio λ. Analytical
solutions are calculated using the third-order perturbation
theory developed in subsection 4.1. We can see in figure 5
that the agreement is excellent, not only for the non-resonant
value of the trap aspect ratio λ = 2.3 (top panels), but
also for λ = 0.55 (bottom panels), which is close to a
geometric resonance, as we will see later in figure 8(a). For
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Figure 5. A comparison of analytic (solid blue lines) and numeric (red dots) results for a BEC dynamics with a pure repulsive two-body
interaction p = 1, k = 0 and ε = 0.1. The top panels show dynamics of (a) radial and (b) longitudinal condensate widths for the trap aspect
ratio λ = 2.3 as a function of the dimensionless time ωρt; the bottom panels show dynamics of (c) radial and (d) longitudinal BEC widths
for λ = 0.55.
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Figure 6. A comparison of analytic (solid blue lines) and numeric (red dots) results for BEC dynamics for a repulsive two-body interaction
p = 1 and a repulsive three-body interaction k = 0.001, with ε = 0.1. The top panels show dynamics of (a) radial and (b) longitudinal
condensate widths for the trap aspect ratio λ = 0.7 as a function of the dimensionless time ωρt; the bottom panels show dynamics of
(c) radial and (d) longitudinal BEC widths for λ = 2.05.

these values of parameters, the relative shift in the quadrupole
mode frequency is of the order of 0.3%, and therefore third-
order perturbation theory yields a quite accurate description
of the system dynamics. The same applies to the top panels
of figure 6, where λ = 0.7 is far from any resonance.
However, for λ = 2.05 (bottom panels), we observe some
disagreement, which increases with propagation time. This is
due to the fact that p = 1, k = 0.001, λ = 2.05 is close
to a geometric resonance, as we will see in figure 8(b). In
this case, the perturbatively calculated shift in the quadrupole
mode frequency is much larger than that for the bottom panels
of figure 5. For this reason, after a long enough time the third-
order perturbation theory is not sufficiently accurate. Although
it gives a qualitatively correct description of the behaviour
of the system, one would have to go to higher orders in

perturbation theory to get more accurate agreement with the
numerical results. Such a behaviour in the bottom panels of
figure 6 is just a telltale of the occurrence of a geometric
resonance, and a subsequent analysis of frequency shifts is
the only proper way to identify these resonances in a more
quantitative way.

However, before we present this analysis, we show in
figure 7 the excitation spectra of the BEC dynamics which
corresponds to the initial conditions (21) for p = 1, k =
0.001 and two values of the trap aspect ratio, λ = 1.9
and λ = 0.5. For the parameter values in figure 7(a), the
linear stability analysis yields breathing and quadrupole mode
frequencies (14) with ωB = 3.65 and ωQ = 1.96, while
for the parameters in figure 7(b), we obtain ωB = 2.01 and
ωQ = 0.905, all expressed in units of ωρ . In both graphs, we
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Figure 7. Fourier spectra of the BEC dynamics obtained by numerically solving the system of equations (7) and (8) for a repulsive two-body
interaction p = 1, a repulsive three-body interaction k = 0.001, and ε = 0.1 for (a) λ = 1.9 and (b) λ = 0.5. Each graph shows spectra of
both longitudinal and radial condensate widths. The locations of all peaks are identified as linear combinations of the quadrupole and the
breathing mode frequencies, in correspondence with the analysis based on the developed perturbation theory.
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Figure 8. Relative frequency shift of the quadrupole mode as a function of the trap aspect ratio λ for ε = 0.1 and different values of
two-body and three-body interaction strengths: (a) p = 1, k = 0, (b) p = 1, k = 0.001, (c) p = 0.1, k = 0.001, (d) p = 0.1, k = 0.1,
(e) p = −0.2, k = 0, (f) p = −0.2, k = 0.005. The solid lines represent the analytical result (32), while dots are obtained by a numerical
analysis of the corresponding excitation spectrum for each value of λ, as described in figure 7.

can see that the Fourier spectra contain two basic modes, ωQ

and ωB, whose values agree well with those obtained from the
linear stability analysis in equation (14), and a multitude of
higher order harmonics, which are linear combinations of the
two modes, as pointed out in subsection 4.1.

