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ABSTRACT
We formulate a comprehensive theoretical description of excitation harvesting in molecular aggregates photoexcited by weak inco-
herent radiation. An efficient numerical scheme that respects the continuity equation for excitation fluxes is developed to com-
pute the nonequilibrium steady state (NESS) arising from the interplay between excitation generation, excitation relaxation, dephas-
ing, trapping at the load, and recombination. The NESS is most conveniently described in the so-called preferred basis in which
the steady-state excitonic density matrix is diagonal. The NESS properties are examined by relating the preferred-basis description
to the descriptions in the site or excitonic bases. Focusing on a model photosynthetic dimer, we find that the NESS in the limit of
long trapping time is quite similar to the excited-state equilibrium in which the stationary coherences originate from the excitation–
environment entanglement. For shorter trapping times, we demonstrate how the properties of the NESS can be extracted from the
time-dependent description of an incoherently driven but unloaded dimer. This relation between stationary and time-dependent pictures
is valid, provided that the trapping time is longer than the decay time of dynamic coherences accessible in femtosecond spectroscopy
experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029918., s

I. INTRODUCTION

The observation of unexpectedly long-lived oscillatory fea-
tures of ultrafast spectroscopic signals measured on photosynthetic
pigment–protein complexes1,2 has generated much excitement dur-
ing the past decade. The idea that (dynamic) coherences modu-
lating these signals may be directly relevant to natural light har-
vesting,3,4 which is triggered by stationary incoherent sunlight,5,6

has been driving intense research activities in the field.7,8 Insights
from ultrafast spectroscopies are indispensable in determining the
underlying Hamiltonian of the system under investigation, from
which the dynamics of excitation energy transfer (EET) under
any excitation condition may be inferred (as long as the excita-
tion is sufficiently weak).6,7,9–11 A number of experimental1,2 and
theoretical12,13 studies speculating about a positive impact of
coherences and entanglement on the biological EET have been

performed on the so-called unloaded systems. Such systems fea-
ture no transmission of photoinduced excitations to the reaction
center (RC or load) from which the excitation energy is eventually
harvested. Furthermore, the time scales addressed in these stud-
ies are generally much shorter than those representative of exci-
ton recombination, either radiative or nonradiative.14 Direct exper-
imental insights into the dynamics of molecular aggregates initiated
by incoherent light are limited.15 Therefore, at present, the possi-
ble relevance of some sort of quantum coherence for EET under
natural conditions is best examined within appropriate theoretical
models.

Such models should contain a realistic description of pho-
toexcitation by natural incoherent light, whose intensity is essen-
tially constant from the molecular viewpoint. Thus, the physi-
cally plausible description of natural light harvesting should feature
continuous generation of electronic excitations by light, their
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continuous delivery to the RC, and their continuous loss by recom-
bination.6,16–20 The EET is then studied from the standpoint of
nonequilibrium steady states (NESSs), which arise as a result of
excitation photogeneration, phonon-induced relaxation, dephasing,
trapping at the RC, and recombination. Furthermore, the cou-
pling between the radiation and absorbing pigments is, in gen-
eral, weak so that its second-order treatment is reasonable. Then,
the only information we need about the radiation is its first-
order correlation function,9 which can be either modeled by appro-
priate expressions9,21 or obtained by a suitable ensemble aver-
age.21,22 Excitation and de-excitation events can be treated within
the Born–Markov approximation23 by Lindblad dissipators24,25 or
by establishing the Bloch–Redfield quantum master equation.17,26

Approaching the problem from the perspective of open quantum
systems, one can introduce an appropriate spectral density of light–
matter coupling20,27–29 and possibly treat it even beyond the second
order.29

Reasonable models of photosynthetic EET should not over-
look the non-Markovian interplay between photoinduced electronic
excitations and nuclear reorganization processes,30,31 whose rele-
vance is emphasized by ultrafast spectroscopic studies. To that end,
a number of studies attempt to combine an explicit treatment of
the photoexcitation step with a nonperturbative approach to the
excitation–environment coupling.24,25,29,32–34 The method of choice
for an exhaustive treatment of excitation–environment coupling are
hierarchical equations of motion (HEOM).35,36 In the accompanying
paper,34 we combine HEOM with a second-order treatment of light–
matter coupling for light of arbitrary properties. Our method cor-
rectly captures light-induced reorganization processes and nonequi-
librium evolution of the bath between the two interactions with
light.

Recently, a number of groups have suggested that station-
ary coherences in the energy basis (interexciton coherences) or
local basis (intersite coherences) under incoherent illumination
may improve the light-harvesting efficiency in photosynthetic sys-
tems.17,37–39 However, the majority of the existing theoretical
approaches to NESSs in photosynthetic light harvesting typically
feature a simplified treatment of the photoexcitation18,19,40 or a sim-
plified treatment of excitation relaxation and dephasing.17,18,38–40

Also, efficient algorithms that avoid the explicit temporal propaga-
tion in the computation of NESSs induced by natural incoherent
light have just begun to be developed.41 Therefore, there is still an
urge to construct theoretical methods that circumvent the disparity
between the time scales of EET dynamics and incoherent excitation
sources and yet meet the two requirements outlined in the above
text.

Another pertaining issue is the origin of stationary coher-
ences, i.e., whether they are primarily induced by incoherent radi-
ation or by the coupling to the protein environment. The authors
of Ref. 29 argued that the NESS coherences ultimately stem from
the entanglement of electronic excitations with the environment.
This entanglement has been systematically studied both analyti-
cally42,43 and numerically42,44 within the undriven and unloaded
spin–boson model. The two-level system displays noncanonical
equilibrium statistics,45,46 whose deviation from the canonical equi-
librium statistics can be conveniently measured by a single param-
eter.42 This parameter can be interpreted as the angle by which
the basis in which the system’s Hamiltonian (or the system–bath

interaction Hamiltonian) is diagonal should be rotated to obtain
the diagonal reduced density matrix (RDM). The basis in which
the RDM is diagonal is thus singled out by the environment,
and the corresponding basis states are known as the preferred (or
pointer) states within the framework of the decoherence theory.47,48

The concept of preferred basis is useful whenever representation-
dependent issues, such as the ones we are after in this study,
arise.

In this paper, we extend the ideas developed in Ref. 42 to
examine the properties of the NESS that arise in an incoherently
driven and loaded excitonic aggregate. Adapting the algorithm pre-
sented in Ref. 49, we devise a procedure to find the NESS of our
recently proposed HEOM that incorporates incoherent photoex-
citation34 and to properly define light-harvesting efficiency under
incoherent illumination. Our theoretical approach fully respects the
continuity equation for excitation fluxes. The NESS is most con-
veniently described in the so-called preferred basis in which the
steady-state RDM is diagonal. Such a description of a driven and
loaded aggregate may be regarded as analogous to the normal-mode
description of a system of coupled harmonic oscillators. While our
theoretical method is quite general and applicable to arbitrary exci-
tonic networks, we investigate the properties of the NESS using the
appropriately parameterized model dimer. For realistic values of the
load extraction time, we conclude that light-induced coherences are
completely irrelevant in the NESS, which is then close to the non-
canonical equilibrium of the undriven and unloaded dimer. We find
that the NESS of the driven and loaded dimer is intimately related
to the dynamics of the driven but unloaded dimer, which takes place
on the time scale of the excitation trapping at the load. This close
connection between the dynamic and stationary picture is correct,
provided that the load extraction time is longer than the time scale
of coherence dephasing, which is, in principle, accessible in ultrafast
spectroscopies.

This paper is structured as follows: The model and method are
presented in Secs. II and III, respectively. In Sec. IV, we discuss the
relation of the preferred-basis description of the NESS to more stan-
dard descriptions conducted in the site or excitonic basis. Section V
presents numerical results with an emphasis on the relation between
the time-dependent and stationary picture. In Sec. VI, we outline
how the methodology presented in this work could be applied to
multichromophoric systems. Section VII concludes this paper by
summarizing its principal findings.

II. MINIMAL MODEL
We consider the simplest EET system, a molecular aggregate

composed of two mutually coupled chromophores (a dimer and
a spin–boson-like model50). Although a similar model has been
repeatedly used by many authors to gain insight into fundamen-
tals of light harvesting under incoherent illumination,17,19,29,38,39,51,52

our analysis uses a rigorous theoretical approach to investigate in
greater detail certain properties of the NESS that have not received
enough attention so far. The dimer system can be considered as
the minimal model of a photosynthetic antenna with delocalization
in which one can study the effects of energy relaxation, dephas-
ing, and (static) disorder in local transition energies (the so-called
asymmetric dimer, see Sec. V A). To be specific, we speak about
the model dimer, while we note that the model and the method to
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be presented are quite general and applicable to multichromophoric
situations.

