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Abstract

The ubiquity of Earth- to super-Earth-sized planets found very close to their host stars has motivated in situ
formation models. In particular, inside-out planet formation is a scenario in which planets coalesce sequentially in
the disk, at the local gas pressure maximum near the inner boundary of the dead zone. The pressure maximum
arises from a decline in viscosity, going from the active innermost disk (where thermal ionization yields high
viscosities via the magnetorotational instability [MRI]) to the adjacent dead zone (where the MRI is quenched).
Previous studies of the pressure maximum, based on α-disk models, have assumed ad hoc values for the viscosity
parameter α in the active zone, ignoring the detailed MRI physics. Here we explicitly couple the MRI criteria to the
α-disk equations, to find steady-state solutions for the disk structure. We consider both Ohmic and ambipolar
resistivities, a range of disk accretion rates (10−10

–10−8Me yr−1), stellar masses (0.1–1Me), and fiducial values
of the non-MRI α-viscosity in the dead zone (αDZ=10−5 to 10−3). We find that (1) a midplane pressure
maximum forms radially outside the dead zone inner boundary; (2) Hall resistivity dominates near the inner disk
midplane, perhaps explaining why close-in planets do not form in ∼50% of systems; (3) X-ray ionization can
compete with thermal ionization in the inner disk, because of the low steady-state surface density there; and (4) our
inner disks are viscously unstable to surface density perturbations.

Key words: planets and satellites: formation – protoplanetary disks

1. Introduction

The Kepler mission has discovered more than 4000
exoplanet candidates from observations of their transits (e.g.,
Mullally et al. 2015; Coughlin et al. 2016). One of the great
surprises from this data set is the ubiquity of Earth- and super-
Earth-sized planets in very tight orbits, which have no solar
system analogs. Specifically, more than 50% of Sun-like stars
appear to harbor one or more planets of size 0.8–4 Re at orbital
periods P<85 days (i.e., shorter than Mercury’s; Fressin
et al. 2013). Similarly, nearly all M dwarfs seem to host one or
more 0.5–4 Re sized planets at P<50 days (Dressing &
Charbonneau 2015). Note that the single-planet systems
included in these statistics may have as-yet-undetected smaller
planets as well. Moreover, a large fraction (30%) of the close-
in multiplanet Kepler systems appear dynamically packed (i.e.,
cannot admit an additional planet without becoming unstable;
Fang & Margot 2013). Thus, a major, and possibly the
dominant, planet formation mechanism in our Galaxy produces
small planets very close to the central star, with a large fraction
of these in tightly packed multiplanet systems. Two main
scenarios have been advanced to explain such planets:
(1) formation in the outer disk followed by inward migration
(e.g., Kley & Nelson 2012; Cossou et al. 2013, 2014), and
(2) formation in situ (Hansen & Murray 2012, 2013; Chiang &
Laughlin 2013; Chatterjee & Tan 2014, hereafter CT14).

The inward migration scenario tends to produce planets that
are trapped in orbits of low-order mean motion resonances,
which is not a particular feature of these Kepler systems
(Baruteau et al. 2014; Fabrycky et al. 2014). Recently
discovered trends in the atmospheric photoevaporation of these
planets also indicate an Earth-like (rock/iron) core composi-
tion, implying formation inward of the ice line and thus arguing
against significant migration (Owen & Wu 2017).

The inside-out planet formation (IOPF) scenario proposed by
CT14 is a new type of in situ formation model. It is based on
the fact that the effective viscosity in the disk is expected to
decline, moving radially outward from the innermost disk—
where efficient thermal ionization of alkali metals (Umebayashi
& Nakano 1988) activates the magnetorotational instability
(MRI; Balbus & Hawley 1991), leading to high viscosities—to
the adjacent “dead zone,” where decreasing thermal ionization
leads to a suppression of the MRI by Ohmic resistivity,
yielding low viscosities (Gammie 1996). In a steady-state disk,
i.e., one with a constant disk accretion rate Ṁ , this fall-off in
viscosity produces a local maximum in the gas pressure in the
vicinity of the dead zone inner boundary (DZIB). The IOPF
mechanism proposes that dust grains that have grown to
∼centimeter-sized “pebbles” in the outer disk (Hu et al. 2017)
and are drifting radially inward are trapped in this pressure
maximum, within which they rapidly coalesce into a proto-
planet. The protoplanet itself is also expected to be trapped in
this region (Hu et al. 2016) and thus able to continue growing
(especially by pebble accretion), until it becomes massive
enough to open a gap a few Hill radii wide in the disk.
Material interior to the inner rim of this gap will tend to drain

rapidly (on a local viscous timescale) onto the star. While some
replenishment of this interior region may continue owing to gas
flowing across the gap, densities here are expected to decrease,
potentially leaving the outer rim of the gap subject to direct
stellar X-ray/UV irradiation. This can activate the MRI in disk
gas close to the outer rim, over a thickness set by how far stellar
ionizing photons penetrate radially into the rim (e.g., Chiang &
Murray-Clay 2007). A new DZIB then forms at the outer edge
of this MRI-active region, creating a new pressure trap where
incoming pebbles can coagulate into another planet. The
process continues until the pebble supply from the outer disk is
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exhausted, leaving behind a system of closely packed inner
planets.

The formation of gas pressure maxima is thus central to the
IOPF model. In particular, the location of the first maximum,
controlled by thermal ionization of alkalis in the inner disk, sets
the orbital radius of the innermost (so-called “Vulcan”) planet
in the system. The goal of this paper is to investigate the
formation of this first pressure maximum.

There have been several previous works studying pressure
traps in the disk created by changes in the viscosity
(e.g., CT14; Kretke & Lin 2007; Kretke et al. 2009; Kretke
& Lin 2010). All of these have been based on a steady-state
Shakura–Sunyaev α-disk model, wherein the disk accretion
rate is constant, viscous heating due to accretion is the main
source of energy input, and the disk viscosity is parameterized
in terms of the quantity α. Crucially, however, these studies
have all adopted ad hoc prescriptions of α for computational
ease, without accounting for the detailed physics of the MRI.

Conversely, several groups have investigated the behavior of
active and dead zones in the disk, accounting for the detailed
effects of non-ideal MHD and complex gas and dust chemistry
on the MRI, either using direct numerical simulations (e.g.,
Bai 2011, 2017; Bai & Stone 2011; Turner et al. 2010) or based
on the MRI criteria implied by such simulations (e.g., Perez-
Becker & Chiang 2011a, 2011b; Mohanty et al. 2013).
However, these studies all assume a passive disk (heated and
ionized by stellar irradiation) and a predetermined temperature
and surface density profile (usually minimum-mass solar
nebula [MMSN]). Consequently, the results are generally
neither in steady state (Ṁ varies with radius) nor applicable to
the inner disk (where viscous heating dominates).

Our aim here is to marry the two approaches: we wish to solve
for the structure of the inner disk assuming a steady-state,
viscously heated α-disk, but with α determined self-consistently
from detailed considerations of the MRI and non-ideal MHD
effects. To the best of our knowledge, this is the first such unified
disk model (Keith & Wardle [2014] present an elegant self-
consistent α-disk model for circumplanetary disks, but their MRI-
α is a more parameterized version than ours, with a saturation
value set arbitrarily). As such, the results are germane not only to
the IOPF mechanism and the specific purpose of locating a
pressure maximum in the inner disk but also to the broader goal
of understanding the structure of viscously heated steady-state
disks with MRI-driven accretion and non-ideal MHD.

