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S1 Details of the Model Hamiltonian

S1.1 Formulation of the Hamiltonian

We employ a one-dimensional electron–hole lattice model, which is essentially the multi-

band version of the standard semiconductor model. We perform computations on the sys-

tem containing 2N lattice sites which are mutually separated by lattice constant a. The

sites 0, . . . , N − 1 are considered to belong to the donor part of the interface, while sites

N, . . . , 2N − 1 constitute the acceptor part. Single-electron levels on site i are enumerated

by βi, while single-hole levels on site i are counted by αi. Fermi operators c†iβi and ciβi

(d†iαi and diαi) respectively create and annihilate an electron (a hole) in the single-electron

state (iβi) [single-hole state (iαi)]. The phonon operators b†iξ and biξ generate and destroy a

phonon on site i belonging to mode ξ.

The total Hamiltonian is

H = Hc +Hp +Hc−p +Hc−f (S1)

where Hc describes interacting carriers

Hc =
∑
iβi
jβ′
j

εc(iβi)(jβ′
j)
c†iβicjβ′

j
−
∑
iαi
jα′
j

εv(iαi)(jα′
j)
d†iαidjα′

j

+
1

2

∑
iβi
jβ′
j

Vij c
†
iβi
c†jβ′

j
cjβ′

j
ciβi +

1

2

∑
iαi
jα′
j

Vij d
†
iαi
d†jα′

j
djα′

j
diαi −

∑
iβi
jαj

Vij c
†
iβi
d†jαjdjαjciβi

(S2)

Hp =
∑
iξ

~ωξb†iξbiξ (S3)

describes the phonon bath, Hc−p accounts for the interaction of carriers with the phonon
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bath

Hc−p =
∑
iβi

∑
ξ

gc
iβiξ

c†iβiciβi(b
†
iξ + biξ)−

∑
iαi

∑
ξ

gv
iαiξ

d†iαidiαi(b
†
iξ + biξ) (S4)

whereas Hc−f represents the interaction of carriers with the interfacial electric field F which

is assumed to be uniform throughout the system

Hc−f =
∑
iβi

qF · ri c†iβiciβi −
∑
iαi

qF · ri d†iαidiαi . (S5)

In eq S2, we assume that quantities εc(iβi)(jβ′
j)

(
εv(iαi)(jα′

j)

)
representing electron (hole) on-

site energies and transfer integrals are non-zero only for certain combinations of their indices.

In greater detail, we assume that εc(iβi)(jβ′
j)
6= 0 when it represents

1. on-site energy εciβi of single-electron level βi on site i, for i = j and βi = β′i;

2. negative electron transfer integral between single-electron levels on nearest-neighboring

sites belonging to the same band βi, −Jc,int
iβi

, for i and j both belonging to the same

part of the bilayer, |i− j| = 1, and βi = β′j;

3. negative electron transfer integral between single-electron levels on nearest-neighboring

sites belonging to different bands, −Jc,ext
iβiβ′

j
, for i and j both belonging to the same part

of the bilayer, |i− j| = 1, and βi 6= β′j;

4. negative electron transfer integral between different parts of the bilayer, −Jc
DA, for

i = N − 1 and j = N or vice versa.

The Coulomb interaction is taken into account in the lowest monopole–monopole approxi-

mation and the interaction potential Vij is taken to be of Ohno type

Vij =
U√

1 +
(
rij
r0

)2
(S6)
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where U is the on-site Coulomb interaction, rij is the distance between sites i and j, r0 =

q2/(4πε0εrU) is the characteristic length, and εr is the relative dielectric constant. Charge

carriers are assumed to be locally and linearly coupled to the phonon bath (Holstein-type

interaction), as given in eq S4. The sets of phonon modes are assumed to be identical

on each site, that is, phonon frequency ωξ does not depend on site index i. We also note

that the Hamiltonian Hc−p fully takes into account the effect of on-site dynamic disorder,

i.e. variations of on-site energies due to oscillations of phonon bath. In principle, non-local

electron-phonon coupling that would introduce inter-site dynamic disorder, i.e. variations of

transfer integrals due to oscillations of phonon bath, could also be added to the Hamiltonian

but that would add additional parameters to the model. It is also worth mentioning that

local electron-phonon coupling introduces both diagonal and off-diagonal exciton-phonon

coupling, which means that both diagonal and off-diagonal dynamic disorder in exciton

basis are present. In eq S5, q > 0 is the elementary charge, ri is the position vector of

site i, and vector F is assumed to be perpendicular to the interface and directed opposite

the internal electric field of a space-separated electron–hole pair (in which the electron is

primarily located in the acceptor, while the hole is mainly located in the donor).

S1.2 Excitonic States and Their Classification

We limit ourselves to the subspace of a single electron–hole pair and develop the description

of charge separation in the excitonic basis. The most general state of an electron–hole pair

can be written as the superposition

|x〉 =
∑
iαi
jβj

ψx(iαi)(jβj)c
†
jβj
d†iαi |0〉,

where |0〉 is the vacuum of electron–hole pairs. The exciton states are obtained by solving

the eigenvalue problem (Hc +Hc−f)|x〉 = ~ωx|x〉, which in the basis of single-particle states
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localized at lattice sites reads as

∑
i′α′

i
j′β′

j

(
δii′δαiα′

i
εc(jβj)(j′β′

j)
− δjj′δβjβ′

j
εv(iαi)(i′α′

i)
−

− δii′δαiα′
i
δjj′δβjβ′

j
(Vij − qF · (rj − ri))

)
ψx(i′α′

i)(j
′β′
j)

= ~ωxψx(iαi)(jβj)

(S7)

Limiting our model Hamiltonian to the subspace of singly excited states and transforming

it to the excitonic basis we obtain

Hc +Hc−f =
∑
x

~ωx|x〉〈x|, (S8)

Hc−p =
∑
x̄x

∑
iξ

Γiξx̄x|x̄〉〈x|
(
b†iξ + biξ

)
, (S9)

where the exciton–phonon interaction constants characterizing the transition between exciton

state |x̄〉 and |x〉 read as

Γiξx̄x =
∑
βi

∑
jαj

gc
iβiξ

ψx̄∗(jαj)(iβi)
ψx(jαj)(iβi) −

∑
αi

∑
jβj

gv
iαiξ

ψx̄∗(iαi)(jβj)
ψx(iαi)(jβj). (S10)

According to the spatial properties of stationary states obtained by solving eq S7, we

can differentiate between states describing different types of excitons. In more detail, an XD

state features both carriers predominantly located in the donor part of the bilayer, whereas

an XA state is characterized by both carriers residing mainly in the acceptor part. In a state

of space-separated electron–hole pair, the electron resides mainly in the acceptor, while the

hole resides mainly in the donor. Based on the mean electron–hole separation, states of

space-separated pairs can be further subdivided into CT, CS, and free-charge states. In a

free-charge state, carriers are mainly localized in the so-called contact region, which consists

of sites 0, . . . , lc − 1 in the donor part, and 2N − lc, . . . , 2N − 1 in the acceptor part. The
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space-separated state |x〉 is a free-charge state if

lc−1∑
i=0

∑
j

∑
αiβj

|ψx(iαi)(jβj)|
2 ≥ 0.7, (S11)

and ∑
i

2N−1∑
j=2N−lc

∑
αiβj

|ψx(iαi)(jβj)|
2 ≥ 0.7. (S12)