Now we compare the derived analytical results for the
frequency shifts of the quadrupole and the breathing modes
with the results of numerical simulations for the BEC systems
with two- and three-body contact interactions in a cylindrical
trap. In particular, we note that the calculated frequency shifts
close to geometric resonances reveal poles, which are an
artefact of the perturbative approach. Indeed, our detailed
numerical calculations show that the observed frequencies
remain finite through the whole geometric resonance. In
figures 8 and 9, we present the comparison of analytic (solid
lines) and numeric (dots) values of relative frequency shifts as

functions of the trap aspect ratio λ. The analytical results are
calculated from equations (32) and (35), respectively, while
the numerical data are obtained from a Fourier analysis of
the excitation spectrum, i.e. for each value of λ we have
calculated the corresponding Fourier spectra, as in figure 7,
and then extracted the frequency values of the quadrupole and
the breathing mode.

In figure 8(a), we show a special case of a pure two-
body interaction, when k = 0. The condition for a geometric
resonance ωB = 2ωQ yields the trap aspect ratios λ1 = 0.555
and λ2 = 2.056, which is in good agreement with the
numerical data, as we can see from the graph. The existence
of a geometric resonance at λ1 = 0.555 is responsible for a
violent dynamics seen in the bottom panels of figure 5, as we
have pointed out earlier. However, by analysing the frequency
shifts we can conclusively show that, indeed, the geometric
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Figure 9. Relative frequency shift of the breathing mode as a function of the trap aspect ratio λ for ε = 0.1 and different values of two-body
and three-body interaction strengths: (a) p = 1, k = 0, (b) p = 0.2, k = 0.001, (c) p = 0.1, k = 0.1, (d) p = −0.2, k = 0.005. The solid
lines represent the analytical result (35), while dots are obtained by a numerical analysis of the corresponding excitation spectrum for each
value of λ, as described in figure 7.
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Figure 10. Comparison of the analytical results for the relative frequency shifts of (a) quadrupole and (b) breathing modes in the
Thomas–Fermi limit from [18] derived using the parabolic variational ansatz (solid red lines) and the analytical results derived here using
the Poincaré–Lindstedt perturbation theory with the Gaussian variational ansatz (dashed blue lines).

resonance is present. In further graphs, we see that the excellent
agreement between analytical and numerical results also holds
for other values of p and k, including the case of an attractive
two-body interaction p = −0.2, which is still within the BEC
stability region. It is interesting to note the observation that
the asymptotic approach to geometric resonances for the case
of an attractive two-body interaction is reversed compared to
the case of a repulsive two-body interaction. For instance, we
can see in figure 8(d) that �ωQ/ωQ → ∞ when λ → λ−

2 ,
and �ωQ/ωQ → −∞ when λ → λ+

2 , while for an attractive
p = −0.2 in figure 8(f) we see that the situation is reversed.

In figure 9, we compare analytic and numeric results
for a frequency shift of the breathing mode. As for the
quadrupole mode, the agreement is excellent for both repulsive
and attractive two-body interactions. As pointed out in
subsection 4.2, there are no geometric resonances for the
breathing mode frequency, since the corresponding condition
ωQ = 2ωB cannot be satisfied.

Finally, we compare our derived analytic results with
those from [18], where frequency shifts of collective modes
were calculated in the Thomas–Fermi (TF) limit using a
hydrodynamic approach. In terms of our variational approach,
the TF limit corresponds to the limit p → ∞, so that

equation (14) for the frequencies of the breathing and the
quadrupole mode reduces to

ω2
B,Q = 2 + 3

2λ2 ± 1
2

√
16 − 16λ2 + 9λ4, (36)

which is in agreement with [18]. The condition for a geometric
resonance ωB = 2ωQ thus yields trap aspect ratios λ1,2 =
(
√

125 ± √
29)/

√
72, i.e. λ1 ≈ 0.683 and λ2 ≈ 1.952.