In Section 2, we provide an overview of our methodology
and discuss some critical caveats to our assumption of MRI-
driven accretion. In Section 3, we summarize the α-disk model,
and in Section 4, we describe our treatment of the MRI. Our
technique for calculating α and Ṁ is detailed in Sections 5 and
6, and our method of determining equilibrium solutions is
outlined in Section 7. We present our results in Section 8 and
discuss their implications in Section 9.

2. Overview of Methodology and Caveats

2.1. Methodology

We wish to investigate the location of the pressure maximum
in the inner disk, by solving for the inner disk structure in steady
state (i.e., with constant Ṁ) and assuming that the MRI is the
dominant magnetically controlled mechanism for local mass and
angular momentum transport. We further wish to do this in the
context of the Shakura–Sunyaev α-disk model. Consequently, we

must solve the coupled set of equations for the MRI and disk
structure: coupled because the effective viscosity parameter α
from the MRI and the attendant Ṁ both depend on the underlying
disk structure (as well as on the magnetic field strength B), while
the disk structure itself, in the Shakura–Sunyaev model, is
determined by α and Ṁ (and stellar parameters).
Briefly, we use a grid-based method of solution. A grid of

disk structures is calculated for a desired Ṁ and a range of
input values for α and field strength B; the MRI-induced output
α and corresponding accretion rate Ṁ are derived for each of
these disk structures, and the chosen solution structure is the
one in which the output values of α and Ṁ match the input
ones. We find that a range of such solutions are possible
differing in B; a unique solution is chosen under the assumption
that the MRI is maximally efficient, i.e., generates the largest
field it can support (but see “Caveats” below).
Pressure Maximum: How do our solutions produce a

pressure maximum? In the α-disk model, the gas pressure is
a decreasing function of both α and radius. This leads to a
turnover in pressure at the radial location where our derived α
falls to its minimum value. What defines this minimum in our
methodology? In previous work as well as in this paper, a
lower limit (“floor”) on α is set by its value αDZ in the dead
zone, where the MRI is quenched but various (nonmagnetic)
hydrodynamic/gravitational instabilities may still generate
viscous stresses. Fiducial values for this floor are chosen based
on theory and numerical simulations; we explore the plausible
range αDZ=10−5 to 10−3 (discussed in more detail later). The
pressure maximum then occurs where the α in the MRI-active
zone decreases to this dead zone limiting value. This floor will
always be reached if heating due to viscous accretion (a
decreasing function of radius for constant Ṁ) is the only source
of the ionization required to kindle the MRI (as assumed here;
but see also X-rays/UV below).
Simplifications: In this pilot study, we adopt a number of

simplifications: no ionization by stellar photons (X-ray or UV;
we only consider thermal ionization due to accretion heating),
ionization of a single alkali species (i.e., no complex chemical
network), no dust, and a fixed opacity of 10 cm2 g−1. Relaxing
these assumptions presents no conceptual difficulties, and we
shall do so in a subsequent paper (M. R. Jankovic et al. 2018, in
preparation); the inclusion of more physics will certainly
change the precise location of the pressure maximum (e.g., dust
grains will reduce the MRI efficiency, and X-rays may change
the limiting value of α; these effects and others are discussed at
appropriate junctures). Nevertheless, as an initial step, the
mathematical ease afforded by these simplifications allows us
to clearly present our methodology and identify important
general trends in the solutions.

2.2. Caveats

Finally, there are crucial caveats, applicable to all work so
far on pressure maxima in the inner disk (including this paper),
concerning the basic assumption that mass and angular
momentum transport are controlled by the MRI. In the
innermost disk, where the inductive term in the field evolution
equation greatly exceeds the resistive terms, the MRI is indeed
likely to be dominant and maximally efficient (e.g., Bai 2013).
Farther out, however, where the resistivities become non-
negligible, the situation is much more complicated.
Specifically, first, when Ohmic and ambipolar resistivities are

both important, vertically stratified 3D simulations (Bai 2013;
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Bai & Stone 2013; Gressel et al. 2015) imply that (a) in the
absence of any net vertical magnetic flux, the MRI is extremely
weak, with an effective viscosity orders of magnitude lower than
required to power the observed accretion rates in classical T
Tauri stars; and (b) with even a small net vertical field, MRI
turbulence is completely smothered (because, while the MRI is
initially present, the field is subsequently amplified to strengths
greater than that at which the MRI can operate under ambipolar
diffusion; i.e., the assumption of maximally efficient MRI is no
longer valid). The flow over the entire vertical extent of the disk
now becomes fully laminar, and a magnetized disk wind
develops instead, which efficiently carries angular momentum
away from the disk and drives accretion at rates consistent with
observations. In other words, where Ohmic and ambipolar
effects are both important, mass accretion seems driven primarily
by vertical angular momentum transport by magnetized winds,
and not radial transport by the MRI.

Second, introducing the Hall effect into the above situation
complicates matters further, depending on whether the net
vertical magnetic field is aligned or anti-aligned with the spin
axis of the disk (Bai 2014, 2015, 2017; Lesur et al. 2014; Simon
et al. 2015). When the two are aligned (i.e., Ω· B>0), the
Hall shear instability (HSI) generates laminar viscous stresses via
the amplification of horizontal components of the field
(Kunz 2008), leading to strong radial angular momentum
transport and hence significant mass accretion (in addition to
the magnetized-wind-driven accretion at comparable rates).
Conversely, when the field and disk spin axis point in opposite
directions ( B 0W <· ), the horizontal field is considerably
suppressed, and mass and angular momentum transport are
predominantly wind driven.

At face value, these results suggest that using the Shakura–
Sunyaev viscous disk model to search for a pressure maximum,
with the expectation that α declines sharply across the interface
between the MRI-active innermost disk and the adjacent dead-
zone-dominated region, might not be a valid exercise for two
reasons. First, in the region usually characterized as “dead
zone” dominated, angular momentum in the aforementioned
simulations is mainly transported vertically out of the disk by
wind-related torques, instead of being radially redistributed
within the disk by standard viscous torques (either hydro-
dynamic/gravitational within the dead zone, or MRI in an
overlying active layer). Thus, the Shakura–Sunyaev viscous
model is invalid here. Second, when the field and disk spin axis
are aligned, the HSI activates efficient mass and angular
momentum transport all the way down to the midplane here (in
addition to wind-related transport higher up); i.e., there is no
dead zone in any sense.

Nevertheless, it is premature to write off an inner disk
pressure maximum in the standard viscous disk context. All the
above simulations are restricted to radii 1 au, an order of
magnitude farther out than the presumed location of the
pressure maximum at few tenths of an au (the simulation
domain of Bai [2017] formally extends into 0.6 au, but they
deem the results at <2 au to be vitiated by boundary effects).
Thus, it remains to be seen whether the above conclusions
apply to our region of interest in the inner disk. Concurrently, if
the close-in planets we address here are indeed formed in situ
from inward-migrating solids, then some sort of pressure trap
seems inescapable in this region, in order to corral these solids
and prevent their falling into the star. As such, continuing this
line of inquiry currently appears justified.

Finally, even if the wind/Hall results from the simulations
extend to much smaller radii, a pressure maximum is still
plausible (and, in general, a significant change in disk structure
is expected) at the interface between the innermost MRI-active
turbulent disk and the adjacent wind-dominated laminar disk,
because of the qualitative difference in physical conditions
between the two regions. The Shakura–Sunyaev α-disk model
will not apply across the interface, and the controlling factor for
any change in disk structure may be the radial distribution of
magnetic flux (since the field ultimately determines the strength
of the MRI, the wind, and the Hall effect; X. N. Bai 2017,
private communication), rather than the radial behavior of α as
assumed here. Nonetheless, the α-disk model will still apply to
the MRI region, and insights into the latter gleaned from the
present work will remain useful.