We established in our previous workS1 that the results are weekly sensitive to the choice

of the length of contact region lc and the exact value of the numerical factor 0.7 in the

criterion for a free charge state, as long as these are changed within reasonable limits. Since

the model Hamiltonian in this work is the same and only the expressions for transition

rates are somewhat changed, we use the same values of these parameters in this work. The

algorithm of the subdivision between CT and CS states is given in detail in ref S1. It relies

on solving eq S7 with donor–acceptor transfer integrals Jc
DA 6= 0, Jv

DA 6= 0 (states |x〉) and

Jc
DA = Jv

DA = 0 (states |x(0)〉). In the case Jc
DA = Jv

DA = 0, state |x(0)〉, in which the electron

is fully in the acceptor, and the hole is fully in the donor, is considered to be a CT state if

its mean electron–hole separation is less or equal than N , otherwise it is considered as a CS

state. In the case Jc
DA 6= 0, Jv

DA 6= 0, if |x〉 is a space-separated state that is not a free-charge

state, we compute overlaps

Ox
CT(0) =

∑
x(0)∈CT

∣∣〈x(0)|x〉
∣∣2 , Ox

CS(0) =
∑

x(0)∈CS

∣∣〈x(0)|x〉
∣∣2 . (S13)

If Ox
CT(0) > Ox

CS(0) , |x〉 is of CT character, otherwise it is of CS character.

The degree of spatial delocalization of carriers in excitonic states can be conveniently

quantified using the participation ratio (PR). The PR can be understood to measure the

number of sites over which the carrier is delocalized. The participation ratio for the electron
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(PRx,e) and the hole (PRx,h) in exciton state |x〉 is defined as

PRx,e =

(∑
i

|φx,ei |
4

)−1

, PRx,h =

(∑
i

∣∣∣φx,hi ∣∣∣4
)−1

(S14)

where |φx,ei | and
∣∣∣φx,hi ∣∣∣ are the moduli of the wavefunction of the electron and hole in state

|x〉, see eqs S16 and S17.

S1.3 Exciton Recombination

The description of exciton recombination is the same as in our recent work,S2 where we

argued that the following expression for the lifetime τx of excitonic state |x〉

τx = τ0

(
N−1∑
i=0

|φx,ei |
∣∣∣φx,hi ∣∣∣+ AA/D

2N−1∑
i=N

|φx,ei |
∣∣∣φx,hi ∣∣∣

)−1

(S15)

is plausible. The last expression basically reflects the intuitively clear fact that the smaller is

the overlap between the electron and hole probability distributions, the longer is the lifetime

of the exciton. In eq S15, we introduced the moduli of the wavefunction of the electron and

hole in exciton state |x〉

|φx,ei | =
√∑

βi

∑
jαj

∣∣∣ψx(jαj)(iβi)∣∣∣2, (S16)

∣∣∣φx,hi ∣∣∣ =

√∑
αi

∑
jβj

∣∣∣ψx(iαi)(jβj)∣∣∣2, (S17)

while τ0 and AA/D are constants which are determined so that the lifetimes of the lowest CT,

XD, and XA states in the ordered system agree with the values reported in the literature.

S1.4 Parameterization of the Model Hamiltonian

As mentioned in the main body of the manuscript, the values of model parameters are

selected so that the values of band gaps, bandwidths, band offsets, exciton binding energies,
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exciton recombination times, etc. within our model agree with those reported in the literature

on the prototypical P3HT/PCBM blend. A detailed discussion on the parameterization of

the model Hamiltonian can be found in our recent work.S2 Here, let us only mention that,

in order to mimic the presence of low-lying unoccupied orbitals that are close to the LUMO

orbital of PCBM, we take two single-electron states per acceptor site, that is, index βi for

N ≤ i ≤ 2N − 1 can take values 0 and 1. At the same time, we assume that each acceptor

site is equipped with one single-hole state, while each donor site has one single-electron

and one single-hole state. We also note that our model strictly describes a bilayer with

layer widths Na but the model can also be of relevance for bulk heterojunctions whose

characteristic dimension (typical distance between a point in the bulk heterojunction and

the closest interface) is similar to bilayer width. For example, a donor (or acceptor) exciton

that reaches the boundary of the system can only be reflected from it in our model. On the

other hand, when it reaches the point that is at equal distance from two different interfaces

in a bulk heterojunction, it can proceed to move toward a different interface. Consequently,

the reflection of an exciton at the boundary in our model can be considered to be equivalent

to motion toward another interface in the bulk heterojunction. More generally, the fact

that an exciton is confined to a layer in our model is in some sense equivalent to the fact

that the distance between an exciton and the interface in the bulk heterojunction cannot be

larger than the characteristic dimension of the bulk heterojunction. The model is pictorially

presented in Figure S1, while its parameters are summarized in Table S1.
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Figure S1: Schematic view of the model system presenting different transfer integrals and on-
site energies present in Table S1. The centers of on-site energy distributions are represented
by dashed lines, while solid lines represent the actual on-site energies, which differ from
site to site due to the diagonal static disorder. The probability density that the energy
of the electron on donor site i (0 ≤ i ≤ N − 1) is around εci,0 is of the Gaussian type

g(εci,0) =
1

σ
√

2π
exp

(
−

(εci,0 − εcD,0)2

2σ2

)
. Other on-site energies are drawn in the same manner.

The contact region of the bilayer is indicated by rectangles. F is the vector of interfacial
electric field. Adapted with permission from ref S2. Copyright 2018 American Chemical
Society.
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Table S1: Values of Model Parameters Used in Computations.

Parameter (Unit) Description Value
N number of sites in a single material 30
lc length of the contact region (eqs S11 and S12) 11

a (nm) lattice constant 1.0
U (eV) on-site Coulomb interaction (eq S6) 0.65
εr relative dielectric constant 3.0

εcD,0 (eV) center for on-site electron energies in D 2.63

Jc,int
D,0 (eV) electron transfer integral in D 0.1
εvD,0 (eV) center for on-site hole energies in D −0.3

Jv,int
D,0 (eV) hole transfer integral in D −0.15
εcA,0 (eV) center for on-site electron energies in band 0 of A 1.565
εcA,1 (eV) center for on-site electron energies in band 1 of A 1.865

Jc,int
A,0 (eV) electron transfer integral in band 0 of A 0.05

Jc,int
A,1 (eV) electron transfer integral in band 1 of A 0.025

Jc,ext
A,01 (eV) electron transfer integral between bands 0 and 1 of A 0.02
εvA,0 (eV) center for on-site hole energies in A −1.03

Jv,int
A,0 (eV) hole transfer integral in A −0.15
Jc
DA (eV) electron transfer integral between D and A 0.1
Jv
DA (eV) hole transfer integral between D and A −0.1
|F| magnitude of the interfacial electric field 0

τ0 (ps) eq S15 400
AA/D eq S15 0.5

S10



S2 Details of the Theoretical Approach and Numerical

Scheme

In the following text, we present additional details concerning the theoretical approach and

numerical scheme.