Electronic excitations of the model dimer are modeled within
the Frenkel exciton model,53,54 and the corresponding Hamiltonian
reads as

HM =∑
j
εj∣lj⟩⟨lj∣ +∑

jk
Jjk∣lj⟩⟨lk∣. (1)

In Eq. (1), |lj⟩ is the singly excited state localized on chromophore
j and εj is its vertical excitation energy, while Jjk are resonance cou-
plings (we take Jkk ≡ 0). We limit our discussion to the manifold of
singly excited states, which is justified under the assumption that the
driving by the radiation is sufficiently weak. The aggregate is in con-
tact with the thermal bath, which represents its protein environment
and is modeled as a collection of independent oscillators labeled by
site index j and mode index ξ,

HB =∑
jξ
h̵ωξb

†
jξbjξ . (2)

The phonon creation and annihilation operators b†
jξ and bjξ entering

Eq. (2) satisfy Bose commutation relations. The aggregate is driven
by weak radiation, and the generation of excitations is described in
the dipole and rotating-wave approximations,

HM−R = −μeg ⋅ E
(+)
− μge ⋅ E

(−). (3)

In Eq. (3), operators E(±) are the positive- and negative-frequency
part of the (time-independent) operator of the (transversal) elec-
tric field, while the eg part of the dipole-moment operator
reads as

μeg = μ
†
ge =∑

j
dj ∣lj⟩⟨gj∣. (4)

We assume that transition dipole moment dj of chromophore j does
not depend on nuclear coordinates (Condon approximation). The
interaction of photoinduced excitations with the environment is
taken to be in Holstein form, i.e., it is local and linear in oscillator
displacements,

HM−B =∑
j
∣lj⟩⟨lj∣∑

ξ
gjξ(b

†
jξ + bjξ) ≡∑

j
Vjuj. (5)

We assume that there are two possible channels through which
photogenerated excitons may decay. The first one is their transfer to
the charge-separated state in the RC, the case in which they are use-
fully harvested. On the other hand, exciton recombination, either
radiative or nonradiative, is detrimental to the efficiency of EET.
While our description of exciton photogeneration and the subse-
quent phonon-induced relaxation is exact (see Sec. III and Ref. 34),
the description of exciton trapping by the RC and exciton recom-
bination is only effective and relies on the results of more elab-
orate treatments performed in Refs. 55 and 56. There, it is real-
ized that EET from one chromophore to another, as well as the
radiative decay to the ground state, is actually mediated by the
bath of environmental photons. Performing a second-order treat-
ment of the appropriate interaction Hamiltonians, one ends up with

effective Liouville superoperators LRC and Lrec that describe the
excitation trapping and recombination on the level of reduced exci-
tonic dynamics, respectively. In Secs. III and IV, we provide more
details in the form of these effective Liouvillians and the manner in
which they enter our description.

III. METHODS
We use our exact description of weak-light-induced exciton

dynamics in molecular aggregates, which is developed in the accom-
panying paper.34 The radiation correlation function, which is the
only property of the radiation entering our reduced description, is
modeled by the following expression:57

G(1)(τ) = ⟨E(−)(τ)E(+)(0)⟩
R
= I0 exp(iωcτ − τ/τc), (6)

where I0, ωc, and τc are the intensity, central frequency, and coher-
ence time of the radiation, respectively. The radiation is assumed
to have well defined directions of propagation and polarization.
The weak-light assumption underlying our theoretical approach is
well satisfied in a wide variety of photosynthetically relevant situa-
tions. For example, for a bacteriochlorophyll molecule irradiated by
ambient sunlight, the excitation–light interaction may be estimated
to be of the order of 10−3 cm−1 (see the accompanying paper34

and Ref. 25). This energy scale is much smaller than the typical
energy scales (∼10 cm−1–100 cm−1) of resonance couplings or the
excitation–environment coupling. Also, the number of photons per
unit time incident on a single photosynthetic complex under sun-
light at the surface of the Earth can be estimated to be of the order
of 1000 s−1 (see the accompanying paper34 and Ref. 20). In other
words, the corresponding time scale is orders of magnitude longer
than time scales typical for excitation transport, trapping at the load,
and recombination.

For the sake of simplicity, we assume that the baths on both
sites are identical, but uncorrelated. The bath correlation function,
which is the only property of the bath entering the reduced descrip-
tion, can be decomposed into the optimized exponential series58

(t ≥ 0),

C(t) = ⟨uj(t)uj(0)⟩B =
K−1

∑
m=0

cm e−μmt + 2Δδ(t). (7)

In Eq. (7), the collective bath coordinate uj is defined in Eq. (5) and
the expansion coefficients cm may be complex, while the correspond-
ing decay rates μm, as well as the white-noise-residue strength Δ, are
assumed to be real and positive. The bath correlation function is usu-
ally expressed in terms of the environmental spectral density J(ω)
[β = (kBT)−1, where T is the temperature],

C(t) =
h̵
π ∫

+∞

0
dω J(ω)

eiωt

eβ̵hω − 1
, (8)

which conveniently combines information on the density of
environmental-mode states and the respective coupling strengths to
electronic excitations.53,54 We explicitly treat only K = NBE + NJ
terms in Eq. (7), where NBE and NJ are the numbers of explicitly
treated poles of the Bose–Einstein function and the bath spectral
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density, respectively. We assume the environmental spectral density
of the overdamped Brownian oscillator,

J(ω) = 2λ
ωγ

ω2 + γ2 , (9)

where λ is the reorganization energy, while γ−1 is the characteristic
time scale for the decay of the bath correlation function C(t).

The exponential decompositions embodied in Eqs. (6) and (7)
enable us to formulate the problem as HEOM incorporating pho-
toexcitation. As demonstrated in Ref. 34, the hierarchy consists of
two parts: one in the eg sector and another in the ee sector. Each
density matrix σn(t) is uniquely characterized by vector n of non-
negative integers nj ,m, where index j enumerates chromophores,
while index m counts terms in the decomposition of C(t) [Eq. (7)].
In order to describe excitation harvesting by the RC and recombina-
tion, we augment our formalism by effective Liouvillians describing
these two processes. As demonstrated in Ref. 55, these Liouvillians
appear on each level of HEOM. Performing the appropriate rescal-
ings, which ensure that auxiliary density operators (ADOs) are all
dimensionless and consistently smaller in deeper levels of the hier-
archy,59 we obtain the following equations describing the NESS we
are interested in (γn =∑j ,mnj ,mμm):

0 = −
i
h̵γ
[HM , σsseg,n] −

γn
γ
σsseg,n + (i

ωc

γ
− (τcγ)−1

)σsseg,n

−
Δ
h̵2γ∑j

Vjσsseg,n + δn,0
i
h̵γ

I0μeg

+ i∑
j

K−1

∑
m=0

√
1 + nj,m

¿
Á
ÁÀ ∣cm∣
(h̵γ)2 Vjσsseg,n+

j,m

+ i∑
j

K−1

∑
m=0

√
nj,m

cm/(h̵γ)2

√
∣cm∣/(h̵γ)2

Vjσsseg,n−j,m
, (10)

0 = −
i
h̵γ
[HM , σssee,n] −

γn
γ
σssee,n −

Δ
h̵2γ∑j

V×j V
×

j σ
ss
ee,n

+
i
h̵γ
μeg σss†eg,n −

i
h̵γ
σsseg,n μ

†
eg + γ−1Lrec[σssee,n]

+ γ−1LRC[σssee,n] + i∑
j

K−1

∑
m=0

√
1 + nj,m

¿
Á
ÁÀ ∣cm∣
(h̵γ)2 V×j σ

ss
ee,n+

j,m

+ i∑
j

K−1

∑
m=0

√
nj,m

cm/(h̵γ)2

√
∣cm∣/(h̵γ)2

Vjσssee,n−j,m

− i∑
j

K−1

∑
m=0

√
nj,m

c∗m/(h̵γ)2

√
∣cm∣/(h̵γ)2

σssee,n−j,mVj. (11)

In the NESS, the continuity equation for exciton currents
should be valid, i.e., the number of generated excitons per unit time
must balance the sum of the recombination and trapping exciton
fluxes. This is physically clear, and it is seen from a more formal per-
spective by taking the trace (with respect to the electronic system of
interest) of Eq. (11) in which n = 0. This results in

Jgen − JRC − Jrec = 0. (12)

In the continuity equation [Eq. (12)], we define all currents to be
positive, while the sign is determined by the “direction” of the cur-
rent (± if it leads to an increase/a decrease in the exciton number).
In more detail, the definitions of currents, which are dimensionless
in our description, are

Jgen =
2
h̵γ

Im TrM{σsseg,0μ
†
eg}, (13)

JRC = −γ−1TrM{LRC[σssee,0]}, (14)

Jrec = −γ−1TrM{Lrec[σssee,0]}. (15)

Let us immediately note that currents Jgen, JRC, and Jrec are
written in a basis-invariant manner. This feature is quite appeal-
ing, since one can express currents in terms of populations and
coherences in any particular basis. The light-harvesting efficiency is
defined as

η =
JRC

Jgen
. (16)

As discussed in the accompanying paper34 and in Sec. VI, for realistic
values of the light coherence time τc ∼ 1 fs, the expression for the
generation current may be further simplified to

Jgen = 2
I0γτc
(h̵γ)2 TrM{μeg ∣g⟩⟨g∣μge}. (17)

In other words, possible enhancements in η due to coherences in
any basis ultimately originate from the expression for the trapping
Liouvillian LRC, as detailed in Sec. IV.

