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We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon’s periodic orbits with
values of the topological exponent k ranging from k ¼ 3 to k ¼ 58 to plot the angular momentum L as a
function of the period T, with both L and T rescaled to energy E ¼ −0.5. Upon plotting LðT=kÞ we find
that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the LðTÞ curve for
nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the
progenitor data is σ ¼ 0.13. This regularity supports Hénon’s 1976 conjecture that the linearly stable
Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol’mogorov-Arnol’d-Moser, stable.
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Introduction.—Numerical studies of periodic three-body
orbits have increased their output over the past few years—
more than 40 new orbits—and their “satellites” have been
discovered, Refs. [1–4]. Unlike periodic two-body orbits,
which are all ellipses, and thus are all topologically
equivalent, the noncolliding three-body periodic orbits
have one of infinitely many different topologies.
Montgomery, Ref. [5], had devised an algebraic method
to associate a free-group element (“word”) w with a three-
body orbit’s topology, and thus to label and classify such
periodic orbits; for an elementary introduction to this
method, see Ref. [6]. That classification method has
recently acquired practical importance in the identification
of new three-body orbits, Refs. [1,3,4].
A number of newly discovered orbits, Refs. [1–4], were

of the so-called topological satellite type. Such satellite
orbits are also known as “bifurcation” in the older literature,
Refs. [2,7], where they were only loosely defined in terms
of their presumed origin. It was only in Ref. [3] that a
precise definition of a topological satellite was given. When
this definition was applied to the figure-eight satellites [8],
reported in Ref. [3], it led to the discovery of a remarkable
“topological Kepler’s third law”-like regularity for arbitrary
orbits with vanishing angular momenta, Ref. [9]. The
immediate question is whether this regularity persists when
the angular momentum does not vanish.
The present Letter is an attempt to answer that question,

albeit in a single, specific family of three-body orbits, viz.,
in the Broucke-Hadjidemetriou-Hénon (BHH) family
[10–16], that has the simplest nontrivial topology (free
group element w ¼ a). The main reason for selecting only
this family of orbits is that it is the most thoroughly studied
family thus far: it is the only family of orbits with a
previously determined dependence of the period T on the

angular momentum L of (nonsatellite, or progenitor)
periodic orbits, Refs. [10–16]. No such, or comparable,
study of any of the remaining known families exists to our
knowledge at this moment. Moreover, the BHH family is
one of only two families [17] of periodic three-body orbits
that have been observed in astronomy: all known “hierar-
chical” triple star systems belong to BHH orbits. Moreover,
the Sun-Earth-Moon system may be viewed as a BHH
solution, albeit with highly asymmetrical mass ratios.
The first step towards this goal, the one of finding as

many different BHH satellite orbits as possible, has already
been accomplished in Ref. [18]. Previously, Davoust and
Broucke, Ref. [7], had found one (the first k ¼ 3) satellite
of one retrograde BHH orbit. Reference [18] extended the
search for retrograde BHH satellite orbits systematically up
to values k ≤ 19 of the topological exponent k, and more
haphazardly up to k ¼ 58. Thus, several different types of
BHH satellites with identical values of k were discovered
[19], as were a few prograde BHH satellites; see the
Supplemental Material [20] and the Web site [21].
Prograde BHH satellites have not been studied systemati-
cally, as yet, mostly due to their paucity at the values of the
angular momentum covered in the searches in Ref. [18].
Presently, it is not known how many satellites ought to
exist, and under which conditions. It is interesting, how-
ever, that the observed satellites correspond only to linearly
stable BHH progenitor orbits. This is in line with Hénon’s
1976 conjecture [15,20] about Kol’mogorov-Arnol’d-
Moser (KAM) stability of linearly stable BHH orbits.
Then, motivated by the findings reported in Ref. [9], we

checked for similar regularities of satellite BHH orbits with
nonzero angular momentum. First, we formulated the
topological dependence of Kepler’s third law for three-
body orbits with nonzero angular momenta, and second, we
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tested it on the presently known satellites of the retrograde
BHH family. We found a striking result: all of our
retrograde BHH satellites fall on a single (continuous)
curve LðT=kÞ, Fig. 3, that is practically indiscernible by the
naked eye from the LðTÞ curve, Fig. 1, for nonsatellite
(progenitor) retrograde BHH solutions, whereas the “topo-
logically uncorrected” curve LðTÞ looks very different; see
Fig. 2. A quantitative measure of this (dis)agreement is
shown in terms of corresponding standard deviations.
Preliminaries.—Broucke [7,10,11], Hadjidemetriou