S2.1 Derivation of Rate Equations in Modified Redfield Theory

The operator Xxx = |x〉〈x|, whose expectation value is the population of exciton state |x〉, is

invariant under polaron transformation, i.e, X̃xx = Xxx. Therefore, we formulate equations

of motion for excitonic populations in the polaron frame.

Time evolution of operator Xxx(t) in the polaron frame is governed by

∂tXxx(t) =
i

~
[H̃0(t), Xxx(t)] +

i

~
[Ṽ (t), Xxx(t)], (S18)

where time dependence is with respect to the full Hamiltonian H̃ (we take t = 0 as the initial

instant, while O is an arbitrary operator in the Schrödinger picture)

Õ(t) = Ũ †(t)ÕŨ(t), Ũ(t) = exp

(
− i

~
H̃t

)
. (S19)

The Dyson expansion of the full evolution operator Ũ(t) in powers of the interaction Ṽ reads

as (T is the chronological time-ordering sign)

Ũ(t) = Ũ0(t)× T exp

(
− i

~

∫ t

0

dτ Ṽ (0)(τ)

)
, (S20)

where

Ũ0(t) = exp

(
− i

~
H̃0t

)
, Ṽ (0)(t) = Ũ †0(t)Ṽ Ũ0(t). (S21)

Therefore, up to the second order in interaction operator Ṽ , the equation of motion of
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operator Xxx(t) (eq S18) reduces to

∂tXxx(t) =
i

~

[
Ṽ (0)(t), Xxx

]
− 1

~2

∫ t

0

dτ
[
Ṽ (0)(τ),

[
Ṽ (0)(t), Xxx

]]
, (S22)

where we have used X(0)
xx (t) = Xxx. The equation of motion for population of excitonic state

x at time t,

fx(t) = Tr {Xxx(t)ρ̃(0)} , (S23)

is now established using eq S22. In order to form closed equations for populations only, we

disregard all contributions that are not diagonal in excitonic indices. Expectation value of

the first term in eq S22 in the initial condition ρ̃(0) produces only off-diagonal contributions

in excitonic indices

[
Ṽ (0)(t), Xxx

]
=
∑
x′( 6=x)

∑
µ

e−i(ω̃x−ω̃x′ )t|x′〉〈x|M (0)
x′xµ(t)

−
∑
x′(6=x)

∑
µ

e−i(ω̃x′−ω̃x)t|x〉〈x′|M (0)
xx′µ(t).

(S24)

On the other hand, the second term in eq S22

[
Ṽ (0)(τ),

[
Ṽ (0)(t), Xxx

]]
=
∑
x′(6=x)

∑
x′′(6=x′)

∑
νµ

e−i(ω̃x′−ω̃x′′ )τe−i(ω̃x−ω̃x′ )t|x′′〉〈x|M (0)
x′′x′ν(τ)M

(0)
x′xµ(t)

+
∑
x′(6=x)

∑
x′′(6=x′)

∑
νµ

e−i(ω̃x′′−ω̃x′ )τe−i(ω̃x′−ω̃x)t|x〉〈x′′|M (0)
xx′µ(t)M

(0)
x′x′′ν(τ)

−
∑
x′( 6=x)

∑
x′′( 6=x)

∑
νµ

e−i(ω̃x′′−ω̃x)τe−i(ω̃x−ω̃x′ )t|x′〉〈x′′|M (0)
x′xµ(t)M

(0)
xx′′ν(τ)

−
∑
x′( 6=x)

∑
x′′( 6=x)

∑
νµ

e−i(ω̃x−ω̃x′′ )τe−i(ω̃x′−ω̃x)t|x′′〉〈x′|M (0)
x′′xν(τ)M

(0)
xx′µ(t)

(S25)

eventually produces some population-like terms. Isolating such terms and taking their ex-
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pectation values in the initial condition ρ̃(0), we obtain

∂tfx(t) = −
∑
x′(6=x)

wx′x(t)fx(t) +
∑
x′(6=x)

wxx′(t)fx′(t), (S26)

where time dependent transition rates from state |x′〉 to state |x〉 are given as

wxx′(t) =
2

~2

∫ t

0

dτ Re

{
ei(ω̃x′−ω̃x)(t−τ)

∑
µν

〈
M

(0)
x′xµ(t)M

(0)
xx′ν(τ)

〉
eq

}

=
2

~2

∫ t

0

dτ Re

{
ei(ω̃x′−ω̃x)τ

∑
µν

〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq

}
.

(S27)

We made use of the stationarity of the phonon correlation function

〈
M

(0)
x′xµ(t)M

(0)
xx′ν(τ)

〉
eq

=
〈
M

(0)
x′xµ(t− τ)Mxx′ν

〉
eq
, (S28)

which is guaranteed because we perform canonical averaging over nuclear degrees of freedom.

If time scales on which we study excitonic dynamics are much longer than the time scale on

which the phonon correlation function decays, we may perform the Markovian approximation

and set t→ +∞ in Eq. (S27) to obtain time-independent transition ratesS3 that are presented

in the main body of the manuscript

wxx′ =
2

~2

∫ +∞

0

dτ Re

{
ei(ω̃x′−ω̃x)(t−τ)

∑
µν

〈
M

(0)
x′xµ(t)M

(0)
xx′ν(τ)

〉
eq

}

=
1

~2

∫ +∞

−∞
dτ ei(ω̃x′−ω̃x)τ

∑
µν

〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq
.

(S29)

These modified Redfield transition rates satisfy the condition of the detailed balanceS4

wxx′

wx′x
= eβ(~ω̃x′−~ω̃x). (S30)

In the next section, we present the calculation of the phonon correlation function appear-
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ing in the modified Redfield rates.