3. Disk Model

A detailed derivation of the steady-state (temporally
constant) disk structure within the Shakura–Sunyaev viscous
α-disk model is given by Hu et al. (2016, hereafter H16). We
summarize the main results here. The viscosity parameter α is
defined by the relation

c
, 1s

2

n a=
W

( )

where ν is the viscosity, cs the sound speed, and Ω the
Keplerian angular velocity at any given disk radius. Now, the
α-disk model is fundamentally derived from vertically
integrated quantities (surface density and accretion rate;
see H16); as such, the “α” that enters into it is more precisely
a vertical average. This issue is often elided (e.g., H16 do not
discuss it) under the implicit assumption that α is vertically
constant or slowly varying. However, in a vertically stratified
disk (such as we will find), with MRI-active zones sandwiched
between inactive ones, the nature of the viscosity changes with
height, and the latter assumption is invalid. In this case, the
relevant quantity is the effective viscosity parameter ā, defined
as the pressure-weighted vertical average of α:
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ρ) holds only for a vertically isothermal disk (so that cs
2 is

constant with height; we shall assume such isothermality
further below). We show how to calculate ā in Section 5. We
explicitly append the subscript “gas” to pressure P to
differentiate the gas pressure from the magnetic pressure (PB,
encountered later); for all other quantities (density, temper-
ature, etc.) we drop this subscript, since they always refer to gas
alone in this paper.
With this definition of ā, the steady-state gas surface density

(summing both above and below the midplane) at any orbital
radius r in the disk is given by
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for a normalized stellar mass M*,1≡M*/1Me, accretion rate
M 9 º-˙ Ṁ/10−9Me yr−1, radial distance rAU≡r/1 au, opa-
city κ10≡κ/10 cm2g−1, adiabatic index γ1.4≡γ/1.4, and
effective viscosity parameter 3a º-¯ 10 3a -¯ , with fr º

R r1 in-( ) for a disk inner edge located at Rin (if the disk
extends to the stellar surface, then Rin=R*, the stellar radius).
The associated midplane temperature is given by
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if viscous heating is the main source of energy input (i.e.,
heating by stellar irradiation is ignored). The midplane pressure
is then
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and the midplane density (which follows from the ideal gas law
Pgas=ρ kBT/μ, for particles with mean molecular mass
μ≈2.34mH, where mH is the atomic mass of hydrogen) is
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Crucially, Equations (5) and (6) show that the midplane
pressure and density do not depend on the local α, but rather on
its vertically averaged value ā. In other words, the midplane
pressure (and thus density) is sensitive to conditions in the
entire column pressing down from above (as intuitively
expected), not simply local ones. This has the following
important consequence. As we will show, the midplane
pressure maximum does not form where the dead zone first
develops in the midplane (i.e., at the DZIB, which is where the
midplane α reaches its minimum), as often assumed. Instead, it
forms farther out radially, where the effective parameter ā
reaches its minimum (because the MRI-active zone continues
outward for some distance above the dead zone). Thus, we will
find that the midplane pressure maximum is actually located
within the dead zone.

Unlike H16, we assume for simplicity that the disk is
vertically isothermal (i.e., γ=1). Strictly speaking, this is
slightly inconsistent with the derivation of the midplane
temperature (Equation (4) above) by H16, following the
formalism of Hubeny (1990), wherein the temperature depends
on the vertical optical depth in the disk. However, implementing
this dependence couples together the vertical temperature and
density profiles in a complicated fashion (H16 avoid this because
they are concerned with just midplane values). Moreover, at
small optical depths (τ=1), the temperature is also highly
sensitive to the details of the appropriate radiative processes (a
simplistic treatment of which leads to an infinitely hot disk
surface; see discussion by Hubeny 1990); addressing these is
beyond the scope of this paper. On the other hand, at large
optical depths (τ?1), T only varies very slowly with depth, as
τ1/4 (see Hubeny 1990). Therefore, since we expect the inner
disk to only be active in optically thick regions close to the
midplane, we approximate the vertical temperature profile in
the region of interest by the midplane values: T(z, r)∼
T0 (r).

The (isothermal) sound speed is then c k Ts B 0 m= , and the
vertical pressure profile in hydrostatic equilibrium becomes

P z r P r
z

z
, exp , 7

H
gas 0,gas

2

2
= -
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⎞
⎠⎟( ) ( ) ( )

where the pressure scale height is defined as z c2H sº W.
Finally, we assume a constant opacity of κ=10cm2 g−1,
approximately the expected value in protoplanetary disks (e.g.,
Wood et al. 2002). H16 use the detailed opacity tables of Zhu
et al. (2012), where the values depend on the pressure and
temperature structure of the disk, and solve for the equilibrium
opacities and structure iteratively. In our case, however, the
disk structure equations are already coupled to the MRI ones,
and the two sets must be solved simultaneously. Introducing a
further interdependence with opacity adds a level of complexity
that we set aside in this exploratory work. We do compare,
a posteriori, our constant κ to the values implied by Zhu et al.
(2012) for our equilibrium disk structure, to gauge the
discrepancy between the two; in general, we find our value
to be reasonable.

4. MRI

Our treatment of the MRI generally follows that of Mohanty
et al. (2013), except we consider ionization by thermal
collisions instead of by X-rays, and we do not include grains.
Here we summarize the major points of our analysis. The
physical conditions required for the MRI to operate are set out
in Section 4.1; our treatment of thermal ionization and
recombination is discussed in Section 4.2; and the calculation
of the various resistivities (Ohmic, ambipolar, and Hall), which
determine whether or not the MRI criteria are met, is described
in Section 4.3.

4.1. Criteria for Active MRI

We discuss the necessary conditions for active MRI in
Appendix A and only state the final results here. The Ohmic
Elsässer number Λ is defined as

v
, 8z

O

2


h
L º

W
( )

where ηO is the Ohmic resistivity and v z the vertical
component of the local Alfvén velocity ( B 4z prº , where
Bz is the vertical field strength and ρ the local gas density).
Similarly, the ambipolar Elsässer number Am is defined as

Am
v

, 9
A

2


h
º

W
( )

where ηA is the ambipolar resistivity and v the local total
Alfvén velocity ( B 4prº , where B is the rms field strength).3

With these definitions, the conditions for sustaining active
MRI are

1 10L > ( )

3 Our reasons for adopting v z in Equation (8) but v in Equation (9) are
supplied in the discussion preceding Equation (33) and in footnote (8), in
Appendix A.
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and

Am . 11aminb b> ( ) ( )

Here β≡Pgas/PB is the plasma β parameter (with magnetic
pressure PB≡B2/8π), and the minimum allowed value of β—
denoted by βmin—is a function of the ambipolar Elsässer
number Am (Bai & Stone 2011):
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Equation (10) encapsulates the reasonable condition that, when
Ohmic resistivity dominates, the MRI is sustained when the
growth rate of the fastest-growing MRI mode exceeds its
dissipation rate. When ambipolar diffusion dominates, on the
other hand, Bai & Stone (2011) find that, in the strong-coupling
(single-fluid) limit applicable to protoplanetary disks (see
discussion preceding Equation 36(a) in Appendix A), the MRI
can operate at any value of Am, provided that the field is
sufficiently weak. Equations 11(a), (b) then define what
“sufficiently weak” means: it signifies that the plasma β

parameter must exceed a minimum threshold βmin. Specifically,
it implies that the gas pressure must dominate over the magnetic
pressure in the disk for the MRI to function (see discussion
following Equation 37(b)). An “active zone” is where both
conditions (10) and (11) are satisfied, allowing efficient MRI; a
“dead zone” is where condition (10) is not met, so that Ohmic
resistivity shuts off the MRI; and a “zombie zone” (following the
nomenclature of Mohanty et al. 2013) is where condition 11(a) is
not satisfied, so that ambipolar diffusion quenches the MRI.