Figure 10 gives a comparison of the relative frequency
shifts in the TF limit calculated in [18] using a hydrodynamic
approach, and our analytical results obtained using the
Poincaré–Lindstedt perturbation theory. Despite the good
agreement, we observe small differences, which are due to
the fact that [18] uses a parabolic variational ansatz for the
condensate wavefunction, while we use the Gaussian ansatz
in equation (3). We have confirmed that, when applied to the
parabolic variational ansatz, our perturbative approach yields
frequency shifts in perfect agreement with [18].

5. Resonant mode coupling

In this section, we study the phenomenon of nonlinearity-
induced resonant mode coupling. As already pointed out, even
if a BEC system is excited precisely along the quadrupole
or, equivalently, the breathing mode, the emerging dynamics
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Figure 11. Amplitudes of the breathing mode emerging in the second order of the perturbation theory from BEC dynamics after initially
only the quadrupole mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and
three-body interaction strengths p and k. The amplitudes AρB and AzB from equations (40) and (41) correspond to the radial and the
longitudinal condensate widths of the emerging breathing mode dynamics.

will lead to small oscillations which initially involve only the
corresponding mode, but then the other collective mode will
eventually step in, as well as higher harmonics of the two
modes and their linear combinations will appear. If the trap
confinement of the system allows a geometric resonance, this
could greatly enhance the mode coupling and speed up the
emergence of those modes which are initially not excited, and
therefore we designate it as a resonant mode coupling. We
focus on the experimentally most studied case of a repulsive
two-body interaction, although all derived analytical results are
also valid for the case of an attractive interaction. As effects
of three-body interactions are usually small, and their main
contribution is related to a stabilization/destabilization of the
condensate, we focus on the emergence of a resonant mode
coupling due to geometric resonances.

To demonstrate this phenomenon, we use the perturbative
solution of equations (7) and (8) with the initial conditions
defined by equations (21), for which the initial state coincides
with the equilibrium with a small perturbation proportional
to the quadrupole mode eigenvector. The second-order
perturbative solution can then be written as

u0 +
(

AρQ

AzQ

)
cos ωQt +

(
AρB

AzB

)
cos ωBt + · · · , (37)

where dots represent higher harmonics and the respective
amplitudes are given by

AρQ = εuρQ + ε2AρQ2

u2
ρQ

ω2
Q

, (38)

AzQ = c1AρQ, (39)

AρB = ε2AρB2

u2
ρQ

(
ω2

B − 2ω2
Q

)
ω2

B

(
ω2

B − 4ω2
Q

) , (40)

AzB = c2AρB. (41)

Note that the absence of terms linear in ε in expressions for
AρB and AzB is due to the initial condition, i.e. the fact that,
initially, we only excite the quadrupole mode. The constants
c1,2 in the above expressions are defined by equation (26),
while AρQ2 and AρB2 are calculated to be

AρQ2 = c2γρ + c1c2α + c2
1c2β − α − 4c1β − c2

1γz

3(c1 − c2)
, (42)

AρB2 = −c3
1β + α − c1γρ + 4c1β − c2

1α + c2
1γz

c1 − c2
, (43)

with α, β, γρ , γz defined as

α = 3p

u4
ρ0u2

z0

+ 10k

u6
ρ0u3

z0

, β = p

u3
ρ0u3

z0

+ 3k

u5
ρ0u4

z0

, (44)

γρ = 6

u5
ρ0

+ 6p

u5
ρ0uz0

+ 15k

u7
ρ0u2

z0

, γz = 6

u5
z0

+ 3p

u2
ρ0u4

z0

+ 6k

u4
ρ0u5

z0

(45)