[12–14], and Hénon [15,16] (BHH) explored a set of
periodic planar three-body orbits with equal mass bodies.
These orbits form two continuous curves in the L-T plane
whose lower (retrograde) terminus (“end”) is the collinear
collision (Schubart) orbit, and both the retrograde and the
direct LðTÞ curves approach the same high-L limit at their
upper termini, Fig. 1.
Although BHHwrite of two families of orbits—direct, or

prograde, and retrograde—all of these orbits belong to a
single topological family: during one period the orbit
completes a single “loop” around one of the poles on
the shape sphere. This loop can be described by the
conjugacy class of the fundamental group or free group
element a, according to the topological classification used
in Refs. [1,6]. It turns out, however, that there are numerous
relative periodic orbits with topology ak, with k ¼ 2; 3;….

Such orbits are sometimes called satellites [2,3], whereas
other authors call them “bifurcation orbits” [7].
Scaling laws for three bodies.—It is well known that

Kepler’s third law (for two bodies) follows from the
spatiotemporal scaling laws, which, in turn, follow from
the homogeneity of the Newtonian gravity’s static poten-
tial, Ref. [22]. These scaling laws read r → λr, t → λ3=2t,
and, consequently, v → v=

ffiffiffi

λ
p

. The (total) energy scales as
E → λ−1E, the period T as T → λ3=2T, and angular
momentum as L → λ1=2L, i.e., differently than either the
period T, or “size” R, which is the reason why only the
vanishing angular momentum L ¼ 0 is a “fixed point”
under scaling. For this reason, we use scale-invariant
angular momentum Lr ¼ LjEj1=2, scale-invariant period
Tr ¼ TjEj3=2 and, for simplicity’s sake, equal masses.
Thus, we may replace the “mean size” R̄ of the three-
body system in Kepler’s third law T ∝ R̄3=2 with the inverse
absolute value of energy jEj−1, i.e., T ∝ jEj−3=2, or equiv-
alently TjEj3=2 ¼ Tr ¼ const.
The “constant” on the right-hand side of this equation is

not a universal one in the three-body case, as it is in the two-
body case (where it depends only on the masses and the
Newtonian coupling G). It may depend both on the family
w of the three-body orbit, described by the free-group word
w, and on the scale-invariant angular momentum Lr ¼
LjEj1=2 of the orbit, see Refs. [15,16], as follows:

TðwÞjEj3=2 ¼ TðwÞ
r ¼ fðLðwÞjEj1=2Þ ¼ fðLðwÞ

r Þ;

or as an inverse function,

LðwÞ
r ¼ LðwÞjEj1=2 ¼ f−1ðTðwÞjEj3=2Þ ¼ f−1ðTðwÞ

r Þ:

Thus, the curve LðwÞ
r ðTðwÞ

r Þ ¼ LðwÞjEj1=2ðTðwÞjEj3=2Þ as a

function of TðwÞ
r ¼ TðwÞjEj3=2 is a fundamental property of

any family w of periodic orbits. For the BHH family the
LðTÞ curve, for fixed energy E ¼ −0.5 orbits, based on the
data from Refs. [10–16], is shown in Fig. 1.
We wish to see if the zero-angular-momentum relation

TrðwkÞ ¼ kTrðwÞ, Ref. [9], or some similar statement holds
also at nonzero angular momentum. The analogon of this
relation for orbits with nonzero angular momenta would be
a simple relation between LðTÞ curves for the progenitor

orbit LrðTrÞ and its kth satellite LðwkÞ
r ðTðwkÞ

r Þ:

LðwÞ
r ðTðwÞ

r Þ ¼ LðwkÞ
r ðTðwkÞ

r =kÞ: ð1Þ

We shall test this relation in the BHH family of solutions,
and in order to do so, we use the BHH satellite orbits
from Ref. [18].
LðTÞ curves for BHH satellites.—The L-T plots of