S2.2 Calculation of the Correlation Function
〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq

The correlation function of interest is

〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq

= Γνxx′Γ
µ
x′x×

×
〈(

b†µ(τ) + bµ(τ)− 2
Γµx′x′

~ωµ

)
U †x′(τ)Ux(τ)U †xUx′

(
b†ν + bν − 2

Γνx′x′

~ων

)〉
eq

(S31)

where, for simplicity of notation, we omit subscript (0) on time-dependent operators, and

we define

Ux = exp

(
−
∑
ρ

Γρxx
~ωρ

(
b†ρ − bρ

))
(S32)

Using the operator identity

exp(A) exp(B) = exp(A+B) exp

(
1

2
[A,B]

)
, for [A, [A,B]] = [B, [A,B]] = 0 (S33)

we transform the product of four U operator as follows

U †x′(τ)Ux(τ)U †xUx′ = exp

[
−i
∑
ρ

∆2
x′xρ sin (ωρt)

]
×

× exp

[∑
ρ

∆x′xρ

((
1− e−iωρτ

)
bρ −

(
1− eiωρτ

)
b†ρ
)] (S34)

where we introduced

∆x′xρ =
Γρx′x′ − Γρxx

~ωρ
(S35)
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The averaging over equilibrium phonon distribution can then be performed separately for

each mode

〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq

= Γµx′xΓ
ν
xx′ exp

[
−i
∑
ρ

∆2
x′xρ sin (ωρt)

]
×

×
∏
ρ

Trρ

{(
b†µeiωµτ + bµe−iωµτ − 2

Γµx′x′

~ωµ

)
exp

[
∆x′xρ

((
1− e−iωρτ

)
bρ −

(
1− eiωρτ

)
b†ρ
)]
×

×
(
b†ν + bν − 2

Γνx′x′

~ων

)
ρ̃eq
B,ρ

}
(S36)

where Trρ denotes averaging over the subspace of mode ρ, while

ρ̃eq
B,ρ =

exp
[
−β~ωρb†ρbρ

]
Trρ exp

[
−β~ωρb†ρbρ

]
Further calculations are most conveniently performed by separately considering a number of

cases that can arise. Identities that are used to calculate traces are summarized in Section S3.

We introduce the phonon number nph
µ =

(
eβ~ωµ − 1

)−1
.

Case 1. ρ 6= µ and ρ 6= ν

〈
exp

[
∆x′xρ

((
1− e−iωρτ

)
bρ −

(
1− eiωρτ

)
b†ρ
)]〉

eq,ρ
=

= exp

[
−2∆2

x′xρ (1− cos (ωρτ))

(
nph
ρ +

1

2

)] (S37)

Case 2. ρ = µ and µ 6= ν

〈(
b†µeiωµτ + bµe−iωµτ − 2

Γµx′x′

~ωµ

)
exp

[
∆x′xµ

((
1− e−iωµτ

)
bµ −

(
1− eiωµτ

)
b†µ
)]〉

eq,µ

=[
∆x′xµ

(
eiωµτ − 1

)
nph
µ + ∆x′xµ

(
1− e−iωµτ

) (
1 + nph

µ

)
− 2

Γµx′x′

~ωµ

]
×

× exp

[
−2∆2

x′xµ (1− cos (ωµτ))

(
nph
µ +

1

2

)]
(S38)
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Case 3. ρ = ν and µ 6= ν

〈
exp

[
∆x′xν

((
1− e−iωντ

)
bν −

(
1− eiωντ

)
b†ν
)](

b†ν + bν − 2
Γνx′x′

~ων

)〉
eq,ν

=[
∆x′xν

(
1− e−iωµτ

) (
1 + nph

ν

)
+ ∆x′xν

(
eiωντ − 1

)
nph
ν − 2

Γνx′x′

~ων

]
×

× exp

[
−2∆2

x′xν (1− cos (ωντ))

(
nph
ν +

1

2

)] (S39)

Case 4. ρ = µ = ν

〈(
b†µeiωµτ + bµe−iωµτ − 2

Γµx′x′

~ωµ

)
exp[∆x′xµ((1− e−iωµτ )bµ − (1− eiωµτ )b†µ)]

(
b†µ + bµ − 2

Γµx′x′

~ωµ

)〉
eq,µ

={[
∆x′xµ

(
eiωµτ − 1

)
nph
µ + ∆x′xµ

(
1− e−iωµτ

)
(1 + nph

µ )− 2
Γµx′x′

~ωµ

]2

+
(
nph
µ eiωµτ + (1 + nph

µ )e−iωµτ
)}
×

× exp

[
−2∆2

x′xµ (1− cos(ωµτ))

(
nph
µ +

1

2

)]
(S40)

Combining all these results together, we finally obtain

〈
M

(0)
x′xµ(τ)Mxx′ν

〉
eq

= Γνxx′Γ
µ
x′x exp

[
−i
∑
ρ

∆2
x′xρ sin (ωρτ)−

∑
ρ

∆2
x′xρ (1− cos(ωρτ)) coth

(
β~ωρ

2

)]
×

×
[(

∆x′xν

(
eiωντ − 1

)
nph
ν + ∆x′xν

(
1− e−iωντ

)
(1 + nph

ν )− 2
Γνx′x′

~ων

)
×

×
(

∆x′xµ

(
eiωµτ − 1

)
nph
µ + ∆x′xµ

(
1− e−iωµτ

)
(1 + nph

µ )− 2
Γµx′x′

~ωµ

)
+ δµν

(
nph
µ eiωµτ + (1 + nph

µ )e−iωµτ
)]

(S41)

S2.3 Introducing the Spectral Function

We now demonstrate how to rewrite the results obtained in previous sections in terms of the

correlation function of undressed bath operators that mediate population transfer between
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different excitonic states. In other words, we firstly calculate

Cx̄2x2,x̄1x1(t) =
∑
µν

〈
Mx̄2x2µ|

(0)
Red(τ)Mx̄1x1ν |Red

〉
=
∑
µ

Γµx̄2x2Γ
µ
x̄1x1

[
coth

(
β~ωµ

2

)
cos (ωµt)− i sin (ωµt)

] (S42)

This correlation function has the following properties under time reversal and exchange of

indices

Cx̄2x2,x̄1x1(−t) = C∗x̄2x2,x̄1x1(t) (S43)

Cx̄1x1,x̄2x2(t) = Cx̄2x2,x̄1x1(t), Cx1x̄1,x̄2x2(t) = C∗x̄1x1,x2x̄2(t) = Cx̄2x2,x̄1x1(t) (S44)

The integral of the correlation function Cx̄2x2,x̄1x1(t) is usually denoted as ġx̄2x2,x̄1x1(t)

ġx̄2x2,x̄1x1(t) =

∫ t

0

dτ Cx̄2x2,x̄1x1(τ)

=
∑
µ

Γµx̄2x2Γ
µ
x̄1x1

ωµ

(
coth

(
β~ωµ

2

)
sin (ωµt)− i (1− cos (ωµt))

) (S45)

while double integral of the correlation function Cx̄2x2,x̄1x1(t) is commonly known under the

name of lineshape function gx̄2x2,x̄1x1(t)

gx̄2x2,x̄1x1(t) =

∫ t

0

dτ

∫ τ

0

dτ ′ Cx̄2x2,x̄1x1(τ
′)

=
∑
µ

Γµx̄2x2Γ
µ
x̄1x1

ω2
µ

(
coth

(
β~ωµ

2

)
(1− cos (ωµt)) + i sin (ωµt)− iωµt

) (S46)

We may, therefore, write Cx̄2x2,x̄1x1(t) ≡ g̈x̄2x2,x̄1x1(t). Formally, the above definitions of ġ

and g are valid for t > 0, while for t < 0 we can use their properties under time reversal

ġx̄2x2,x̄1x1(t) = −ġ∗x̄2x2,x̄1x1(−t), gx̄2x2,x̄1x1(t) = g∗x̄2x2,x̄1x1(−t) (S47)
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In addition to quantities g̈, ġ, and g, we also introduce

λx̄2x2,x̄1x1 =
∑
µ

Γµx̄2x2Γ
µ
x̄1x1

~ωµ
(S48)

One may now rewrite eq S29, in which the result embodied in eq S41 is inserted, in terms of

g̈, ġ, g, and λ to obtain the expression for the rate of populaton transfer within the modified

Redfield theory that is given in the main text.