IV. DIFFERENT BASES
In the literature on the physics of photosynthetic light harvest-

ing, two bases play special roles. The first one is basis {|lj⟩| j} of singly
excited states localized on single chromophores (local or site basis).
While Hamiltonian parameters are usually known in the local basis,
the description of absorption properties of a photosynthetic aggre-
gate is usually performed in the excitonic basis {|xj⟩| j}, i.e., in the
basis of stationary states of the isolated-aggregate Hamiltonian HM .
Claims about possible impact of coherences on the efficiency of pho-
tosynthetic light harvesting are usually made with the coherences in
the excitonic or local basis in mind.

Tomasi and Kassal have recently classified different types
of possible coherent enhancements of light harvesting efficiency
according to the basis in which the excitation decay mechanisms
are defined.37 Let us now focus on the trapping at the RC. Two
forms for the Liouvillian LRC[ρ] are widely used in the litera-
ture.17,19,38–40 If site j0 is closest to the RC so that it is essentially
the sole site coupled to it, one uses the so-called localized-trapping
Liouvillian,17,19,40

Lloc
RC[ρ] = τ

−1
RC(∣RC⟩⟨lj0 ∣ρ∣lj0⟩⟨RC∣ −

1
2
{∣lj0⟩⟨lj0 ∣, ρ}), (18)
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where τRC is the characteristic time scale on which the populations
are delivered from site j0 to the RC. However, even in such a situa-
tion, the excitation transfer to the RC should be regarded as the mul-
tichromophoric Förster transfer60,61 so that it is more appropriate to
employ the so-called delocalized-trapping Liouvillian,17,40

Ldeloc
RC [ρ] = τ

−1
RC∑

j
∣⟨xj∣lj0⟩∣

2
(∣RC⟩⟨xj∣ρ∣xj⟩⟨RC∣ −

1
2
{∣xj⟩⟨xj∣, ρ}).

(19)

The recombination occurs due to both radiative and nonra-
diative processes. In other words, the lifetime of chromophores’
excited states is determined not only by the fluorescent decay
but also to a great extent by the conversion of the singlet states
to triplets. While the radiative recombination is most naturally
described in the excitonic basis, the nonradiative processes likely
occur in a different basis of states, depending on how the triplet
states are coupled among themselves. Overall, it is not possi-
ble to say that recombination occurs straightforwardly in nei-
ther the delocalized nor local basis. For definiteness, we assume
that the (nonradiative) recombination may occur from each site
with the same rate constant τrec, and the appropriate Liouvillian
reads as

Lloc
rec[ρ] = τ

−1
rec∑

j
(∣g⟩⟨lj∣ρ∣lj⟩⟨g∣ −

1
2
{∣lj⟩⟨lj∣, ρ}). (20)

The fact that we have chosen the local version of the recombination
should not, however, influence our results because the recombina-
tion process is generally much slower than every other process and
it occurs on the time scale of nanoseconds, i.e., several orders of
magnitude slower than trapping and other processes (see Sec. V). In
situations in which the radiative decay is the major loss channel, it
may be more appropriate to consider the recombination Liouvillian
in the excitonic basis,

Ldeloc
rec [ρ] =∑

j
τ−1
j (∣g⟩⟨xj∣ρ∣xj⟩⟨g∣ −

1
2
{∣xj⟩⟨xj∣, ρ}), (21)

where τ−1
j is the Weisskopf–Wigner spontaneous emission rate25

from excitonic state |xj⟩.
If we assume the trapping at the RC to be governed by Eq. (18),

the trapping current JRC in Eq. (14) depends only on site popula-
tions and on both exciton populations and interexciton coherences.
If, on the other hand, we assume that the trapping is governed
by Eq. (19), JRC is expressed in terms of exciton populations only,
while its expression in the local basis contains both site popula-
tions and intersite coherences. This has been recognized in recent
studies, which ascertain that possible coherent enhancements of the
efficiency can be achieved only when the coherence occurs in a
basis different from that in which the trapping or recombination is
modeled.17,37

However, we feel that the notion of coherent efficiency
enhancements is not defined well enough. The word “enhancement”
would suggest that there is a reference value of the efficiency (which
should be smaller than unity) with respect to which we can expect
to achieve an enhancement. Moreover, since the enhancement is
supposed to be coherent, one could imagine that the aforemen-
tioned reference value should depend on populations only so that

the subsequent inclusion of coherences should enhance the effi-
ciency above that reference value. Whatever the form of the effective
trapping and recombination Liouvillians is, there will always be a
basis in which JRC is entirely expressed in terms of basis-state pop-
ulations only. Such a basis will be denoted as {|pj⟩| j} and termed
the preferred basis of the NESS under investigation. The trapping
current is then expressed only in terms of the RDM diagonal ele-
ments so that the efficiency value calculated in the preferred basis
could be regarded as the reference value above which coherent
enhancements due to non-zero values of coherences in some other
basis (e.g., in the local or excitonic basis) may be possible. How-
ever, our definition of the efficiency [Eq. (16)] is basis-independent,
and the fact that the coherences in the excitonic or local basis
are non-zero should not be expected to bring about any efficiency
enhancements.

While the above discussion about coherent efficiency enhance-
ments is quite general, it will not be the main topic of our numerical
investigations, which focus on a model photosynthetic dimer and
in which the efficiency is close to unity (see Sec. V A). Our cen-
tral question is how the stationary state of the incoherently driven
and loaded molecular system looks like and how it relates to the
two standard pictures: the picture of local states and the delocalized-
states picture. Nevertheless, to the best of our knowledge, our work is
among the first works that properly describe the principal physical
features of excitation harvesting under incoherent light and prop-
erly define the light-harvesting efficiency.20,38,39 The arguments of
the previous paragraph suggest that, once a proper description of
the state in which the photosynthetic systems under incoherent illu-
mination and load find themselves, the involvement of the coher-
ences in the description of photosynthetic light harvesting should
be critically reassessed. We thus believe that future applications of
our NESS methodology to larger systems (see Sec. VI) could sig-
nificantly contribute to the debate on possible coherent efficiency
enhancements.

The excited-state sector of the steady-state RDM ρssee in the
preferred basis reads as

ρssee ≡ σ
ss
ee,0 =∑

j
pj ∣pj⟩⟨pj∣. (22)

The preferred basis is determined by the competition between
excitation generation, pure dephasing, energy relaxation, excitation
trapping at the RC, and recombination.

The excitonic (or site) basis and the preferred basis of the NESS
are connected through a unitary transformation. For our model
dimer, the most general transformation of that kind can be param-
eterized by four real parameters so that the basis vectors in the
preferred basis are expressed in terms of the basis vectors in the
excitonic basis as follows:62

(
∣p0⟩

∣p1⟩
) = eiφpx/2(

eiψpx 0

0 e−iψpx
)(

cos θpx sin θpx
− sin θpx cos θpx

)
⎛

⎝

eiΔpx 0

0 e−iΔpx

⎞

⎠
(
∣x0⟩

∣x1⟩
).

(23)

Due to the phase freedom, we can immediately remove parame-
ters φpx and ψpx from further discussion so that we are left with
only two parameters, θpx and Δpx. From our subsequent discussion,
it will emerge that the rotation angle θpx is closely related to the
analogous rotation angle, which measures the deviation from the
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non-canonical statistics in the undriven and unloaded system (no
generation, trapping, and recombination).42 The phase Δpx is inti-
mately connected to the rates of excitation trapping and recombina-
tion, which remove excitations from the system.