different-k satellite orbits are scattered over a large region
and do not intersect the BHH progenitor family of orbits’
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FIG. 1. LðTÞ curves for direct or prograde (green, upper set of
points) and retrograde (blue, lower set of points) BHH orbits, all
at fixed energy E ¼ −0.5.
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FIG. 2. LðTÞ dependence of retrograde BHH orbits (blue dots
of different hues) and their satellites (red), with various values of
k, all at fixed energy E ¼ −0.5. The data are from Table I.
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LðTÞ curve when plotted as a function of the (undivided)
period T, see Fig. 2. Note the large span of periods T in the
data, Table I, and in Fig. 2, as well as two large “gaps” in
the data. These gaps are due to the exigencies of the search
reported in Ref. [18], which was not conducted with the
intention of testing the hypothetical topological Kepler’s
third law. The values in Table I have been rounded off to
five significant decimal places. So, the numerical error is
less than one part in 10 000. Such an error would be
invisible in Figs. 2, 3, and 4, meaning that the “size of the
points” in these figures is larger than the expected error.
After dividing the period T (at fixed energy) by the
topological exponent k, T 0 ¼ T=k, we can see in Fig. 3
that the satellite orbits’ LðT=kÞ curve (the angular momen-
tum L as a function of topologically rescaled period T=k)
approximately coincides with the LðTÞ curve of BHH
retrograde orbits. It seems that such an appearance of order
out of apparent disorder cannot be an accident.

Next, in Fig. 3 we look more closely at the section of the
LðTÞ curve of progenitor BHH retrograde orbits in which
we have found all but one of our satellites. We have
interpolated Hénon’s [15] 18 stable retrograde data points
with a piecewise polynomial fit in this part of the LðTÞ
curve. The standard deviations from this interpolated curve
were calculated for (1) Broucke’s 10 progenitor retrograde
orbits [10,11] and (2) the 56 out of 57 new satellite orbits
from Table I (excluding one orbit that lies near the
“shoulder” at T ¼ 14 in Fig. 3), with the following results.
(1) σ ¼ 0.0034 for Broucke’s orbits, and (2) σ ¼ 0.1269 for
satellite orbits. This difference of 2 orders of magnitude
between these two numbers clearly indicates that the
rescaled satellites’ periods do not coincide exactly with
the progenitor ones, but only approximately.
Moreover, when one assembles Hénon’s and Broucke’s

[10,11] retrograde orbits in one set and fits the aggregate
data by a polynomial of the sixth degree, Fig. 3, the
standard deviation of the fit is σ ¼ 0.0313, whereas the
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FIG. 3. LðT 0 ¼ T=kÞ dependence at fixed energy E ¼ −0.5 for
the aggregate set of retrograde BHH orbits (blue dots of different
hues) and their satellites (red dots) with various values of k,
together with the fitted interpolating function (blue solid). The
data are from Table I.

5 6 7 8 9 10
T k

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
L

FIG. 4. Enlargement of the L ∈ ½1.5; 3� region of the retrograde
BHH orbits (blue dots) and their satellites (red dots) with various
values of k LðT 0 ¼ T=kÞ dependence at fixed energy E ¼ −0.5.
Note that the size of the dots on the diagram exceeds the
corresponding numerical uncertainties (“error bars”).

TABLE I. Properties of satellite orbits in the retrograde branch
of the BHH family. Here, k is the topological power of the orbit, T
is its period, and L is its angular momentum. All orbits have the
same energy E ¼ −ð1=2Þ. For the raw data and a discussion of
numerical errors, see the Supplemental Material [20].

T L k T L k

27.800 80 1.288 15 3 71.538 38 2.460 95 11
27.411 57 1.505 52 3 77.074 74 2.259 18 12
32.992 45 1.616 82 4 77.060 60 2.379 81 12
33.479 35 1.557 01 4 76.731 11 2.517 18 12
55.678 84 1.310 00 4 82.213 27 2.319 68 13
39.511 02 1.653 31 5 82.199 18 2.452 31 13
45.138 27 1.775 68 6 81.882 58 2.570 68 13
44.586 32 1.902 40 6 87.317 60 2.376 87 14
50.646 60 1.879 00 7 87.303 60 2.520 98 14
50.638 90 1.911 39 7 92.384 79 2.504 86 15
50.141 13 1.974 52 7 92.377 38 2.591 66 15
50.141 28 1.975 37 7 92.082 10 2.670 70 15
56.060 83 1.969 71 8 97.432 10 2.559 79 16
55.604 11 2.121 89 8 102.450 58 2.673 31 17
77.813 66 1.205 44 8 107.449 64 2.758 61 18
56.052 69 2.010 54 8 112.429 18 2.838 83 19
56.049 53 2.027 09 8 209.487 95 3.692 20 39
55.604 30 2.122 89 8 214.258 15 3.727 85 40
61.399 03 2.051 28 9 219.023 02 3.762 83 41
60.968 89 2.185 81 9 223.782 78 3.797 19 42
61.390 86 2.098 90 9 228.537 63 3.830 94 43
61.386 76 2.123 97 9 233.287 75 3.864 12 44
60.968 79 2.185 32 9 238.033 32 3.896 75 45
60.999 96 2.338 82 9 242.774 50 3.928 85 46
61.396 97 2.063 00 9 247.511 46 3.960 44 47
66.666 44 2.179 17 10 252.244 33 3.991 55 48
66.666 89 2.176 08 10 308.853 30 4.614 04 58
66.297 61 2.401 65 10
78.610 58 1.593 25 10
71.897 15 2.194 81 11
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standard deviation of all satellite orbits from this poly-
nomial curve is σ ¼ 0.1315, roughly four times bigger. It is
(statistically) clear that the satellites do not follow exactly
the same LðTÞ curve as the progenitors, but the deviation is
not large. This constitutes the evidence for the analogon of
the topological dependence of Kepler’s third law for the
L ≠ 0 case, Ref. [9].
Finally, we note that all of our newly found satellite