In our model, phonon modes are counted by site index i and mode index ξ. If we now

assume that the electron–phonon and hole–phonon coupling constants are independent of

the site index i and the band index βi, αi and are both equal to gξ, we can rewrite the

exciton–phonon coupling constants (eq S10) as

Γiξx̄x = gξP
i
x̄x, P i

x̄x =
∑
βi

∑
jαj

ψx̄∗(jαj)(iβi)
ψx(jαj)(iβi) −

∑
αi

∑
jβj

ψx̄∗(iαi)(jβj)
ψx(iαi)(jβj) (S49)

The spectral function J(E), defined for E > 0, conveniently combines information on the

phonon density of states and the strength of the interaction of electronic excitations with

phononsS5,S6

J(E) =
∑
ξ

g2
ξδ(E − ~ωξ) (S50)

Under these assumptions, all the quantities entering the expression for modified Redfield

population transfer rates can be factorized into a product of one quantity that depends only

on spatial properties of excitonic states involved and another quantity that depends only on

the spectral density. In more detail,

g̈x̄2x2,x̄1x1(t) = Px̄2x2,x̄1x1 g̈(t) (S51)

with

Px̄2x2,x̄1x1 =
∑
i

P i
x̄2x2

P i
x̄1x1

(S52)
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and

g̈(t) =

∫ +∞

0

dE J(E)

[
coth

(
βE

2

)
cos

(
Et

~

)
− i sin

(
Et

~

)]
(S53)

The quantity Px̄2x2,x̄1x1 represents a generalization of the so-called spatial proximity factor,

which is obtained when x̄2 = x̄1 and x2 = x1. Other quantities of our interest factorize as

ġx̄2x2,x̄1x1(t) = Px̄2x2,x̄1x1 ġ(t) (S54a)

ġ(t) = ~
∫ +∞

0

dE
J(E)

E

[
coth

(
βE

2

)
sin

(
Et

~

)
− i

(
1− cos

(
Et

~

))]
(S54b)

gx̄2x2,x̄1x1(t) = Px̄2x2,x̄1x1g(t) (S55a)

g(t) = ~2

∫ +∞

0

dE
J(E)

E2

[
coth

(
βE

2

)(
1− cos

(
Et

~

))
+ i sin

(
Et

~

)
− i

Et

~

]
(S55b)

λx̄2x2,x̄1x1 = Px̄2x2,x̄1x1λ (S56a)

λ =

∫ +∞

0

dE
J(E)

E
(S56b)

Let us now discuss how quantities g̈, ġ, and g are practically calculated once we specify

the spectral density J(E). Enlarging the domain of J(E) by defining J(−E) = −J(E),

eq S53 can be rewritten as

g̈(t) =

∫ +∞

−∞
dE J(E)

eiEt/~

eβE − 1
(S57)

If we now take that the spectral density is of the Drude–Lorentz form

JDL(E) =
2

π
λ

E · ~γ
E2 + (~γ)2

, (S58)

we see that the integral appearing in eq S57 can be evaluated by applying the Jordan

lemma. Eventually, we express g̈(t) in terms of an (in principle infinite) series of exponentially
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decaying factors

g̈(t) =
+∞∑
m=0

cme−µmt (S59)

where complex constants cm stem from residues, while real and positive constants µm are

connected to poles of the function under the integral sign in eq S57. The pole 0 stems from

the pole of the Drude–Lorentz spectral function and is known as the Drude pole

µ0 = γ, c0 = λ · ~γ
[
cot

(
β~γ

2

)
− i

]
(S60)

The remaining poles arise from the following representation of the Bose–Einstein factor

1

ez − 1
=

1

z
− 1

2
+

+∞∑
m=1

ηm

[
1

z − iξm
+

1

z + iξm

]
(S61)

so that

µm =
ξm
β~
, cm = 4 · ηm · λ · kBT

γµm
µ2
m − γ2

, m ≥ 1 (S62)

In the Matsubara representation, ξm = 2π ·m, ηm = 1, while, in numerical computations,

better convergence properties of the series entering eq S59 are achieved by employing Padé

representation, as introduced in refs S7,S8.

The expressions for other quantities are

ġ(t) =
+∞∑
m=0

cm
1− e−µmt

µm
(S63)

g(t) =
+∞∑
m=0

cm
e−µmt + µmt− 1

µ2
m

(S64)

S2.4 Derivation of Förster and Marcus Transition Rates

In this subsection, we will show that modified Redfield transition rates reduce in appropriate

limits to Förster and Marcus transition rates.

S20



We first derive the Förster transition rate by making certain approximations in the ex-

pression for transition rates given in eq 16 in the main part of the manuscript. Throughout

the derivation we assume that exciton states x and x′ are well spatially separated from each

other. The derivation largely follows ref S9.

First, we neglect the terms g̈x′x,xx(t) that represent the correlations between fluctuations

of the energy of state x and fluctuations of the coupling between x and x′. Therefore,

we have g̈x′x,xx(t) = 0. Consequently, ġx′x,xx does not depend on time. Since it is equal

to zero at t = 0 (as can be seen from eq S54b), we have ġx′x,xx(t) = 0 for each t. In

a similar manner, we conclude that ġx′x,x′x′(t) = 0, ġxx′,xx(t) = 0, and ġxx′,x′x′(t) = 0.

The fact that ġx′x,x′x′(t) = 0 also implies that λx′x,x′x′ = 0 since it can be shown that

− limt→∞ Im ġx′x,x′x′(t) = ~λx′x,x′x′ . Next, we assume that autocorrelation of the coupling

between x and x′ is static, i.e. g̈x′x,xx′(t) = |Vxx′ |2, where |Vxx′|2 does not depend on time.

Our next assumption concerns the correlation between fluctuations of the energy of the state

x and x′, which is neglected, i.e. g̈x′x′,xx(t) = 0. Since ġx′x′,xx(t = 0) = 0 (as can be seen

from eq S54b), we then conclude that ġx′x′,xx(t) = 0 for each t. Since gx′x′,xx(t = 0) = 0 (as

can be seen from eq S55b), we also conclude that gx′x′,xx(t) = 0 for each t. For spatially

well separated states x and x′ the proximity factor Px′x′,xx is much smaller than Pxx,xx and

Px′x′,x′x′ . For this reason λx′x′,xx can be neglected in comparison to λxx,xx and λx′x′,x′x′ .