The parameters θpx and Δpx can be related to the Bloch angles
θxB and ϕxB that are commonly used to characterize the basis in which
the RDM is diagonal.42,44 Specifically, one can always normalize ρssee
to obtain ρ̃ ss

ee whose trace is unity and whose eigenvalues will be
denoted as p̃j. For the model dimer, the operator ρ̃ ss

ee can always be
expressed as

ρ̃ ss
ee =

1
2
(I + a ⋅ σ), (24)

where I is the 2 × 2 unity matrix, while σ = {σ1, σ2, σ3} are three Pauli
matrices. Let σ3 be diagonal in the excitonic basis (i.e., σ3 = |x0⟩⟨x0|
− |x1⟩⟨x1|) and let ax be the corresponding vector in Eq. (24). Then,
it can be shown that the spherical angles θxB and ϕxB on the Bloch
sphere are related to parameters θpx and Δpx as follows:

cos θxB =
ax3
∣ax∣
= sgn(2p̃0 − 1) ⋅ cos(2θpx), (25)

tanϕxB =
ax2
ax1
= − tan(2Δpx). (26)

Equations (25) and (26) relate θpx and Δpx to the Bloch angles θxB and
ϕxB, respectively, that are straightforwardly obtained from vector ax.
In a similar manner, one obtains parameters θpl and Δpl of the uni-
tary transformation that connects the preferred and the local basis.
The rotation angle θpx can always be chosen in the range (0, π/4),
while Δpx ∈ (−π/4, π/4). This is discussed in greater detail in Sec. SI
of the supplementary material.

V. NUMERICAL RESULTS
A. Model parameterization and numerical
implementation

Numerical computations are performed on an asymmetric
dimer, which is schematically presented in Fig. 1. The parameters
of our model are summarized in Table I.

In brief, we selectively and resonantly (h̵ωc = ε0) excited site
0 by weak-intensity radiation whose coherence time τc assumes
the value representative of the natural sunlight.63,64 Such a selec-
tive excitation of one site was also a feature of previous studies on
model dimers.17,19 As mentioned in Sec. III, the propagation direc-
tion and the polarization vector of the radiation are assumed to be
well defined. While the transition dipole moment of site 1 is assumed
to be orthogonal to the polarization vector, the magnitude of the
projection of the transition dipole moment of site 0 onto the polar-
ization vector will be further denoted as deg . While we assume the
selective excitation of site 0, the excitation trapping at the load is
modeled by Eq. (18) or Eq. (19) in which we assume that the load

is coupled only to site 1, i.e., j0 = 1 in Eqs. (18) and (19). Such an
assumption is motivated by our wish to include the spatial trans-
fer of excitations within our dimer model. The difference Δε01 = ε0
− ε1 between the local energy levels, resonance coupling J01, and bath
relaxation time γ−1 assumes values typical of the Fenna–Matthews–
Olson (FMO) complex.65,66 The value of the recombination time

FIG. 1. Scheme of the model dimer. The electronic parameters of the dimer are
the resonance coupling J01 and the difference between the local energy levels
Δε01. The dimer is excited by thermal light (schematically represented by Sun and
chaotic signal) characterized by the central frequency ωc and coherence time τc

[see Eq. (6)]. The transition dipole moment of site 1 is assumed to be perpendicular
to the radiation polarization vector, whereas the magnitude of the projection of
the transition dipole moment of site 0 onto the polarization vector is deg. Each
chromophore is in contact with its thermal bath (schematically represented by the
motion lines below chromophore numbers) characterized by the reorganization
energy λ, correlation time γ−1, and temperature T [see Eqs. (8) and (9)]. The time
scale of the excitation harvesting, which is governed by Eq. (18) or Eq. (19), is τRC.
The time scale of the excitation loss in recombination events, which is governed
by Eq. (20), is τrec.

constant τrec is chosen on the basis of the measured exciton life-
time in the FMO complex67,68 and is similar to the value used in
previous theoretical studies.17,19,40,69 Let us note that the recombina-
tion time scale is significantly longer than all other time scales in the
problem. Also, in our model dimer, it is quite unlikely that an exci-
tation would be prevented from reaching the RC during its lifetime.
Therefore, the recombination is not probable, the precise value of
τrec is not important, and the light-harvesting efficiency will always
be close to 1 in the model dimer.19,38 The recombination is explicitly
treated in order to formulate the continuity equation [Eq. (12)], and
the efficiency η is not of primary interest in this work, which will be
focused on other relevant properties of the NESS. Within our sim-
plified model, there is a certain level of arbitrariness in the choice

TABLE I. Values of model parameters used in computations.

Δε01 (cm−1) 100
J01 (cm−1) 100
γ−1 (fs) 100
T (K) 300
h̵ωc ε0
τc (fs) 1.3
τrec (ns) 1.0
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of the appropriate value of τRC. Specifically, a more elaborate treat-
ment of excitation harvesting should explicitly consider both the
forward and backward excitation transfer from the absorbing aggre-
gate to the state of the primary electron donor in the RC, as well
as the primary charge separation, after which the excitation may
be considered as usefully harvested.70–72 Previous theoretical works
employing a simplified description of excitation harvesting, as we do
here, typically assumed that τRC is of the order of picoseconds.66,69

On the other hand, experiments on various species of photosyn-
thetic bacteria, as well as computational studies, suggest that the
appropriate value of our parameter τRC may be as large as a couple
of tens of picoseconds.71,73–75 The reported values of the reorgani-
zation energy in the FMO complex range from tens to hundreds
of inverse centimeters.75–77 Having all these things considered, the
values of τRC and λ will be varied in wide yet physically relevant
ranges in order to examine how they impact the properties of the
NESS.

The NESS is obtained by solving coupled Eqs. (10) and (11) by
adapting the algorithm that was introduced in Ref. 49. The computa-
tional approach of Ref. 49 was developed to compute the equilibrium
RDM of an undriven and unloaded system and it relies on the Jacobi
iterative procedure to solve a diagonally dominant system of linear
algebraic equations. The procedure is repeated until a convergence
criterion, which, in Ref. 49, was related to the magnitude of the ADO
elements, is satisfied. Here, we deal with a driven and loaded sys-
tem, and our computations are terminated once the continuity equa-
tion [Eq. (12)] is satisfied with a desired numerical accuracy. More
details on our numerical scheme to compute the NESS of a driven
and loaded dimer can be found in Sec. SII of the supplementary
material.

B. Results: Long trapping times
Figures 2 and 3 summarize the dependence of the parameters

of the unitary transformation between the preferred and excitonic
(local) basis on the reorganization energy and the trapping time at
the RC. The trapping is assumed to be governed by the localized
Liouvillian [see Eq. (18)], while the recombination is described by
the Liouvillian in Eq. (20). When the trapping at the RC is so slow
that τRC is (much) longer than characteristic time scales for exci-
tation dephasing and energy relaxation, phases Δpx and Δpl tend to
zero [see Figs. 2(a) and 3(a) for τRC ∼ 20 ps–100 ps]. These time
scales are still much shorter than those relevant for recombination.
Therefore, the obtained NESS is expected to be quite similar to the
equilibrium state of an undriven and unloaded aggregate.29 To con-
firm this expectation, in Figs. 4(a) and 4(b), we plot angles θpx and θpl
as functions of the reorganization energy for different values of τRC.
We conclude that, as τRC is increased, angles θpx and θpl tend to the
values specific to the thermal equilibrium of undriven and unloaded
dimers (in which we may formally identify τRC, τrec → +∞). For
small reorganization energies, angle θpx tends to zero [see Fig. 4(a)],
and the preferred basis is close to the excitonic basis. At the same
time, the limiting value reached by θpl as the reorganization energy is
decreased [see Fig. 4(b)] corresponds to the angle of the rotation by
which the excitonic basis is transformed into the local basis (the mix-
ing angle θxl is given as tan(2θxl) = 2J01/Δε01). As the reorganization
energy is increased, the preferred basis continuously changes from
the excitonic basis [in which HM is diagonal, see Eq. (1)] toward

FIG. 2. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). Both
axes feature logarithmic scale and the scale of the color bar in (a) is linear, while
that of the color bar in (b) is logarithmic. The maximal value on the color bar in (a)
is π/4.

the local basis [in which HM–B is diagonal, see Eq. (5)].42 Therefore,
the magnitude of θpx increases [see Fig. 4(a)], while the magnitude
of θpl decreases [see Fig. 4(b)] with the increase in reorganization
energy.