orbits fall into a region of the progenitor LðTÞ curve that
corresponds to stable progenitor BHH orbits, with one
possible exception (the red point near the shoulder at
T ¼ 14 in Fig. 3, that “sits” on the border point between
stable and unstable regions). We have not found any other
satellites in this, the second stable region of BHH retro-
grade orbits. In Fig. 4 we show the fine structure in the
satellites’ LðT=kÞ curve, that remains to be studied in finer
detail and be better understood.
We have not studied the direct or prograde (sub)family of

BHH orbits, as Ref. [18] did not search for their satellites,
but found four almost inadvertently. Certainly, that task
ought to be completed in the future.
Summary, conclusions and outlook.—We have used 57

new satellite orbits from Ref. [18], in the family of
Broucke-Hadjidemetriou-Hénon, Refs. [10–16], relative
periodic solutions to the planar three body problem.
Thence followed a striking relation between their kinematic
and topological properties.
BHH orbits constitute a family with a simple topology,

described by the free group element a according to the
classification on the shape sphere, and their satellites are
orbits of the topology ak. The BHH orbits’ angular
momenta L and periods T form a continuous curve
LðTÞ, at fixed energy. Our satellite orbits form a scattered
set of points on the same LðTÞ plot, but all of them exhibit
the property that after their period T is divided by their
topological order k, they approximately fall on the LðTÞ
curve of the original (k ¼ 1) BHH orbits.
This study was motivated by the discovery, Ref. [9], of a

relation between the topology and periods among the
satellites of the figure-eight orbit, Ref. [3], and one other
type (“moth I”—“yarn” in Ref. [1]), of three-body orbits at
vanishing angular momentum. This Letter shows that
Kepler’s third law’s topological dependence also holds
for orbits with L ≠ 0, albeit only approximately. It remains
to be seen just precisely what this discrepancy depends on.
These results are even more striking if one remembers

that among our results there are several distinct types of
satellite orbits of the same topological power k, some with
quite different values of L and T, which all display this
property. A closer look at the LðT=kÞ curve revealed a
fine structure, which should be investigated in higher
detail in the future. An extension of the search conducted
in Ref. [18] into hitherto unexplored regions of the L-T
plane ought to provide (new) data that will further test our
result.

Our results indirectly confirm Hénon’s 1976 conjecture,
see page 282 in Ref. [15], reproduced in the Supplemental
Material [20], that the linearly stable BHH orbits are also
nonlinearly, or perpetually, or KAM stable. Such KAM
stability implies the existence of quasiperiodic orbits with
periods that conform to the quasiperiodicity condition (i.e.,
with periods that are “almost commensurate”with the BHH
progenitor’s period), as predicted by the KAM theorem,
Refs. [23–25].
Our study opens several new questions. (1) The most

commonlyobservedhierarchical triple star systemsbelongto
theBHHfamily.Are thereBHHtopological satellites among
astronomically observed three-body systems? It is important
to extend the present study to the realistic case of three
different masses: some early work has already been done in
this direction by Broucke and Boggs, Ref. [10], and by
Hadjidemetriou and Christides, Ref. [13]. (2) In recent years
therehavebeen formal“proofsof existence”given for at least
some BHH orbits, Refs. [26,27]. This begs the question: can
one “prove existence” of their satellite orbits, and, if yes, of
how many satellites, and under which conditions?
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