Making use of all these approximations, eq 16 from the main part of the manuscript takes

the form

wxx′ =
|Vxx′|2

~2

∫ ∞
−∞

dt F ∗x′(t) Ax(t) (S65)

where

Ax(t) = exp

(
−iω̃xt−

1

~2
gxx,xx(t)−

i

~
λxx,xxt

)
(S66)

F ∗x (t) = exp

(
iω̃xt−

1

~2
gxx,xx(t)−

i

~
λxx,xxt

)
(S67)

Equation S65 is in the form of Förster transition rate where Fx′ has the meaning of the

fluorescence of the donor, Ax is the absorption of the acceptor, while |Vxx′ |2 represents the
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coupling between the donor and the acceptor.

It is known from the literature (see, e.g., Ch. 7.4.2 of ref S5 or ref S10) that a formula

analogous to eq S65 holds also in the case of electron transfer. In this case, Fx′ should

be interpreted in terms of the charge disassociation from the donor state, while Ax should

be interpreted in terms of the charge association to the acceptor state. Also, the static

autocorrelation of the coupling between x′ and x, |Vxx′ |2, is then meant to originate from

the electronic coupling. Let us pass to the limit of high temperature and strong coupling

to phonons, when the function under the integral sign in eq S65 quickly decays to zero as

|t| is increased from zero. To evaluate the function g(t) from eq S55b we make use of the

approximations cos Et
~ = 1 − 1

2

(
Et
~

)2
and sin Et

~ = Et
~ that are valid for small values of the

argument Et
~ and the approximation cthβE

2
= 2

βE
which is valid since the argument βE

2
is

small when the temperature is high. Making use of eq S56b, we obtain that g(t) = λ
β
t2 in this

limit. Substituting this result for g(t) in eq S65 and performing the integration we obtain

wxx′ =
2π

~
|Vxx′ |2

1√
4πkBT (λxx,xx + λx′x′,x′x′)

exp

[
−(~ω̃x − ~ω̃x′ + (λxx,xx + λx′x′,x′x′))

2

4kBT (λxx,xx + λx′x′,x′x′)

]
(S68)

Equation S68 assumes the form of the well-known Marcus formula (in the case when the

donor and acceptor have two independent sets of vibrational coordinates).

S2.5 Computation of Modified Redfield Population Transition Rates

In our computations, excitonic wavefunctions ψx(iαi)(jβj) are purely real. This can help us (by

virtue of eq S44) reduce the expression for the population transition rate wxx′ from state |x′〉
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to state |x〉 (given in the main text) to the following form

wxx′ = γ

∫ +∞

−∞
dz exp

(
i
ω̃x′ − ω̃x

γ
z

)
exp (−Pxx′Re {G(z)})×

× exp

(
−iPxx′

(
Im {G(z)}+

λ

~γ
z

))
×

×

[
Px′x,x′xG̈(z)−

(
(Px′x,xx − Px′x,x′x′) Ġ(z)− 2iPx′x,x′x′

λ

~γ

)2
] (S69)

In the last equation, z is a real dimensionless variable (z = γt, where t is time),

Pxx′ = Pxx,xx − 2Pxx,x′x′ + Px′x′,x′x′ (S70)

while dimensionless functions G̈, Ġ, G of dimensionless variable z are introduced as

G̈(z) = (~γ)−2 g̈(γ−1z), Ġ(z) = (~γ)−1 ~−1ġ(γ−1z), G(z) = ~−2g(γ−1z) (S71)

Bearing in mind that, for large z, G(z) is proportional to z (see eq S64), the interval on

which the integration in eq S69 has to be performed is essentially determined by the decay

constant of the exponent exp (−Pxx′Re {G(z)}). The decay constant of the exponent is easily

determined to be

decay constantxx′ =

{
Pxx′

λ

~γ

[
cot

(
β~γ

2

)
+ 4

∑
m

ηm/(β~γ)

(ξm/(β~γ))2 − 1

]}−1

In order to perform integrations for all transitions on the same grid of z values, we first

compute the maximum decay constant, which is attained for the minimum value of Pxx′ .

Then, the infinities in eq S69 in numerical integrations become a multiple of the maximum

decay constant. That way, we compute functions G̈, Ġ, G once for all possible transitions,

and subsequently perform all integrations using these precomputed values. By virtue of the

detailed balance condition (eq S30), we compute only rates of transitions that are downward

in renormalized energy, i.e., ω̃x′ > ω̃x.
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Now that we know the length of the integration interval, it is important to specify the

integration step, i.e., to know how dense the grid on which we compute G̈, Ġ, G is. The

integration in eq S69 can be numerically challenging due to the presence of the oscillatory

exponential exp (i((ω̃x′ − ω̃x)/γ)z), whose oscillation frequency can be large. Numerical in-

tegration of eq S69 is implemented using the so-called Filon-trapezoidal rule.S11 The integral

F (ω) =

∫ Z

−Z
dz eiωzf(z) (S72)

can be approximated as

F (ω) ≈ ∆z
N∑

n=−N

wn eiωn∆zf(n∆z) (S73)

where Z = N∆z, while the weights wn read as

wn =


(1 + iω∆z − eiω∆z)/(ω∆z)2, n = −N

sin2(ω∆z/2)/(ω∆z/2)2, n 6= ±N

(1− iω∆z − e−iω∆z)/(ω∆z)2. n = N

(S74)

These weights are obtained by assuming that, on an interval of length ∆z, f(z) can be

approximated by a linear function. On the other hand, the ordinary trapezoidal rule assumes

that the whole function under the integral sign, eiωzf(z), can be approximated by a straight

line on the same interval. This assumption is not satisfied when the frequency ω is large.

When the integration range is infinite, as is in our case, the Filon-trapezoidal rule is simply

the result of the ordinary trapezoidal rule multiplied by sin2(ω∆z/2)/(ω∆z/2)2. In numerical

integration of eq S69, we use ∆z = 10−2. For the exemplary value of γ, γ−1 = 100 fs, the

integration step in the time domain in ∆t = 1 fs.

In the end, let us comment on the number of terms in eq S59 that is sufficient to reliably

approximate function g̈. The same number of terms then appears in eqs S63 and S64 that

are used to calculate functions ġ and g. Namely, the Redfield transition rate is entirely
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expressed in terms of the Fourier component of g̈

wRed
xx′ = Px′x,xx′

1

~2

∫ +∞

−∞
dt ei(ωx′−ωx)tg̈(t) (S75)

Therefore, one may compute the last integral numerically and compare the value thus ob-

tained to the analytical solution, which is expressed in terms of the spectral density and

Bose–Einstein factor

1

~2

∫ +∞

−∞
dt ei(ωx′−ωx)tg̈(t) =

2π

~
J(|~ωx − ~ωx′ |)×


nBE(~ωx − ~ωx′), ωx > ωx′

1 + nBE(~ωx′ − ~ωx), ωx < ωx′

(S76)

Since the energy gap between the highest and the lowest excitonic state in a single disorder

realization can be & 1 eV, it is important to take enough poles in order to numerically

reproduce Redfield rates between states distant in energy. As we have already mentioned,

we use the Padé decomposition of the Bose–Einstein function (ez − 1)−1 and implement the

algorithm outlined in Refs. S7,S8 to obtain coefficients cm and µm for m ≥ 1. Focusing

on energetically downward transitions, we find that, taking into account 5 Padé poles (in

addition to the Drude pole labeled by 0), numerically computed transition rate does not

deviate more that 1% from its exact value in the whole range of energy gaps from 0 to 1 eV.