C. Results: Short trapping times. Relation
between stationary and time-dependent pictures

On the other hand, when the trapping at the RC is faster, phases
Δpx and Δpl increase in magnitude [see Figs. 2(a) and 3(a)], while the
values of angles θpx and θpl start to deviate from the respective values
in the thermal equilibrium [see Figs. 2(b) and 3(b)]. These devia-
tions are more pronounced as the trapping time is decreased and
the reorganization energy is increased [see the lower right corners of
Figs. 2(b) and 3(b)]. At the same time, the magnitude of phase Δpx
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FIG. 3. Dependence of transformation parameter (a) Δpl and (b) θpl between the
preferred and local basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). Both
axes feature logarithmic scale and the scale of the color bar in (a) is linear, while
that of the color bar in (b) is logarithmic. The maximal value on the color bar in (b)
is π/4.

is large in the region of fast trapping and relatively small reorganiza-
tion energy [see the lower left corner in Fig. 2(a)], while the increase
that |Δpl| displays as the trapping time is reduced is virtually the same
for all considered values of reorganization energy [see Fig. 3(a)].
It was suggested that the trapping time practically determines the
temporal frame in which the intrinsic dimer’s dynamics is interro-
gated.29 It is therefore interesting to examine if the dependence of
the transformation parameters between the excitonic (or site) and
the preferred basis of the NESS on the trapping time (vertical cuts
in Figs. 2 and 3) can somehow be recovered from the dynamics
of the unloaded dimer initiated by suddenly turned-on incoherent
light.

To gain some intuition on the relation between the station-
ary and time-dependent pictures, let us consider the differential
equation

FIG. 4. Dependence of transformation parameter (a) θpx (between the preferred
and excitonic basis) and (b) θpl (between the preferred and site basis) on the
reorganization energy λ for fixed values of the trapping time at the RC (τRC = 25
ps, 50 ps, and 100 ps) and for the undriven and unloaded dimers (formally, τRC,
τrec → +∞). Trapping at the RC is governed by the localized-trapping Liouvillian
[Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20).

df (t)
dt
= G −Df (t). (27)

This equation models the system, characterized by quantity f, that
is subjected to continuous pumping (source term G) and contin-
uous decay (decay rate D). It resembles the equation for the total
excited-state population that may be obtained by taking the trace
of the temporal counterpart of Eq. (11) for n = 0 (on the level of
the RDM). The stationary point of Eq. (27) is f ss = G/D. If one
considers the driven system in the absence of decay channels, its
dynamics is governed by df ul

(t)
dt = G (the superscript “ul” specifies

that the system is unloaded). To solve the last equation, we assume
that the driving is suddenly turned on at instant t = 0 and that the
initial condition is f ul(0) = 0 (which would correspond to the initially
unexcited system). One immediately realizes that f ul(D−1) = f ss,
i.e., the steady-state solution f ss under constant driving and decay
can be obtained from the temporal evolution f ul(t) of the driven sys-
tem without decay channels at instant t = D−1 corresponding to the
characteristic decay time.
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In the following, we develop the above-described simple argu-
ment in the situation of our interest. While the argument is quite
formal, some of its parts will be specifically developed for the case
of our model dimer, and in Sec. VI, we discuss its validity in
multichromophoric situations.

Let us first note that there is a hierarchy of temporal scales char-
acteristic for the dimer’s dynamics under weak incoherent light. The
shortest time scales (roughly speaking, tens to hundreds of femtosec-
onds) stem from the intrinsic dimer’s dynamics. The time scale of
the trapping at the load is of the order of 1 ps–10 ps in the pho-
tosynthetically relevant range of parameters. The longest time scale
characterizes the excitation loss by recombination, and it is of the
order of nanoseconds. The assumption of weak light actually means
that the radiation is so weak that the number of incident photons
per unit time is very small and the corresponding time scale is the
longest time scale in the problem (we may loosely say that the light
intensity is so low that the absorption of incident radiation is the
rate-limiting process).

We now concentrate on the NESS Eqs. (10) and (11). Within
our second-order treatment of the light–matter interaction, one can
first solve Eq. (10) and obtain the steady-state in the eg sector,
{σsseg,n∣n}, and then use this solution to compute the source term
in the ee sector [the third term on the RHS of Eq. (11)]. Given the
known source term in the ee sector, which will be denoted as G,
Eq. (11) can be recast as

0 = G − (Â + D̂)ρss, (28)

where ρss is the HEOM-space representation of the RDM and ADMs
and Â is the HEOM-space representation of the hierarchical links
between DMs [it comprises terms 1, 2, and 5–7 on the RHS of
Eq. (11)], while D̂ is the HEOM-space representation of the recom-
bination and trapping at the load [term 4 on the RHS of Eq. (11)].
Equation (28) is solved by

ρss = (Â + D̂)−1G. (29)

While the matrix Â is off-diagonal in the HEOM space and
non-symmetric, the matrix D̂ is diagonal in the HEOM space. What-
ever the form of the trapping and recombination Liouvillians is, all
the matrix elements of D̂ are of the same magnitude, ∼ τ−1

RC (due
to the above-mentioned hierarchy of dimer’s temporal scales, the
recombination rate, τ−1

rec, is completely irrelevant). Moreover, the
eigenvalues of matrix Â, which represent the rates of the internal
dimer’s dynamics, are much larger than τ−1

RC. Therefore, computing
the inverse (Â+D̂)−1, we can regard D̂ as a small isotropic correction
to Â. In the lowest-order approximation, the spectral decomposition
of (Â + D̂)−1 can be formulated as

(Â + D̂)−1
≈∑

k
(ak + dk)

−1
∣aRk ⟩⟨a

L
k ∣, (30)

where ak, ∣aRk ⟩, and ⟨aLk ∣ are the eigenvalues and right and left eigen-
vectors of matrix Â, respectively, while dk are the elements of D̂ (they
are all approximately the same).

Let us now focus on the temporal counterparts of Eqs. (10)
and (11) in which the trapping and recombination Liouvillians

are omitted. Within our second-order treatment of the light–matter
interaction, one can first solve the dynamics in the eg sector
[Eq. (10)] and then use this solution as a known time-dependent
source term in Eq. (11), which describes the ee sector we are pri-
marily interested in. However, as advocated in the accompany-
ing paper,34 for realistic values of the light coherence time (of the
order of 1 fs for natural sunlight), this source term is approxi-
mately time-independent (see also the expression for the gener-
ation current in the limit of short coherence time of light) and
thus equal to G introduced in the above discussion. The temporal
counterpart of Eq. (11) without trapping and recombination then
reads as

∂tρul
(t) = G − Âρul

(t). (31)

Assuming that the light is abruptly turned on at t = 0 and that
ρul(0) = 0, the solution is

ρul
(t) = ∫

t

0
ds e−Â(t−s) G. (32)

In the spectral representation of Â, the solution reads as

ρul
(t) =∑

k
(∫

t

0
ds e−ak(t−s))∣aRk ⟩⟨a

L
k ∣G⟩. (33)

It is known from the literature78 that, for the spin–boson model
whose coupling to the environment has the overdamped Brownian
oscillator spectral density [Eq. (9)], at least one of the eigenvalues
of matrix Â is equal to zero, while non-zero eigenvalues appear in
complex conjugate pairs and have positive real parts. Assuming that
a0 = 0, the time-dependent solution for a driven but unloaded system
[Eq. (32)] can be recast as

ρul
(t) = t∣0R⟩⟨0L∣G⟩ +∑

k≠0

1 − e−akt

ak
∣aRk ⟩⟨a

L
k ∣G⟩. (34)

The same observations enable us to recast the spectral form of the
NESS solution under driving and load as

ρss ≈
1
d0
∣aR0 ⟩⟨a

L
0 ∣G⟩ +∑

k≠0

1
ak
(1 +

dk
ak
)

−1

∣aRk ⟩⟨a
L
k ∣G⟩. (35)

Remembering that d0 ∼ τ−1
RC and that |dk/ak| is sufficiently smaller

than 1 for all k ≠ 0, we can approximate e−ak/τRC ≈ 0 in Eq. (34) and
(1 + dk/ak)−1

≈ 1 in Eq. (35) to finally obtain that

ρul
(τRC) ≈ ρss ≈ τRC∣aR0 ⟩⟨a

L
0 ∣G⟩ +∑

k≠0

1
ak
∣aRk ⟩⟨a

L
k ∣G⟩. (36)

We have just demonstrated that the dimer’s NESS can be recon-
structed from the time evolution of the initially unexcited, driven,
but unloaded dimer at instant t ∼ τRC after a sudden turn-on
of the driving. This result establishes an interesting relationship
between the stationary (with load) and time-dependent (without
load) pictures under incoherent driving.