Note that the effects of Hall diffusion are ignored in the above
analysis. As discussed in Section 2 and Appendix A, in the
presence of a net vertical background field, the Hall effect can
amplify the MRI or suppress it, depending on whether the field is
aligned or anti-aligned with the spin axis of the disk. Quantifying
this effect is beyond the scope of this paper. However, we do
investigate the Hall effect a posteriori, by calculating the Hall
Elsässer number ( v ;H

2
c hº W(∣ ∣ ) see Appendix A and

Equation (35)) everywhere in our solutions. In any region
where χ<1, which we call a “Hall zone,” Hall diffusion has a
strong effect on the MRI; we discuss the potentially critical
implications of such regions for planet formation.

4.1.1. Choice of Magnetic Field Strength

Both the Ohmic and ambipolar conditions for active MRI,
Equations (10) and (11), depend on the magnetic field strength:
via v z in ΛO and PB in β. Indeed, for a given set of stellar
parameters and a fixed accretion rate, we will see that there
exist an infinite number of solutions, each corresponding to a
different disk structure with a different field strength B.

The question then is how to determine an appropriate B. We
do so by assuming that (a) the magnetic field strength is
constant with height across the active layer and (b) the MRI is
maximally efficient, generating the strongest possible field that
still allows the MRI to operate (i.e., still satisfies the constraint
β>βmin).

The same assumptions are made by Mohanty et al. (2013)
and Bai (2011). A roughly constant B across the active layer is
expected from MRI-driven turbulent mixing (Bai 2011, and
references therein), justifying condition (a). Condition (b)

encapsulates the notion that (in the absence of any other
mechanism) the MRI turbulence will continue to amplify the
field up to some maximum value Bmax corresponding to βmin,
beyond which the MRI is quenched (i.e., the instability is self-
regulated). Our implementation of this condition to derive
equilibrium disk solutions is described in Section 5.
Finally, we note that numerical simulations of the MRI by

Sano et al. (2004) indicate that the total rms field strength B and
its vertical component Bz are related by B2∼25Bz

2, a condition
we adopt. Thus, though our Ohmic MRI condition is defined in
terms of v z Bz

2µ while the ambipolar condition is in terms of
PB∝B2, one need specify only B or Bz, not both
independently.

4.2. Thermal Ionization and Recombination

In the hot inner regions of the disk, ionization is dominated
by thermal collisions, with the equilibrium level of thermal
ionization of an atomic species a given by the Saha equation:

n n

n

g g

g k T

1
exp . 12e a

a e

e a

a

a

B

,

0,
3

,

0,


l

=
-+ + ⎛

⎝⎜
⎞
⎠⎟ ( )

Here ne is the number density of free electrons, and n0,a and
n+,a are the number densities of neutral atoms and singly
ionized ions, respectively, of species a; h m k T2e e B

2l pº ( )
is the thermal de Broglie wavelength of electrons of mass me;
ge (=2), g0,a, and g+,a are the degeneracy of states for free
electrons, neutrals, and ions, respectively; and a is the
ionization energy.
We note the following simplifications when only one, singly

ionized species (e.g., an alkali metal; see below) participates in
ionization/recombination. In this case, charge conservation
requires ne=n+,a and n0,a=na−ne (where na is the total
number density of species a). Since molecular hydrogen, with
number density nH2, forms the vast bulk of the gas, we adopt
the standard expressions for fractional ionization, xe≡ne/nH2,
and the abundance of species a, xa≡na/nH2. Writing the
entire right-hand side of the Saha equation above as Ta ( ), a
little algebra then yields x x n1 1 4e a aH2 = -  +[ ( ) ]

n2 aH2 [ ( )]. This leads to two limiting physical solutions: when
n 0H2  (more precisely, when x n4 1a aH2  ( ) ), we get
xe≈xa, and when nH2  ¥ (more precisely, when
x n4 1a aH2  ( ) ), we get x x ne a a H2» . Also note that,
without any ionization of hydrogen itself, and with hydrogen
being the most abundant species by far, we have nH2≈nn
(number density of neutrals) ≈ ntot (total number density of
particles). We use these results later.
In order of decreasing ionization potential a , the important

elements in the inner disk are He, H, Mg, Na, and K (Keith &
Wardle 2014). The exponential in the Saha equation ensures
the on/off behavior of thermal ionization, wherein most of the
atoms of a species a become ionized over a narrow range of
temperatures around the ionization temperature T ka a Bº .
Thus, since we expect the disk temperature to generally
decrease radially outward and we are concerned with the outer
edge of the active zone, we only consider potassium (K) here,
which has the smallest a and is thus ionized farthest out. Our
adopted quantities for K are listed in Table 1; in this pilot study,
we neglect its depletion into grains.
With a chemical network comprising collisional ionization/

recombination of just one singly ionized element, the
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recombination rate is simply dn dt k n n k ne ei e a ei e,
2= =+ ,

where k T3 10ei
11= ´ - cm3 s−1 (Ilgner & Nelson 2014) is

the rate coefficient for electron–ion collisions and the second
equality follows from charge conservation. The recombination
timescale is then (e.g., Bai 2011)

t
n

dn dt k n

1
. 13e

e ei e
rcb ~ = ( )

We will compare this timescale to the dynamical time tdyn to
verify whether our equilibrium solutions are in the strongly
coupled limit described in Appendix A.

4.3. Resistivities

Armed with the equilibrium abundances of electrons, ions,
and neutrals computed via the Saha equation, we derive the
resistivities in the disk and thus examine where the disk is MRI
active by the criteria of Section 4.1 (for a field strength B given
by the considerations of Section 4.1.1). We follow Wardle
(2007) in writing the Ohmic, Hall, and Pederson conductivities
(σO, σH, and σP respectively) as
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where the summation is over all charged species j (in our case,
j= e for electrons and i for singly charged ions of K), with
particle mass mj, number density nj, and charge Zje (with
Zj=±1 for us). The Hall parameter βj (not to be confused
with the plasma β parameter) is the ratio of the gyrofrequency
of a charged particle of species j to its collision frequency with
neutrals (of mean particle mass mn=μmH and density ρn):

Z eB
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b
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Here v m mj j j ng s= á ñ +( ) is the drag coefficient and v jsá ñ the
rate coefficient for collisional momentum transfer between
charged species j and neutrals, making γjρn the collision
frequency with neutrals. Note that βi=βe (since mi?me).

The resistivities may then be written as
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where H P
2 2s s sº +^ is the total conductivity perpendicular

to the magnetic field.
If electrons and ions are the only charged species (which is

the case for us, without grains), then the above equations imply
(1) ηH=βe ηO and ηA=βiβeηO; (2) consequently, while ηO is
independent of the magnetic field strength B, ηH and ηA scale
linearly and quadratically, respectively, with B; and (3) the

ambipolar Elsässer number in Equation (9), Am v A
2
 hº W,

reduces to (using βi = βe) Am≈γiρi/Ω. The three diffusion
regimes then correspond to (e.g., Wardle 2007) βi=βe = 1
(Ohmic: neither electrons nor ions are tied to the field, being
coupled instead to the neutrals through frequent collisions),
βi=1=βe (Hall: electrons are tied to the field while ions are
not), and 1=βi=βe (ambipolar: both electrons and ions are
tied to the field, and drift together through the sea of neutrals).
To compute the resitivities, we use the rate coefficients from

Wardle & Ng (1999):
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where Te is the electron temperature, assumed here to equal the
disk gas temperature given by Equation (4).