Therefore, in all the computations, we take that index m in eq S59 can assume values from

0 to 5.

S2.6 Solving the System of Rate Equations

Since our aim is to understand not only the time scales and pathways of charge separation,

but also that of exciton recombination, in addition to excitonic populations fx(t), we also

consider the ground-state population fGS(t) as an independent variable. Similarly to our

recent study,S2 we assume that free-charge states and the ground state act as absorbing

states, that is, once an exciton performs a transition to a free-charge state or to the ground

S25



state, it cannot perform any further transitions. Therefore, if |x〉 is not a free-charge state,

the population fx(t) evolves according to

∂tfx(t) =
∑
x′(6=x)
x′ /∈free

wxx′fx′(t)−
∑
x′(6=x)

wx′xfx(t)− τ−1
x fx(t), x /∈ free (S77)

If |x〉 is a free-charge state or the ground state, it can only gain population from states that

are not free-charge states

∂tfx(t) =
∑
x′ /∈free

wxx′fx′(t), x ∈ free (S78)

∂tfGS(t) =
∑
x/∈free

τ−1
x fx(t) (S79)

Our treatment of external contacts is therefore idealized in the sense that we assumed that

each electron-hole pair that reaches the free charge state leads to a flowing charge in the

external circuit. Realistic contacts are never perfect and the charge yield could further dete-

riorate due to the effects in contacts. The system of rate equations for excitonic populations

can be written in the matrix form as

∂tfx(t) =
∑
x′

Axx′fx′(t) (S80)

where time-independent matrix Â has the following nonzero entries

Axx′ = (1− δxx′)wxx′ − δxx′
(∑
x̃6=x

wx̃x + τ−1
x

)
if x /∈ free and x′ /∈ free (S81)

Axx′ =
∑
x′ /∈free

wxx′ if x ∈ free (S82)

AGS,x′ = τ−1
x′ if x′ /∈ free (S83)
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Once initial conditions fx(0) are known, eq S80 is formally solved as

fx(t) = 〈x|f(t)〉 = 〈x|eÂt|f(0)〉 (S84)

However, the calculation of the matrix exponent exp
(
Ât
)

is somewhat involved, since matrix

Â is nonsymmetric. Although it is, in principle, possible to obtain eigenvalues, right and left

eigenvectors of matrix Â, that is, to obtain the spectral decomposition of Â, our computations

revealed that this method is not numerically stable. Therefore, in the following text, we

describe our approach to solving eq S80.

We seek the solution to eq S80 in the form

fpart
x (t) = eλktcxk (S85)

Inserting eq S85 into eq S80, we obtain that constants λk and cxk satisfy

∑
x′

Axx′cx′k = λkcxk (S86)

In other words, λk are eigenvalues of matrix Â, while cxk is the x-th component of its k-

th right eigenvector. The general solution can be found as the superposition of particular

solutions given in eq S85

fx(t) =
∑
k

αke
λktcxk (S87)

Using the initial conditions fx(0), we find that the amplitudes αk satisfy the following system

of linear algebraic equations

fx(0) =
∑
k

αkcxk (S88)

Therefore, the algorithm to solve for the time evolution of eq S80 for arbitrary t may

proceed as follows:

1. solve the eigenvalue problem (eq S86) and find eigenvalues λk and right eigenvectors
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cxk of matrix Â;

2. using initial conditions for excitonic populations, determine the amplitudes αk by solv-

ing the system of linear algebraic equations given in eq S88;

3. using eq S87, we can compute populations at an arbitrary instant t.

Let us note that our algorithm leans on the nondegeneracy of eigenvalues of matrix Â.

There is no manner in which this nondegeneracy can be proven in the general case. However,

since the entries of matrix Â are basically determined by random numbers stemming from

the disordered electron and hole on-site energies, we may hope that the eigenvalues of Â are

nondegenerate.

In the end, let us mention how we achieve resolution of separation and recombination

events in terms of character of states from which they start. Integrating eq S78, in which we

replace populations fx′(t) of non-free states by the expression given in eq S87, we obtain

fx(t) =
∑
x′ /∈free

∑
k

wxx′αkcx′k
eλkt − 1

λk
(S89)

The total population of free-charge states at instant t can be decomposed as a sum of

populations that have been transferred up to t from various groups of non-free states

∑
x∈free

fx(t) =

( ∑
x′∈CT

+
∑
x′∈XA

+
∑
x′∈XD

+
∑
x′∈CS

) ∑
x∈free

∑
k

wxx′αkcx′k
eλkt − 1

λk
(S90)

so that the four summands on the right-hand side of the last equation represent the total

population transferred to all free states from CT, XA, XD, and CS states, respectively, up

to time t. In a similar manner, analyzing the population of the ground state fGS(t), we can

resolve the recombination events by using

fGS(t) =

( ∑
x′∈CT

+
∑
x′∈XA

+
∑
x′∈XD

+
∑
x′∈CS

)∑
k

τ−1
x′ αkcx′k

eλkt − 1

λk
(S91)
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where the four summands on the right-hand side represent the total population transferred

up to time t from CT, XA, XD, and CS states to the ground state.

S3 Useful Identities

Here, we give a list of identities that we used to calculate the bath correlation function in

Sec. S2.2. These are the identities for equilibrium expectation values in the case of a single

bosonic mode. In the following, z1 and z2 are complex numbers, b† and b are Bose creation

and annihilation operator, the Hamiltonian is ~ω b†b, the averaging is with respect to the

canonical distribution at temperature T , and nph =
(
eβ~ω − 1

)−1
.