While the physical relevance of the sudden turn-on of incoher-
ent light may be questionable (see Ref. 6 and references therein),
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this formal argument demonstrates that there is a formal connec-
tion between this seemingly unphysical setting and the NESS picture.
However unphysical the sudden turn-on may be, the final-value the-
orem from the theory of Laplace transforms ensures that Eq. (32)
in which the load is added, i.e., Â → Â + D̂, can be used to obtain
the NESS in Eq. (29) by temporal propagation up to sufficiently long
time t → +∞.

In the following, we concentrate on a numerical demonstration
of this relationship. First, we propagate the temporal counterparts of
Eqs. (10) and (11) in which the trapping and recombination Liou-
villians are omitted [see Figs. 5(a1)–5(d2)]. The RDM elements [in
Figs. 5(a1)–5(d2), in the excitonic basis] are measured in units of
I0d2

eg/(h̵γ)2 and not in absolute units, as is customarily done. Our
reason for choosing this unit lies in our perturbative treatment of

the interaction with light, which ensures that singly excited-state
populations and intraband coherences are proportional to the light
intensity I0 [see Eq. (6)] and to the excited-state oscillator strength
d2
eg (see the caption of Fig. 1). Analyzing Eqs. (10) and (11), one

can readily conclude that I0d2
eg/(h̵γ)2 is the natural unit to measure

populations and coherences. The absolute value of this unit may be
estimated by using the estimate for the magnitude of the excitation–
light interaction given in Sec. III,

√
I0d2

eg ∼ 10−3 cm−1, so that for
the value of γ given in Table I, we obtain I0d2

eg/(h̵γ)2
≃ 4 × 10−10.

Second, we use the RDM σee ,0(τRC) at t = τRC to determine the trans-
formation parametersΔ and θ by virtue of Eqs. (24)–(26). The results
emerging from these real-time computations are confronted with
the results emerging from NESS computations in Figs. 5(a3)–5(d4)

FIG. 5. (a1)–(d1) Time dependence of populations of exciton states |x0⟩ (solid line) and |x1⟩ (dashed line) of the incoherently driven and unloaded model dimer for different
values of the reorganization energy. [(a2)–(d2)] Time dependence of the real (solid line) and imaginary (dashed line) parts of the interexciton coherence of the incoherently
driven and unloaded model dimer for different values of the reorganization energy. Both exciton populations and interexciton coherences are measured in units of I0d2

eg/(
̵hγ)2.

The excitation is suddenly turned on at t = 0. Dependence of the transformation parameters Δpx [(a3)–(d3)] and θpx [(a4)–(d4)] between the excitonic basis and the preferred
basis of the NESS on the trapping time constant τRC ∈ (1, 10) ps for different values of the reorganization energy. Solid lines are computed using time traces of a driven
and unloaded model dimer at t = τRC, while squares emerge from the computation of the NESS using Eqs. (10) and (11). The scale on the abscissa (τRC) in (a3)–(d4) is
logarithmic. Trapping at the RC is governed by the localized-trapping Liouvillian [Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20). The values of
the reorganization energy are 20 cm−1 [(a1)–(a4)], 50 cm−1 [(b1)–(b4)], 200 cm−1 [(c1)–(c4)], and 400 cm−1 [(d1)–(d4)].
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for a couple of values of the reorganization energy. It is observed
that the two methods predict quite similar values of transformation
parameters Δpx and θpx for all the examined values of the reorga-
nization energy and trapping time. This result, together with the
RDM dynamics initiated by a sudden turn-on of incoherent radi-
ation, can help us better understand the dependence of Δpx and
Δpl on τRC for τRC ∼ 1 ps–10 ps. The discontinuous change from
−π/4 to π/4 that phase Δpx undergoes at around 2 ps–3 ps [see the
bright area in Fig. 2(a)] should be attributed to the fact that the
real part of interexciton coherence in an incoherently driven but
unloaded dimer becomes equal to zero at around 2 ps–3 ps [see
solid curves in Figs. 5(a2)–5(d2)]. The imaginary part of the interex-
citon coherence saturates somewhat earlier [see dashed curves in
Figs. 5(a2)–5(d2)]. As τRC is further increased, Δpx decreases because
the real part of the interexciton coherence is increasing [see also
Eq. (26)].

The relation between the NESS and RDM dynamics in real time
leans on the above-mentioned hierarchy of time scales of the dimer’s
dynamics, i.e., on the fact that the trapping time scale is long enough.
Specifically, in time traces of a driven and unloaded dimer for
t ≳ 1 ps, one observes that the behavior of both exciton populations
[Figs. 5(a1)–5(d1)] and interexciton coherences [Figs. 5(a2)–5(d2)]
displays certain steadiness. In other words, populations, as well as
the real part of the interexciton coherence, linearly increase in time,
while the imaginary part of the interexciton coherence reaches a
constant value (see also the accompanying paper).34 When the trap-
ping time constant is τRC ≳ 1 ps so that at t = τRC, the steadiness
has already been established, the dynamical quantities of a driven
but unloaded dimer may be used to quite accurately reconstruct the
NESS. On the other hand, when τRC ≲ 1 ps so that the steadiness has
not been established yet, the reconstruction of the NESS from the
quantities of a driven and unloaded dimer computed at τRC would
be less accurate. This is particularly clear for low values of the reorga-
nization energy [see Figs. 5(a3) and 5(a4)], when oscillations in the
interexciton coherence are damped on a time scale of ∼ 200 fs–300 fs
[see Fig. 5(a2)]. A similar situation can be expected for slow bath
when the bath correlation time γ−1 is long enough.35 In such cases,
the reconstruction of NESS from the dynamics of the incoherently
driven and unloaded dimer is not accurate because τRC is compara-
ble to the time scales of the intrinsic dimer’s dynamics. At this point,
it is useful to remember that the information extracted from ultra-
fast spectroscopic signals can be used to determine the Hamiltonian
parameters of the system under consideration, i.e., to determine the
rate constants Re{ak} and the frequencies Im{ak} of the oscillatory
features of the intrinsic dimer’s dynamics that enter Eqs. (30) and
(32)–(36).6,7,9–11 The dynamics of a driven but unloaded system in
which the driving is abruptly turned on at t = 0 [see Eq. (32) and
Figs. 5(a1)–5(d2)] can be formally regarded as the interference of all
possible outcomes e−Â(t−s)G of ultrafast experiments in which the
delta-like excitation is centered at instant s ∈ (0, t) and which freely
evolve for the time interval of length t–s. The initial condition is set
by the ratios (the initial condition has to be dimensionless!) of the
components of the generation vector G, which can be shown to be
basically proportional to the square of the transition dipole moments
and dependent on their mutual alignments (see Sec. VI). The oscil-
latory features stemming from the abruptly turned-on incoherent
light in Figs. 5(a2) and 5(b2) are thus tightly connected to the oscilla-
tory features characteristic of the excitation by very short pulses. The

time scales on which the oscillatory features can be observed thus
set the lower limit on τRC for which the above-described relation-
ship between the stationary and dynamic pictures is valid. Therefore,
the decay time of dynamical coherences observed in spectroscopies
may still be relevant in the natural setting, although the dynamical
coherences themselves are absent in the NESS.79 In Sec. SIII of the
supplementary material, we estimate the time scales characteristic of
exciton decoherence by suitable fitting procedures. For the values of
model parameters adopted in this work, we find that the character-
istic decay times of exciton coherence are shorter than reasonable
values of τRC.

The previous discussion was conducted for interexciton coher-
ences. Similar conclusions can be also reached in the site basis (see
Fig. 3). While we have already discussed the limit of long trap-
ping time in Fig. 4(b), the case of relatively short τRC ∼ 1 ps–10 ps
is analyzed in greater detail in Fig. S2 of the supplementary
material. The analysis is completely analogous to that accompanying
Figs. 5(a1)–5(d4).