5. Calculation of ā

Finally, we must connect the MRI formulation of accretion
to the α-disk model. In particular, we must specify how to
calculate the effective viscosity parameter ā, defined by
Equations (1) and (2), that goes into the Shakura–Sunyaev
disk model. The derivation is supplied in Appendix B; we only
state the main results here. At any radius in the disk, we expect
a vertically layered structure: in the hot innermost disk close to
the star, we expect an MRI-active zone straddling the midplane,
bounded by a zombie zone close to the disk upper and lower
surfaces; farther out, where the disk is cooler, we expect a dead
zone straddling the midplane, a zombie zone close to the disk
upper and lower surfaces, and an MRI-active zone sandwiched
between the two.4 For a vertically isothermal disk (as assumed
here), ā at any radius is then given in general by

N

N
, 23i i i

tot

å
a

a
=¯

( ¯ )
( )

Table 1
Adopted Parameters for Potassium

Aa xK
a,b

K a g+,K/g0,K
c

(amu) (eV)

39.10 1.97 10−7 4.34 1/2

Notes.
a Atomic mass (A), abundance (xK ≡ nK/nH2), and ionization potential ( K )
from Keith & Wardle (2014).
b Keith & Wardle (2014) cite the abundance of K relative to H atoms as
9.87×10−8; our value is relative to H molecules and thus double their value.
c Rouse (1961) cites g+/g0=1/2 for the alkali metal sodium; we adopt the
same value for the alkali potassium.

4 Such a layered disk model was first put forward by Gammie (1996) and has
since been recovered in various semianalytic studies invoking both Ohmic and
ambipolar diffusion and based on local shearing-box MHD simulations (e.g.,
Bai 2011; Dzyurkevich et al. 2013; Mohanty et al. 2013), as well as by global
stratified 3D simulations invoking only Ohmic dissipation (Dzyurkevich
et al. 2010). (Although all these studies concern larger radii in the disk where
the ionization is primarily due to stellar irradiation, e.g., X-rays, instead of
being thermally driven as in this paper, the basic physics for active MRI
remains the same as outlined in Section 4.1.) As noted in Section 2, such a
model becomes invalid if, in the presence of both Ohmic and ambipolar
diffusion and a net vertical field, the MRI is shut off, angular momentum
transport is driven by winds, and the entire vertical extent of the disk becomes
laminar instead; our models in this paper do not speak to the latter situation.
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where the summation is over i=MRI (active zone), DZ (dead
zone), and ZZ (zombie zone). Here Ni is the one-sided column
density of the ith zone, N Ni itot = å is the total one-sided
column density of the disk at that radius (i.e., from the surface
to the midplane), and iā is the effective viscosity parameter
within the ith zone (see below). Thus, for a vertically
isothermal disk, ā at any radius is the column-weighted mean
of the active, dead, and zombie effective viscosity parameters.

The different iā ( MRIā , DZā , and ZZā ) are specified as
follows. Within the MRI-active zone, we have (see
Appendix B)

2

3

1

2
, 24MRIa

b
=

á ñ

⎛
⎝⎜

⎞
⎠⎟¯ ( )

where P Pgas Bbá ñ = á ñ is the plasma-beta parameter averaged
over the thickness of the active layer (note that we assume that
B and hence PB are vertically constant, so the averaging is only
over Pgas). In the dead and zombie zones, where the MRI is
quenched, various hydrodynamical processes can still produce
residual (non-MRI) stresses; numerical simulations of these
suggest an associated effective α in the approximate range
∼10−5 to 10−3 (e.g., Dzyurkevich et al. 2010, 2013, and
references therein; Malygin et al. 2017, and references therein).
Additionally, without carrying out detailed hydrodynamic
simulations, we have no concrete way of judging how the
effective α in the dead and zombie zones might differ. For
simplicity, therefore, we assume that the effective viscosity
parameter in the dead and zombie zones is the same (i.e.,

DZ ZZa a=¯ ¯ ) and find equilibrium solutions for the disk
structure for three different fiducial values of DZā spanning
the range implied by the numerical solutions:

10 or 10 or 10 . 25DZ ZZ
5 4 3a a= = - - -¯ ( ¯ ) ( )

Importantly, note that DZā also sets a minimum value (“floor”)
on MRIā : when our calculations imply that a region is formally
“MRI-active” (i.e., satisfies Equations (10) and (11)), but
nevertheless has MRIā less than our adopted DZā , we expect
that the residual hydrodynamic stresses there will dominate
over the MRI stress. We therefore declare such a region to be
dead by fiat and assign it an effective viscosity parameter equal
to DZā .

6. Accretion Rates

Within a given disk zone (MRI active, dead, or zombie), the
local accretion rate (positive inward) at any radius is
M r r T dz r2 2i h r i

1 2
2 ,

i
òp= - W ¶ ¶f

-˙ ( ) [ ]/ , where 2hi is the
thickness of the ith zone (summed over both sides of the
midplane) and Trf,i the particular shear stress operating in that
zone. For a vertically isothermal disk, this reduces to (see
Appendix B)

M
m

r r
r c N

12
, 26i s i i

H 2 2p m
a=

W
¶
¶

˙ ( ¯ ) ( )

where i=MRI, DZ, or ZZ; Ni is the one-sided column density
of the ith zone; and the values of the various iā are specified in
the previous section.

Similarly, the total accretion rate at any radius, i.e., the local
sum of the rates through the different vertical layers, is

M M r r T dz r2 2i i r
1 2òpº å = - W ¶ ¶f

-
-¥

+¥˙ ˙ ( ) [ ]/ . Now, in a
real disk, the chemistry and ionization, and hence the thickness
(column) of any zone and the field strength, will generally vary
with radius, and there is no physically compelling reason to
expect the accretion rate through any given zone (Equation (26)
above) to be radially or temporally constant. In steady state,
however, the total accretion rate must by definition be a
constant in both time and radius (to prevent temporal changes
in the local surface density). Imposing this condition on our
solutions, the total accretion rate becomes (see Appendix B)

M
c

f

3
, 27s

r

2p a
=

S
W

˙ ¯ ( )

the standard expression for a constant accretion rate in a
vertically isothermal α-disk. ā here is given by Equation (23),
Σ (=2μmH Ntot) is the total surface density summed over both
sides of the midplane, and f R r1r inº -( ). As an aside,
note that it is the combination f Mr

˙ that appears in the disk
structure equations (Section 3), which is independent of Rin by
Equation (27).