In figure 11, we see the comparison of the derived
analytical results, which emerge in the second order, and
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Figure 12. Ratios of breathing and quadrupole mode amplitudes emerging in the second order of the perturbation theory after initially only
the quadrupole mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body
interaction strengths p and k. The quantities Rρ and Rz from equations (46) and (47) correspond to ratios of amplitudes of the breathing and
the quadrupole mode in the radial and longitudinal condensate widths.

corresponding numerical simulations for the amplitudes of
the breathing mode. The numerical results are obtained, as
before, by extracting the amplitude of the breathing mode
from the Fourier excitation spectra of the system for each
value of the trap aspect ratio λ. The agreement is quite good,
and we see again a resonant behaviour, which occurs at the
same trap aspect ratios as for the frequency shift of the
quadrupole mode. From equations (40) and (41), we actually
see that the resonances occur when the condition ωB = 2ωQ

is satisfied, which is precisely the same condition as for the
frequency shift. This is not surprising, since amplitudes are
expressed in terms of frequencies of the collective modes,
and a resonant behaviour of the quadrupole mode frequency
leads to resonances in the amplitudes for the same values of λ.
Therefore, geometric resonances are not only reflected in the
resonances of frequency shifts of collective modes, but also in
the resonant mode coupling.

In addition to the absolute values of the breathing mode
amplitudes, which are excited through the resonant mode
coupling, it is also interesting to look at their relative values,
compared to the quadrupole mode amplitudes, i.e.

Rρ = AρB

AρQ
∝ ω2

B − 2ω2
Q

ω2
B − 4ω2

Q

, (46)

Rz = AzB

AzQ
∝ ω2

B − 2ω2
Q

ω2
B − 4ω2

Q

. (47)

Figure 12 shows the comparison of analytical and numerical
results for the relative ratio of amplitudes of the resonance-
excited breathing mode. Due to the geometric resonances, we
see that the trap aspect ratio can be tuned in such a way that the
resonant mode coupling excites the breathing mode with an
amplitude far larger than that of the quadrupole mode, which
serves as the source of excitation.

Furthermore, from equations (40) and (41) we see that, if
the geometry of the trap is tuned such that ωB = ωQ

√
2, then

the amplitudes of the breathing mode vanish simultaneously,
i.e. AρB = AzB = 0. Although this is true only in the
second-order perturbation theory, it still represents a condition
for a significant suppression of the resonant mode coupling.
Therefore, the tunability of the trap aspect ratio offers a unique
tool for enhancing and suppressing the mode coupling in a
BEC, which might be of broad experimental interest.

In a similar way, we can initially excite only the breathing
mode, which corresponds to equations (7) and (8) with initial
conditions defined in equations (33). The solution in the
second-order perturbation theory has again the form

u0 +
(

AρB

AzB

)
cos ωBt +

(
AρQ

AzQ

)
cos ωQt + · · · , (48)
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Figure 13. Ratios of quadrupole and breathing mode amplitudes emerging in the second order of the perturbation theory after initially only
the breathing mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body
interaction strengths p and k. The quantities Rρ and Rz from equations (55) and (56) correspond to ratios of amplitudes of the breathing and
the quadrupole modes in the radial and longitudinal condensate widths.

but now the respective amplitudes read

AρB = εuρB + ε2AρB2
u2

ρB

ω2
B

, (49)

AzB = c2AρB, (50)

AρQ = ε2AρQ2

u2
ρB

(
2ω2

B − ω2
Q

)
ω2

Q

(
4ω2

B − ω2
Q

) , (51)

AzQ = c1AρQ, (52)

and the coefficients AρB2 and AρQ2 are given by

AρB2 = −c1γρ − c1c2α − c1c2
2β + α + 4c2β + c2

2γz

3(c1 − c2)
, (53)

AρQ2 = c3
2β − α + c2γρ − 4c2β + c2

2α − c2
2γz

c1 − c2
. (54)

In this case, the ratios of amplitudes are given by

Rρ = AρQ

AρB
∝ 2ω2

B − ω2
Q

4ω2
B − ω2

Q

, (55)