The choice of instant t = τRC at which time-dependent quan-
tities are extracted to obtain the properties of the NESS is some-
what arbitrary because τRC is not really the time, but the charac-
teristic time scale of the trapping. This is also apparent from our
formal demonstration of the relation between the stationary and
time-dependent pictures in which we only used the fact that all dk
are of the order of τ−1

RC, while their precise values were not impor-
tant. Moreover, in the results presented so far, we used the trapping
[Eq. (18)] and recombination [Eq. (20)] Liouvillians that are diag-
onal in the local basis. It is, therefore, not obvious if and how the
above-discussed relation between the dynamic and stationary pic-
tures under incoherent driving changes when the trapping or recom-
bination Liouvillian that is diagonal in the excitonic basis [Eqs. (19)
and (21)] is employed. In Figs. 6(a) and 6(b), which are analogous
to Figs. 2(a) and 2(b), respectively, we examine the dependence of
the transformation parameters Δpx and θpx on λ and τRC under the
assumption of delocalized trapping, while we retain the recombina-
tion Liouvillian in Eq. (20). The main features of Figs. 2(a) and 2(b)
are clearly recognizable in Figs. 6(a) and 6(b). This is particularly
true at long trapping times. However, at short trapping times, the
maximum that |Δpx| reaches in Fig. 2(a) at τRC ∼ 2 ps–3 ps is shifted
toward τRC ∼ 1 ps–2 ps in Fig. 6(a). A similar discussion applies to
Fig. 6(b), where the decrease that θpx exhibits as τRC is increased
from 1 ps is shifted to shorter trapping times with respect to Fig. 2(b).
We believe that the maximum in |Δpx|, which occurs at τRC ∼ 1 ps–
2 ps for delocalized trapping, should still be interpreted to originate
from the fact that the real part of the interexciton coherence in the
driven and unloaded dimer changes its sign on a picosecond time
scale. If the real part of the interexciton coherence is equal to zero at
instant t0, it is not guaranteed that the magnitude of Δpx (computed
from the NESS) reaches it maximal value of π/4 exactly at τRC = t0
[this is also observed in Figs. 5(a3)–5(d3)]. Our point here is that the
magnitude of Δpx reaches π/4 at τRC ∼ t0 irrespective of the precise
form of the trapping Liouvillian.

D. Further results
In the following, we discuss how the variations in the electronic

parameters of the model, particularly in the difference Δε01 between
local energy levels, affect the properties of the NESS. We fix the
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FIG. 6. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the reorganization energy λ and the trapping time
τRC at the RC. Trapping at the RC is governed by the delocalized-trapping Liouvil-
lian [Eq. (19)], while the recombination is described by the Liouvillian in Eq. (20).
Both axes feature logarithmic scale and the scale of the color bar in (a) is linear,
while that of the color bar in (b) is logarithmic. The maximal value on the color bar
in (a) is π/4. To facilitate the comparison with Fig. 2, the ranges of color bars in (a)
and (b) are identical to the ranges of color bars in Figs. 2(a) and 2(b), respectively.

reorganization energy to 150 cm−1. Figures 7(a) and 7(b) present
the dependence of transformation parameters Δpx and θpx on τRC

and Δε01. We varied Δε01 from 30 cm−1 to 300 cm−1 on the basis
of the literature values of site-energy differences in the FMO com-
plex.65,75 Let us first focus on the long trapping times when the mag-
nitude of the phase Δpx is small [see the upper half of Fig. 7(a)], and
the NESS obtained is quite similar to the excited-state equilibrium.
For small values of Δε01 for which J01/Δε01 ≳ 2, exciton delocaliza-
tion prevails over the localizing effect of the environment, which is
reflected in relatively small values of the rotation angle θpx [see the
upper left part of Fig. 7(b)]. As the local energy levels become more
off-resonant, the environment-induced localization becomes more
pronounced than exciton delocalization so that the rotation angle
from the excitonic basis to the preferred basis of the NESS increases.

FIG. 7. Dependence of transformation parameter (a) Δpx and (b) θpx between the
preferred and excitonic basis on the site-energy difference Δε01 and the trapping
time τRC at the RC. Trapping at the RC is governed by the localized-trapping Liou-
villian [Eq. (18)], while the recombination is described by the Liouvillian in Eq. (20).
Both axes feature a logarithmic scale and the scale of the color bar in (a) is linear,
while that of the color bar in (b) is logarithmic. The maximal value of the color bar
in (a) is π/4. The reorganization energy assumes the value of 150 cm−1.

However, when Δε01 is large enough so that Δε01/J01 ≳ 2, the exci-
tonic basis is already localized enough and, for the chosen value of
λ, the localizing effect of the environment is effectively suppressed.
This leads to a decrease in the rotation angle θpx. As the trapping
time is shortened, the deviations from the above-established picture
become more pronounced. The magnitude of Δpx reaches its maxi-
mum at τRC = 1 ps–10 ps depending on the particular value of Δε01
[see Fig. 7(a)], while angle θpx exhibits a minimum in the very same
region of the Δε01 − τRC space [see Fig. 7(b)].

VI. POSSIBLE APPLICATIONS TO
MULTICHROMOPHORIC AGGREGATES

So far, we have employed our novel theoretical approach to
study in great detail the NESS of an incoherently driven and loaded
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dimer. The dimer represents the only model in which one can rep-
resent the character of the NESS by only two parameters—the angle
of the basis rotation θ with respect to a chosen basis and the phase
Δ that is closely connected with the excitation decay rates—and
the difference between different NESSs is easy to understand. In
other words, the dimer is the only model, where relatively simple
“understanding” of the role of different parameters in establish-
ing the preferred basis can be derived. Whether our results can
be translated to larger systems is, of course, an important ques-
tion. This section aims at presenting the basic steps that have to be
taken in order to apply our NESS formalism to multichromophoric
situations.

We start from the fact that the realistic coherence time of light
τc ∼ 1 fs is much shorter than any other time scale in the problem.
All our results for the dimer are obtained by solving Eqs. (10) and
(11) and do not lean on any assumption about the coherence time
τc entering Eq. (6). In the accompanying paper,34 we have argued
that, in the limit of small τc, the first-order light correlation function
defined in Eq. (6) may be replaced by

G(1)(τ) = 2I0τcδ(τ), (37)

which represents the so-called white-noise model of the radiation.29

Equation (10) is then omitted from further discussion, while the
source term (the third term) of Eq. (11) reads as34

SWNM
n = δn,0

2I0γτc
(h̵γ)2 μeg ∣g⟩⟨g∣μ

†
eg . (38)

We recall that the operator μeg = e ⋅ μeg is the projection of the dipole-
moment operator μeg onto the radiation polarization vector e. Using
the definition of μeg in Eq. (4), the matrix elements of the source
term in the basis {|bj⟩| j} of the single-excitation manifold can be
expressed as

⟨bk∣S
WNM
n ∣bj⟩ = δn,0

2I0γτc
(h̵γ)2 ∑

k′j′
(dk′ ⋅ e)(dj′ ⋅ e)⟨bk∣lk′⟩⟨lj′ ∣bj⟩. (39)

The basis {|bj⟩| j} is, in principle, arbitrary; it can be the local basis
(b = l), the excitonic basis (b = x), the preferred basis (b = p), or
any other basis in the single-excitation manifold. Equation (39) is
in the form in which the rotational average can be straightforwardly
performed with the final result,80

⟨bk∣S
WNM
n ∣bj⟩

(avg)
= δn,0

2I0γτc
(h̵γ)2

1
3∑k′j′
(dk′ ⋅ dj′)⟨bk∣lk′⟩⟨lj′ ∣bj⟩

= δn,0
2I0γτc
(h̵γ)2

1
3
dbk ⋅ d

∗

bj , (40)

where dbk = ∑k′ dk′⟨bk∣lk′⟩ is the transition dipole moment of
state |bk⟩. In a typical situation, the system of interest consists
of many photosynthetic complexes in solution, and the rotational
average is performed over random orientation of individual chro-
mophores’ dipole moments with respect to the polarization direc-
tion. The source term in Eq. (40) depends only on relative ori-
entations of transition dipole moments, which are known for the

widely investigatedQy-band excitations of the FMO complex.81 Rep-
resenting Eq. (11) in basis {|bj⟩| j} and using the rotationally aver-
aged source term given in Eq. (40), we obtain a description of
incoherent-light driven EET that exploits both the light incoherence
(short τc) and experimentally available data on relative orientations
of transition dipole moments. Such a description features a much
more realistic excitation condition than the one we have employed
in the study of model dimer (the selective excitation of a local
site).