7. Method for Determining the Equilibrium Solution

At a given disk radius around a fixed stellar mass, specified
input values of the accretion rate and mean viscosity parameter
(Min˙ and inā ) determine the pressure, temperature, and density
via the disk structure Equations (3)–(7). The latter quantities,
combined with the Saha Equation (12), set the fractional
ionization. The disk structure and ionization, together with a
specified field strength B, then determine the resistivities (via
Equations (14)–(22)) and hence the extent of the active layer
via the MRI conditions (10)–(11). This in turn yields the output
mean viscosity parameter and accretion rate ( outā and Mout˙ )
implied by the MRI (Equations (23)–(25) and (27)). We find
self-consistent equilibrium solutions (Mout˙ = Min˙ and outā =

inā ) through a grid-based technique, as follows.
For a specified stellar mass M* and disk radius r and a

desired disk accretion rate Min˙ , we determine the disk structure
and ionization for a range of input ā: in DZa a=¯ [ ¯ , 1], spanning
the gamut of plausible values given the assumed DZā in the
dead zone. For each of these disk structures, we then derive the
height of the active layer, and thus the MRI-implied Mout˙ and

outā , for a range of field strengths: B=[10−5, 103]G, which
covers the plausible range in stellar accretion disks. A self-
consistent disk structure solution is then one for which Mout˙ =
Min˙ and outā = inā .
How exactly such a solution is determined is illustrated in

Figure 1 for a fiducial case: M 1* = Me, M 10in
9= -˙ Me yr−1,

10DZ
4a = -¯ , at radius r=0.02 au. The x- and y-axes show inā

and outā , respectively, while the overplotted grayscale contour
map shows the magnetic field strength B (with the white curves
marking contours of constant B). The overlaid solid black
contours are the output accretion rate Mout˙ .
We see that, along the locus of equilibrium solutions (solid

blue line, along which outā = inā and Mout˙ = Min˙ ), increasing ā
corresponds to increasing field strength B (this is easily seen by
noticing that contours of constant Ṁ are steeper than the
contours of constant B, so B changes—increases—as one
marches up the blue solution locus with Ṁ constant). In other
words, for any given ā, there exists a field strength B that yields
an equilibrium solution with the desired Ṁ , up to some upper
limit in ā (corresponding to an upper limit in B). How do we
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choose a unique solution from among these infinite possibi-
lities? We do so by invoking our assumption (see Section 4.1.1)
that the MRI is maximally efficient, generating the strongest
possible field that still allows the MRI to operate. Thus, we
choose the maximum B, and thus the maximum ā (marked by a
dashed vertical line), for which an equilibrium solution exists.

For a given M* and Ṁ , we repeat the above calculations for
a range of radii r, to determine ā as a function of radius. Our
calculations begin at a disk inner edge of Rin=R*. We
continue working outward in radius until our derived
equilibrium solution for ā falls to the assumed floor value

DZā . Beyond this radius, there is no active zone any more in
our model, and we simply assume a constant DZa a=¯ ¯ .

8. Results

We first present a detailed discussion of our solution for the
fiducial case (M* = 1Me, Ṁ=10−9Me yr−1, 10DZ

4a = -¯ ) in
Section 8.2: the disk structure and location of the pressure
maximum (Sections 8.1.1–8.1.4), behavior of the accretion
flow in different layers (Section 8.1.5), the appearance of a
viscous instability (Section 8.1.6), and the validity of various
assumptions (Sections 8.1.7–8.1.8). We then briefly discuss the
solutions arising from variations in our fiducial parameters
(αDZ, Ṁ , and M*), pointing out any salient differences along
the way (Section 8.3–8.4). Piecewise polynomial fits to our ā
and B results as a function of radius are provided in
Appendix C for all cases.

8.1. Fiducial Model: M*=1 M e, Ṁ =10−9 M e yr−1,
āDZ=10−4

For this M*=1Me case, the stellar radius and effective
temperature are R*=2.33 R and Teff=4350K, respectively
(using the evolutionary models of Baraffe et al. [1998],5 for a

fiducial age of 1Myr). In this and all following solutions, the
disk inner radius is situated at the stellar surface (i.e.,
Rin=R*), and our MRI calculations stop at the radius where
the effective viscosity parameter ā falls to the floor value DZā
(i.e., where the pressure maximum forms). Beyond this radius,
the disk structure is calculated assuming that the viscosity
parameter remains constant at DZa a=¯ ¯ .

8.1.1. Dominant Resistivities

Figure 2 shows the relative importance of the three
resistivities—ηO, Hh∣ ∣, and ηA—as a function of location in
the inner disk. Ambipolar diffusion dominates over Hall and
Ohmic in the surface layers, while Hall resistivity dominates
everywhere else at these radii. Ohmic resistivity is not
dominant anywhere, though it is larger than ambipolar closer
to the midplane at radii 0.09 au. This distribution of
resistivities is also depicted more quantitatively in Figure 3,
where we plot ηO, Hh∣ ∣, and ηA as functions of scale height at
various radii.
The physics underlying the above behavior can be extracted

from Figure 4, where we plot the fractional ionization
(xe≡ne/nH2) and number density of neutral molecular
hydrogen (nH2) as functions of scale height at different radii.
Recall that nH2≈nn (number density of neutrals) ≈ ntot (total
number density), given the overwhelming relative abundance
of hydrogen and the very low ionization fractions in general
(since potassium, with total abundance xK≡nK/nH2∼2×
10−7, is the only ionized species here). Combining this with
our results from Section 4.2 for one singly ionized species, we
get x n n T ne e n nK» µ ( ) when nn is sufficiently high
(with the subscript “K” on  denoting the specific case of

Figure 1. Output values Mout˙ (solid black lines) and outā (y-axis) corresponding
to input values for inā (x-axis) and magnetic field strength B (gray scale with
white contours), for fixed stellar and disk parameters M*=1 Me, Min˙ =
10−9 Me yr−1, 10DZ

4a = -¯ , and radius r=0.02 au. The solid blue line
indicates the locus of all solutions inā = outā ; note that this line also overlies
the required accretion rate for a self-consistent solution: Mout˙ = Min˙ =
10−9 Me yr−1. The intersection of the vertical dashed line with the blue line
marks the position of the final adopted equilibrium solution, corresponding to
the largest value of B that still allows the MRI to operate (there are no solutions
with active MRI beyond this B, which is why this solution lies at the edge of
the map). Figure 2. Relative importance of the Ohmic (ηO), Hall ( Hh∣ ∣), and ambipolar

(ηA) resistivities as a function of location in the inner disk, for our fiducial disk
model. The top panel shows vertical location in units of actual height above the
midplane; the bottom panel shows vertical location in units of column density
measured from the disk surface. The dashed line in both panels indicates one
pressure scale height. Note that there is no region where Ohmic resistivity
dominates over both Hall and ambipolar resistivities. See Section 8.1.1.

5 Specifically, the iso.3 models with mixing length=1.9× pressure scale
height, as required to fit the Sun.
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potassium). For the same conditions, and combining the latter
relationship with results from Section 4.3, we also have

x n T1O e n Kh µ µ ( ) , B x n B T nH e n nKh µ µ∣ ∣ ( ) ( ) ,

and B x n B T nA e n n
2 2 2

K
3h µ µ( ) ( )/ / . Thus, at any fixed

radius in Figure 4 (with TK ( ) constant since vertically
isothermal), the ionization fraction xe increases rapidly above a
scale height zH as hydrostatic equilibrium causes ntot∼nH2

∼nn to drop, with all the potassium ionized (x xe K as
n 0;H2  see Section 4.2) by a few×zH. Consequently, at a
given radius in Figure 3, ηO decreases with height above ∼zH,
while Hh∣ ∣ increases with height and ηA increases even faster
(note that the field strength B is vertically constant at fixed
radius in our calculations).

In summary, though a large fraction of the alkali atoms are
ionized near the disk surface, the total density here is too low to
collisionally couple either ions or electrons to the bulk fluid of
neutrals, and hence ambipolar diffusion dominates; closer to
the midplane, the density increases sufficiently to tie ions (but
not electrons) to the neutrals, making Hall resistivity dominant,
but the density is still too low for Ohmic resistivity to compete
with either Hall or ambipolar diffusion. Beyond ∼0.09 au, the
rising density and falling temperature are sufficient (combined
with a declining B; see Section 8.1.2 below) for Ohmic
resistivity to exceed ambipolar diffusion near the midplane, but
still not enough to allow Ohmic resistivity to exceed Hall
diffusion here.