〈
ez1b

†+z2b
〉

eq
= ez1z2(n

ph+ 1
2) (S92)

〈
b†ez1b

†+z2b
〉

eq
= z2n

phez1z2(n
ph+ 1

2) (S93)〈
bez1b

†+z2b
〉

eq
= z1(nph + 1)ez1z2(n

ph+ 1
2) (S94)〈

ez1b
†+z2bb

〉
eq

= z1n
phez1z2(n

ph+ 1
2) (S95)〈

ez1b
†+z2bb†

〉
eq

= z2(nph + 1)ez1z2(n
ph+ 1

2) (S96)〈
bez1b

†+z2bb
〉

eq
= z2

1n
ph(nph + 1)ez1z2(n

ph+ 1
2) (S97)〈

b†ez1b
†+z2bb

〉
eq

= nph(1 + z1z2n
ph)ez1z2(n

ph+ 1
2) (S98)〈

bez1b
†+z2bb†

〉
eq

= (1 + nph)[1 + z1z2(1 + nph)]ez1z2(n
ph+ 1

2) (S99)〈
b†ez1b

†+z2bb†
〉

eq
= z2

2n
ph(1 + nph)ez1z2(n

ph+ 1
2) (S100)
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S4 Supplemental Figures
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Figure S2: Spatial properties of the initial donor states of different energies and in different
disorder realizations. (a) and (b) Participation ratio for the electron and hole (see eq S14). (c)
Mean electron–hole distance (in units of lattice spacing a). Data for the initial donor states
located around 2000, 2200, and 2400 meV are represented by black circles, red squares, and
blue triangles, respectively. Disorder-averaged data are summarized in the following table.

initial XD state 2000 meV 2200 meV 2400 meV
PR for the Electron 3.39 6.11 9.72

PR for the Hole 3.59 6.69 10.6
Electron–Hole Separation (a) 0.410 0.702 3.26
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Figure S3: Spatial properties of the initial CT state in different disorder realizations. (a) and
(b) Participation ratio for the electron and hole (see eq S14). (c) Mean electron–hole distance
(in units of lattice spacing a). Disorder-averaged data are summarized in the following table.

initial CT state
PR for the Electron 1.87

PR for the Hole 3.61
Electron–Hole Separation (a) 3.20
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(a) (b)

(c) (d)

(e) (f)

Figure S4: Delocalization properties of (a) and (b) XD, (c) and (d) CT, and (e) and (f)
CS states quantified by the PR (see eq S14) of the constitutive carriers [electron in (a), (c),
and (e), and hole in (b), (d), and (f)]. The graphs show PR as a function of the rescaled
energy of excitonic states. The energy rescaling is performed assuming that the initial state
|x0〉 is XD state with energy around 2200 meV. The graphs contain data for all states in all
disorder realizations considered, and one dot represents one excitonic state. We note that
higher-lying XD states feature more delocalized carriers. Also, in CT and CS states, the
PR for the hole is larger than the PR for the electron because the magnitude of the transfer
integral for holes in the donor is larger than the magnitude transfer integrals for electrons in
the acceptor (see Table S1). We also note that in the states that are mainly involved in the
separation process (see blue traces in Figure 6 of the main body of the manuscript), both
carriers are well localized.
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Figure S5: Comparison of excitonic population [(a), (c), and (e)] and recombination [(b),
(d), and (f)] dynamics predicted by modified Redfield (MR) and Redfield (R) approaches for
polaron binding energy λ = 5 meV [(a) and (b)], λ = 80 meV [(c) and (d)], and λ = 180 meV
[(e) and (f)]. Charge separation dynamics predicted by the MR approach is somewhat slower
than that predicted by the R approach, mainly because the rates for the most important
transitions for the full charge separation (XD→CT and CT→CS) are somewhat smaller in
the MR than in the R approach. This is seen as increased recombination probability in (b),
(d), and (f).
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Figure S6: Comparison of transition rates wR computed using the Redfield theory and
transition rates wMR computed using the modified Redfield theory. The plots presented
originate from four different disorder realizations. Each point represents one pair (wR, wMR)
of transition rates between two excitonic states. We show data only for transitions for
which wR ≥ 109 s−1. We find that around 90% of pairs shown in each plot lie within
the area bounded by the two dashed red lines, i.e., the respective transition rates satisfy
0.1 ≤ wMR/wR ≤ 10.
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Figure S7: Time dependence of the number of CT excitons, XA excitons, XD excitons, CS
excitons, free charges (free) and recombined pairs (GS) when initial state is XD state with
energy around 2200 meV. The results are shown for disorder strength of σ = 50 meV and
three different values of parameter γ.

S35



 0

 0.2

 0.4

 0.6

 0.8

 1
γ = 10 ps

-1

P
o

p
u

la
ti

o
n CT

XA
XD
CS

free
GS

 0

 0.2

 0.4

 0.6

 0.8

 1
γ = 15 ps

-1

P
o

p
u

la
ti

o
n

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-14

10
-12

10
-10

10
-8

10
-6

γ = 20 ps
-1

P
o

p
u

la
ti

o
n

Time (s)

Figure S8: Time dependence of the number of CT excitons, XA excitons, XD excitons, CS
excitons, free charges (free) and recombined pairs (GS) when initial state is XD state with
energy around 2200 meV. The results are shown for disorder strength of σ = 100 meV and
three different values of parameter γ.
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Figure S9: Time dependence of the number of CT excitons, XA excitons, XD excitons, CS
excitons, free charges (free) and recombined pairs (GS) when initial state is a low-energy CT
state. The results are shown at four different values of disorder strength σ.
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Figure S10: Left panels: Time dependence of the number of recombined pairs from CT
states (CT to GS). Right panels: Time dependence of the number of free charges created
from CT states (CT to free) and from CS states (CS to free). The results are presented at
two different values of disorder strength σ. Initial state is a low-energy CT state.
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Figure S11: Energy and time resolved population of XD states [aXD(e, t)], CT states
[aCT(e, t)], CS states [aCS(e, t)] and free charges [afree(e, t)]. Gaussian broadening of σE =
5 meV was used to calculate these quantities. The energy of free charges is taken at the mo-
ment of time when they are created. Initial state is XD state with energy around 2000 meV.
Corresponding DOS (in arbitrary units) for each group of states is given as a reference in
panels on the right. Energy axis has been rescaled in such a way that 0 corresponds to lowest
energy in a certain configuration, while 1 corresponds to highest energy of that configuration.

S39



Figure S12: Energy and time resolved population of XD states [aXD(e, t)], CT states
[aCT(e, t)], CS states [aCS(e, t)] and free charges [afree(e, t)]. Gaussian broadening of σE =
5 meV was used to calculate these quantities. The energy of free charges is taken at the mo-
ment of time when they are created. Initial state is XD state with energy around 2400 meV.
Corresponding DOS (in arbitrary units) for each group of states is given as a reference in
panels on the right. Energy axis has been rescaled in such a way that 0 corresponds to lowest
energy in a certain configuration, while 1 corresponds to highest energy of that configuration.
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Figure S13: Energy and time resolved population of XD states [aXD(e, t)], CT states
[aCT(e, t)], CS states [aCS(e, t)] and free charges [afree(e, t)]. Gaussian broadening of σE =
5 meV was used to calculate these quantities. Initial state is XD state with energy around
2200 meV and disorder strength is σ = 50 meV. Corresponding DOS (in arbitrary units)
for each group of states is given as a reference in panels on the right. Energy axis has been
rescaled in such a way that zero corresponds to lowest energy in a certain configuration,
while 1 corresponds to highest energy of that configuration.
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Figure S14: Dependence of separation yield on polaron binding energy λ when transition
rates are modeled within modified Redfield theory for disorder strength of σ = 50meV (label
MR-50) and σ = 100 meV (label MR-100), and when transition rates are modeled within
Redfield theory for disorder strength of σ = 50 meV (label R-50) and σ = 100 meV (label
R-100). Initial state is a low-energy CT state.
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