Rz = AzQ

AzB
∝ 2ω2

B − ω2
Q

4ω2
B − ω2

Q

. (56)

Figure 13 compares analytical and numerical results for
the mode coupling when initially only the breathing mode
is excited, and then the quadrupole mode emerges due to
the mode coupling. As for the case of the breathing mode
frequency shift, there are no resonances, since ωB > ωQ,
and the resonance condition 2ωB = ωQ cannot be satisfied,
as is confirmed by the graphs. Therefore, the amplitudes do
not experience resonances in this case, contrary to what we
have observed in figure 12. Again, this can be explained by
the fact that amplitudes are functions of the breathing mode
frequency, which does not experience any resonances, and
hence the same is valid for the corresponding amplitude.
Also, the condition ωB

√
2 = ωQ cannot be satisfied, and

therefore the amplitude of the quadrupole mode cannot be fully
suppressed here, contrary to the case presented in figure 12. For
a repulsive two-body interaction in figures 13(a)–(d), we see
that the ratios Rρ and Rz are below 10%, and the mode coupling
mechanism is not able to produce a significant amplitude for
the quadrupole mode. For the case of an attractive two-body
interaction in figures 13(e)–(f), the ratio increases and the
generated quadrupole mode amplitude is stronger. Here the
agreement between analytical and numerical results is only
qualitative, so that the perturbation theory would have to be
carried out to higher orders in the small parameter ε in order
to improve the agreement.

13



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303 H Al-Jibbouri et al

6. Conclusions

We have studied the dynamics and collective excitations of
a BEC for different trap aspect ratios at zero temperature. In
particular, we have investigated prominent resonant effects that
arise due to two- and three-body interactions, and their delicate
interplay. We have discussed the stability of a condensate in an
axially symmetric harmonic trap for the experimentally most
relevant setups: repulsive and attractive two-body interactions,
attractive two-body and repulsive three-body interactions, and
attractive two- and three-body interactions. We have shown
that even a small repulsive three-body interaction is able to
extend the stability region of the condensate beyond the critical
number of atoms when the two-body interaction is attractive.

Using a perturbation theory and a Poincaré–Lindstedt
analysis of a Gaussian variational approach for the condensate
wavefunction, we have studied in detail the relation between
resonant effects due to two- and three-body interactions,
and the effects of the trap geometry. Within the variational
approach and the Poincaré–Lindstedt method, we have
analytically calculated frequency shifts and a mode coupling in
order to identify geometric resonances of collective oscillation
modes of an axially symmetric BEC. We have also shown that
the observed geometric resonances can be suppressed if two-
and three-body interactions are appropriately fine-tuned.

To verify the derived analytical results, we have used
numerical simulations, which provide detailed excitation
spectra of the BEC dynamics. We have numerically observed
and analytically described several prominent nonlinear
features of BEC systems: significant shifts in the frequencies of
collective modes, generation of higher harmonics and linear
combinations of collective modes, as well as resonant and
non-resonant mode coupling. We have shown that, even if
the system is excited so that the perturbation corresponds
initially to the eigenvector of a particular mode, the nonlinear
dynamics of the condensate will eventually excite also other
modes due to the mode coupling. The presence of geometric
resonances can significantly enhance this effect, as we have
shown using the developed perturbation theory. All obtained
analytical results are found to be in good agreement with the
numerical results. Furthermore, the results for frequency shifts
are shown to coincide with the earlier derived analytical results
[18] within the hydrodynamic approach in the Thomas–Fermi
approximation. In future work, we plan to extend the present
analysis and also include the effects of quantum fluctuations
[106].
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and Foot C J 2002 Phys. Rev. A 65 033612
[22] Pitaevskii L and Stringari S 1997 Phys. Lett. A 235 398
[23] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys.

7 109
[24] Pitaevskii L 1997 Phys. Lett. A 229 406
[25] Graham R, Walls D F and Collett M J 1998 Phys. Rev. A

57 503
[26] Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
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