8.1.2. Active, Dead, and Zombie Zones

Figure 5 shows our derived locations of the MRI-active
zone, the dead zone (where Ohmic resistivity shuts off the
MRI: Λ<1) and the zombie zone (where ambipolar diffusion
cuts off the MRI: β<βmin). We emphasize that the effects of
Hall resistivity on the MRI are not accounted for here: we only
consider the effects of Ohmic and ambipolar diffusion, even in
regions where Hh∣ ∣ dominates over ηO and ηA. Nevertheless, we
also overplot the Hall zone, where the Hall Elsässer number

χ<1: this is where the Hall influence on the MRI is
significant (see further below), and should be accounted for in
future work. Figure 6 shows the associated field strength B as a
function of radius, while Figure 7 shows the midplane radial
behavior of the ionization fraction, plasma β parameter, and
Ohmic Elsässer number.
We see from Figure 5 that, from the inner edge of the disk

to ∼0.05 au, the active zone extends from the midplane up to
a roughly constant fraction of the scale height, bounded above
by a zombie zone, while from 0.05 to 0.09 au the active zone
narrows considerably, with the zombie zone pushing down
increasingly toward the midplane. At 0.09 au, a dead zone
rises up sharply from the midplane; from here on, the active
zone is confined to a very thin and continuously narrowing
layer sandwiched between the zombie zone above and dead
zone below, until the MRI is completely choked off at
∼0.25 au, at which point our calculations stop (beyond this
radius, we assume a constant DZa a=¯ ¯ , leading to the
formation of a pressure maximum at this radius; see following
sections).
These trends in the active, dead, and zombie zones can be

understood as follows. At a fixed height (in scale height units),
ηO increases while the field strength B declines, going radially
outward from the inner edge to ∼0.05 au (Figures 3 and 6). The
combined effect is to decrease the Ohmic Elsässer number Λ;
however, it still remains high enough to allow the active zone
to straddle the midplane (e.g., see midplane Λ in Figure 7,
bottom panel). The weakening of the field over this radial span
instead serves to keep the plasma β sufficiently large,
β>βmin, so that ambipolar diffusion does not cut off the
MRI too close to the midplane and drive Ṁ below the desired
steady-state value (e.g., see midplane β and βmin in Figure 7,
middle panel). By 0.05 au, however, the midplane Λ has fallen
to unity (Figure 7). Now the field B has two choices: either
continue to weaken, making Λ<1 at the midplane (i.e.,
creating a dead zone there) and thus driving the active zone
upward, or strengthen instead, thereby keeping the MRI alive

Figure 3. Ambipolar (ηA), Ohmic (ηO), and Hall ( Hh∣ ∣) resistivities as a function of height above the midplane (in units of the local scale height zH), at various radii for
our fiducial disk model. See Section 8.1.1.
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around the midplane, but suppressing β and thus allowing the
zombie zone to descend toward the midplane. Since we assume
that the MRI is maximally efficient, i.e., generates the strongest
possible field that still allows the MRI to survive, it is the latter
solution that is chosen (Figure 6), yielding the observed active

and zombie zone shapes in Figure 5 over 0.05–0.09 au. The
quantitative increase in B here (and thus change in ā and hence
in surface density Σ; see following sections) is such that the Ṁ
(by Equation (27)) remains at the required value.
By 0.09 au, however, the zombie zone has descended all the

way to the midplane (i.e., β=βmin at the midplane; Figure 7).
Now the field has no choice but to weaken again (Figure 6), in
order to maintain any active zone at all. As B decreases, a dead
zone develops at the midplane, the zombie zone lower
boundary is impelled upward, and a thin active layer forms
between the dead and zombie regions (Figure 5). This situation
cannot continue indefinitely, though, since the dead zone upper
boundary keeps rising with radius (as ηO continues to grow;
Figure 3). Finally, at ∼0.25 au, the MRI-active zone is
squeezed shut completely, as the upper edge of the dead zone
meets the lower edge of the zombie zone. No further changes in
B can alter this, since the dead region would expand upward for
smaller B, and the zombie region would expand downward for
larger B. Thus, this is the radius where the effective viscosity
parameter ā falls to its minimum value DZā (since the disk is

Figure 4. Fractional ionization (ne/nH2) and molecular hydrogen density (nH2) as a function of height above the midplane (in units of the local scale height zH), at
various radii for our fiducial disk model. See Section 8.1.1.

Figure 5. Various MRI zones in our fiducial disk model as a function of disk
location. The top panel shows vertical location in units of height above
midplane; the bottom panel shows it in units of column density. The dashed
line indicates the disk scale height. Orange denotes the MRI-active zone (i.e.,
where ΛO>1 and β>βmin), brown denotes the dead zone (where ΛO<1);
yellow denotes the zombie zone (where β<βmin), and the gray hashed region
denotes the Hall zone (where χ<1). Note that, beyond 0.09 au, the active
zone rises above the midplane and continues as a thin layer sandwiched
between the dead and zombie zones, until it is finally quenched totally at the
outer edge of our solution at ∼0.25 au. See Section 8.1.2.

Figure 6.Magnetic field strength B as a function of radius, for our fiducial disk
model. Filled circles are our model results, and the overplotted solid line is a
combined piecewise polynomial fit to these results. Note that the jump at
0.09 au is not a physical discontinuity, but a result of our finite-grid radial
sampling. See Section 8.1.2 and Table 1 in Appendix C for the polynomial fit
parameters.
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now fully MRI-dead vertically), and hence where the midplane
pressure maximum forms.

The above result raises an important point missed in most
earlier work: the midplane gas pressure does not reach its
maximum at the inner edge of the dead zone (i.e., at ∼0.09 au
in this example), but rather somewhat radially beyond this edge
(at ∼0.25 au here). In other words, the midplane gas pressure
achieves its maximum value within the dead zone. This is a
straightforward consequence of two facts: (1) the midplane
pressure in the Shakura–Sunyaev model is not a function of
simply the local midplane value of α, but rather its vertically
averaged value ā (see Equation (5) and discussion in
Section 3); and (2) the active zone does not abruptly come to
an end when a dead zone appears in the midplane, but instead
climbs above the dead zone and continues outward for some
distance, thereby pushing the location of minimum ā (and so
maximum midplane pressure; see Figures 8 and 9 further
below) beyond the DZIB. As such, pebbles drifting inward
along the midplane will become trapped within the dead zone
itself, where conditions are less turbulent than at the active/
dead zone interface farther in, with potentially important
implications for planet formation.

In the context of the location of the pressure maximum, we
now discuss the potential importance of some effects ignored in
our simplified treatment here.

Other Ionized Elements: We have only treated potassium
here, with the justification that—as the element with the lowest
ionization potential (4.34 eV) among the important species in
the inner disk (Section 4.2)—it remains ionized farthest out and
is thus most relevant to the location of the pressure maximum.

Nevertheless, other elements with slightly higher ionization
potentials may plausibly matter because their abundances are
much higher. To check this, we carried out calculations for our
fiducial model with sodium instead, which has an ionization
potential (5.14 eV) only slightly larger than potassium’s but is
∼16 times more abundant. We find (not plotted) that, while the
greater abundance of Na yields a significantly higher ionization
fraction in regions where our original simulations showed K to
already be highly ionized (in surface layers, and near the
midplane close to the disk inner edge), the pressure maximum
occurs slightly inward of its position with K; i.e., the latter is
still set by the difference in ionization potentials. As such,
while the precise shape of the active, dead, and zombie zones
will vary somewhat when other atomic species are included
with K, we do not expect the position of the pressure maximum
to shift substantially. Implementing more complex chemical

Figure 7. Various MRI related quantities in the midplane, plotted as a function
of radius, for our fiducial disk model. Top: fractional abundance of electrons,
expressed relative to both the number density of hydrogen molecules (ne/nH2;
left axis) and the number density of potassium nuclei (ne/nK; right axis).
Middle: plasma β parameter, minimum value βmin required for active MRI, and
ambipolar Elsässer number Am. Bottom: Ohmic Elsässer number Λ. See
Section 8.1.2.