Our NESS approach can also be used to follow the pathways of
light-induced excitations from the point of their generation, through
the chromophore network, to the point of their extraction at the
load. To elaborate this, we compute the |bk⟩⟨bk| matrix element of
Eq. (11) for the RDM (n = 0) and obtain

Jbkgen − J
bk
RC − J

bk
rec + ∑

k′(≠k)
Jbkbk′ + Jbkres = 0. (41)

In Eq. (41), Jbkgen is the excitation generation flux into the singly
excited state |bk⟩,

Jbkgen =
2
h̵γ

Im⟨bk∣σ
ss
eg,0μ

†
eg ∣bk⟩, (42)

JbkRC is the excitation trapping flux from |bk⟩,

JbkRC = −γ
−1
⟨bk∣LRC[σssee,0]∣bk⟩, (43)

and Jbkrec is the excitation recombination flux from |bk⟩,

Jbkrec = −γ
−1
⟨bk∣Lrec[σssee,0]∣bk⟩, (44)

while Jbkbk′ (for k′ ≠ k) is the net flux of excitations that are exchanged
between states |bk⟩ and |bk′⟩,

Jbkbk′ =
2
h̵γ

Im{⟨bk∣HM ∣bk′⟩⟨bk′ ∣σ
ss
ee,0∣bk⟩} + 2∑

j

K−1

∑
m=0

¿
Á
ÁÀ ∣cm∣
(h̵γ)2

× Im{⟨bk′ ∣lj⟩⟨lj∣bk⟩⟨bk∣σ
ss
ee,0+

j,m
∣bk′⟩}. (45)

The last term in Eq. (41), Jbkres, stems from the residual term 2Δδ(t)
in the decomposition of the bath correlation function into the opti-
mized exponential series [see Eq. (7)]. This term can therefore be
made arbitrarily small by explicitly treating a sufficient number K
of exponentially decaying terms in Eq. (7) and will not be con-
sidered in the further discussion. For the sake of completeness,
let us also note that, if the light incoherence is exploited on the
level of Eqs. (37)–(40), Eq. (42) for the generation flux should be
replaced by

Jbkgen =
2I0γτc
(h̵γ)2 ∣dbk ∣

2. (46)

Similar to Eq. (12), all the fluxes entering Eq. (41) are dimen-
sionless and the sign in front of them is determined by the
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“direction” of the flux (± if it leads to an increase/a decrease in the
population of state |bk⟩). One can prove that the (global) continu-
ity equation [Eq. (12)] is obtained by adding Eq. (41) for different
states |bk⟩. Therefore, Eq. (41) can be regarded as the local continu-
ity equation in the basis {|bk⟩}. Here, the term “local” is in no manner
connected to the local basis because Eq. (41) is formulated in an
arbitrary basis {|bj⟩| j}. The local continuity equation establishes the
balance (on the level of a single-excitation state) between the excita-
tion generation, trapping, and recombination on the one hand and
the excitation flow from the considered state toward other states on
the other hand.

We believe that the local continuity equation is a potentially
interesting feature of our NESS picture because it enables us to
track the steady-state excitation pathways. The excitation flux Jbkbk′

satisfies Jbkbk′ = −Jbk′ bk , and it is positive when the net excita-
tion flow is directed from bk′ to bk, while it is negative when the
net excitation flow is directed from bk to bk′ . One may, therefore,
identify the states in which the generation, trapping, and recom-
bination predominantly occur and then individuate the pathways
along which the excitations travel. Such a discussion can be per-
formed in an arbitrary basis of singly excited states, enabling one
to follow the excitation pathways in the local, excitonic, or preferred
basis.

We conclude this section by discussing the generality of the
relationship between the stationary and time-dependent pictures
that we established for the model dimer in Sec. V C. This relation-
ship relies on the hierarchy of time scales of the dimer’s dynamics
under incoherent light that is also introduced in Sec. V C. On the
other hand, in a multichromophoric aggregate, the rates of excita-
tion transfer between various states can be of the different orders
of magnitude, and the excitation may be trapped in certain states
so that the recombination time scale may also become important.
As an example, let us take a single unit of the FMO complex that,
despite the fact that its contribution to direct light harvesting is
minor, has become a paradigmatic system to discuss quantum effects
in biological systems.82 It is known that the intraunit energy transfer
predominantly proceeds on subpicosecond time scales.83 The exci-
tation transfer from the considered unit of the FMO complex to the
RC typically occurs on a ∼20 ps time scale, while the decay time
of the lowest FMO level is around 250 ps.84 We may thus spec-
ulate that the hierarchy of time scales introduced in Sec. V C is
valid in this example and that the reconstruction of the NESS from
the dynamics of the driven but unloaded system is possible. How-
ever, in this multichromophoric example, the value of the efficiency
genuinely depends on a complex interplay between the excitation
generation, relaxation, dephasing, trapping at the RC, and recom-
bination and, as such, it cannot be predicted in advance (as is the
case for the dimer model). This is even more pronounced in pho-
tosynthetically more relevant situations in which the excitations ini-
tially created in antenna complexes reach the RC after many steps
of the relatively slow interpigment transfer.20 The application of
our NESS formalism to such situations is out of the scope of this
paper.

VII. DISCUSSION AND CONCLUSION
We have provided a detailed and rigorous theoretical descrip-

tion of light harvesting by a molecular aggregate under conditions

that are representative of photosynthetic light harvesting as it occurs
in nature. The picture established in this work takes into account the
excitation generation by means of weak incoherent light and their
subsequent relaxation and dephasing, as well as excitation trapping
by a load (the RC) and recombination. While the generation, relax-
ation, and dephasing are described in a (numerically) exact manner,
which we have reported in the accompanying paper, the excitation
trapping and recombination are included on the level of effective
Liouvillians.

This piece of research addresses a recurrent question of the
possible relevance of quantum coherent effects (understood in
a very broad sense) for the natural light harvesting. Our NESS
approach provides a physically transparent definition of the light-
harvesting efficiency [Eq. (16)] that is basis-invariant so that we
are in a position to embark upon the study of possible coher-
ent enhancements of the efficiency. Recent reports have suggested
that these coherent enhancements strongly depend on the basis
in which the effective trapping and/or recombination Liouvillians
are diagonal. Here, we use the fact that the state of an incoher-
ently driven and loaded aggregate is most naturally represented and
studied in the so-called preferred basis of the NESS in which the
steady-state RDM is diagonal. This definition of the preferred basis
implies that this basis sublimes the joint effect of excitation gen-
eration, relaxation, dephasing, trapping, and recombination. The
preferred-basis description of the NESS under driving and load can
be seen as an analog of the description of a system of coupled har-
monic oscillators in terms of normal modes. While finding that
the preferred basis is highly nontrivial, as demonstrated through-
out this paper, this concept may shed new light on the debate
on the role of coherences in the energy transfer under incoherent
light.

We have examined the properties of the preferred basis of the
NESS of an incoherently driven and loaded dimer by studying the
manners in which it is connected to two widely used representa-
tions: namely, those employing the excitonic and the local bases.
The recombination time scale is, in general, significantly longer
than any other time scale in the problem so that, in the limit of
long trapping time, the NESS is very similar to the previously stud-
ied excited-state equilibrium of an undriven and unloaded system.
We also find that the NESS under driving and load carries infor-
mation that is encoded in the temporal evolution of the unloaded
system driven by the suddenly turned-on incoherent light. If the
radiation is abruptly turned on at t = 0, the properties of the NESS
that arises due to the excitation trapping with time constant τRC
can be quite reliably extracted from the RDM at t ∼ τRC. We con-
clude that the trapping time scales for which such a relation between
the NESS and the dynamics of the driven but unloaded system is
sensible are basically determined by the time scales of decoher-
ence and relaxation, which are accessible in ultrafast spectroscopy
experiments. Since realistic trapping times are, in general, much
longer than decoherence and relaxation time scales, the relation we
found between the steady-state and time-dependent pictures is quite
general.

We again note that our theoretical and computation approach
to obtain the NESS under incoherent driving is general and not
limited to the model dimer studied here. We opted for the dimer
because the relationships between basis vectors of the preferred
basis and the excitonic or local basis can be parameterized by only
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two real parameters, which have certain physical significance and
whose dependence on model parameters can be studied in a sys-
tematic manner. In the case of a more complex excitonic aggregate,
one should resort to more involved parameterizations of unitary
matrices.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) the derivation of equa-
tions for the transformation parameters θ and Δ, (b) detailed numer-
ical procedure to compute the nonequilibrium steady state, (c) anal-
ysis of the dynamics initiated by a delta-like photoexcitation, and (d)
the comparison of transformation parameters θpl and Δpl obtained
from stationary and time-dependent pictures in the case of fast
trapping.
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9T. Mančal and L. Valkunas, “Exciton dynamics in photosynthetic com-
plexes: Excitation by coherent and incoherent light,” New J. Phys. 12, 065044
(2010).
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