Figure 8. Vertically averaged viscosity parameter ā, plotted as a function of
radius for our fiducial disk model. Filled circles represent our model results; the
overplotted solid line is a combined piecewise polynomial fit to these results.
Our MRI calculations end at ∼0.25 au, the radius at which ā falls to our
adopted floor value DZā =10−4. Beyond this radius we assume a constant

DZa a=¯ ¯ , as indicated by the dashed horizontal line. See Table 1 in
Appendix C for the polynomial fit parameters.

Figure 9. Various disk structure quantities plotted as a function of radius, for
our fiducial disk model. Top left: (vertically constant) temperature. Top right
and bottom left: midplane pressure and midplane density. Bottom right: surface
density. Solid lines represent our model calculations, which end at the radius
where ā falls to DZā . Beyond this radius we assume a constant DZa a=¯ ¯ ,
obtaining the results shown here by the dashed lines.
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networks (with additional atomic and molecular species and
grains) will be important for increasing the recombination rate
and ensuring that we are in the strongly coupled limit (see
Section 8.1.8 further below); we shall tackle this in an
upcoming paper.

Importance of Dust: Dust grains affect both the opacity of
the disk and the efficiency of the MRI. While our calculations
are dust-free—in the sense that grain effects on the MRI are
ignored—we have nonetheless assumed a constant opacity of
10 cm2 g−1, which is a reasonable value for the warm inner
regions of dusty protoplanetary disks (see Hu et al. 2017).
Concurrently, an a posteriori calculation of the opacities in our
disk solution, using detailed opacity tables including grains,
yields values very close to our assumed constant in all regions
of interest except very close to the disk inner edge (see
Section 8.1.7 further below). As such, grains are effectively
included in our opacities, and treating them more precisely via
opacity tables should not alter our results appreciably.

Inclusion of dust is very likely to be important for the MRI,
however. Grains can drastically suppress the MRI, by soaking
up electrons and thereby reducing the amount of negative
charge tied to the magnetic field (since all but the very smallest
grains [see below] are collisionally decoupled from the field
themselves; e.g., Perez-Becker & Chiang 2011a; Bai 2013;
Mohanty et al. 2013). Enhanced recombination on the charged
grain surfaces also removes positive charge from the gas,
further hampering the MRI. Lastly, MRI damping is exacer-
bated by the incorporation of the alkali atoms (which are the
primary charge suppliers) into grains and their adsorption onto
grain surfaces; we have currently ignored this effect, which can
deplete metal abundances by an order of magnitude or more
(e.g., Jenkins 2009; Keith & Wardle 2014). Concurrently, as
Figure 9 shows, the disk temperatures in our solution are well
below the dust sublimation temperature of ∼1500 K (at the
extant densities) at radii 0.05 au; as such, the pressure
maximum and the DZIB in our current solution sit squarely
within the radial range where dust is thermodynamically
allowed. Moreover, while the pressure maximum traps
relatively large grains (“pebbles”)—the whole reason for
invoking it for planet formation—smaller ones are increasingly
well coupled to the gas and can thus flow through the trap;
furthermore, it is these small grains that have the greatest
impact on the MRI (because of their large collective surface
area for electron adsorption). Therefore, we expect small grains
to exist in our solution space, damping the MRI to some extent
and moving both the DZIB and the pressure maximum radially
inward of our currently predicted locations.

The magnitude of this effect depends, on the one hand, on
the relative abundance of grains versus electrons. For dust
grains with number density nd and a fixed radius a, the grain
abundance xd≡nd/nH2 may be expressed as xd=(3Rμ
mH)/(4π ρgr a

3), where R is the dust-to-gas ratio by mass and
ρgr≈3g cm−3 is the density of a single grain. For a standard
ISM value of R=10−2, very small grains of size a=0.1μm
then imply xd≈3×10−12: ∼10–30 times smaller than the
ionization fraction xe∼few×10−11 to 10−10 that we infer
over most of the active zone (both close to the midplane, at
radii 0.05 au, and higher up, at ∼1zH–2zH, once a dead zone
forms in the midplane; see Figure 4). Such grains will therefore
put a significant dent in the number density of free electrons,
and thus affect the MRI activity, if the adsorbed negative

charge per grain is of order −10. Slightly smaller grains,
a=0.03μm, imply xd=10−10  xe and so will have a severe
impact on the MRI even with 1 electron adsorbed per grain
on average. Such grain sizes and charging are not unrealistic in
disks (e.g., Perez-Becker & Chiang 2011a). We note that this
calculation assumes that all the dust is sequestered in grains of
a single size; a more realistic grain size distribution will reduce
the effective dust-to-gas ratio in small grains and thus decrease
xd. This is plausibly a small correction, though, since the grain
number density is likely to be dominated by the smallest
particles (e.g., standard MRN distribution: na∝a−3.5; but see
Birnstiel et al. 2011).
Furthermore, we have compared grain abundances here to

the electron abundance derived assuming no depletion of
potassium in the gas phase. If a sizable fraction of K is
sequestered in dust instead (both by inclusion in molecules that
make up dust grains and by the adsorption of neutral K atoms
onto grains), then the xe due to thermal ionization will be much
smaller than we have inferred to start with, further reducing the
MRI (though this effect will be tempered somewhat by ion and
thermionic emissions, whereby neutral K collisions with grains
produce free K+ ions and/or electrons; see Desch & Turner
2015).
On the other hand, MRI damping by grains is mitigated to

the extent that they are tied to the field (and thus act like ions),
instead of being knocked off by collisions with neutrals. The
Hall parameter βj (Equation (17)) is a measure of the strength
of the field coupling for any species j; noting that grains are
much more massive than neutral gas particles, the relative
coupling strength for grains versus ions is thus igrb b =

Z v Z vi igr grs sá ñ á ñ(∣ ∣ ) (∣ ∣ ). The rate coefficient for ion–neutral
collisions v isá ñ is given in Equation (22), while that for grain-
neutral collisions is (Wardle & Ng 1999) v grsá ñ =

a k T m128 9B n n
2p p( ) ( ) cm3 s−1, where Tn is the neutral

temperature, which we assume equals the gas temperature T,
and Z 1i =∣ ∣ in our case. We thus get 4igrb b » ´

Z T a10 10 K 0.1 m4
gr

3 1 2 2m- - -∣ ∣( ) ( ) . Hence, at the T ∼1000–
2000 K in our disk solution (Figure 9), the 0.03–0.1 μm grains
considered above will be far more decoupled from the field
than the ions, even for grain charges Z 10gr ~∣ ∣ . We conclude
that the net effect of abundant very small grains will be to
significantly suppress the MRI and thus shift the pressure
maximum inward of where we currently find it to be.
Relevance of X-rays: Here we have only considered thermal

ionization and ignored photoionization by stellar X-rays. We
estimate the effect of the latter as follows. Igea & Glassgold
(1999, hereafter IG99) have calculated the ionization rate ζX,
due to X-rays with photon energies of a few keV and ignoring
grain effects, as a function of column density. They find that,
while ζX∝LX/r

2 (where LX is the stellar X-ray luminosity and
r the radial distance from the star), as expected, it is also
“universal,” in the sense that ζX plotted as a function of
(vertical) column density is independent of the precise density
structure of the disk. Moreover, in the absence of grains, the
ionization fraction is given simply by x n ke ieX H2z= ( ) ,
where kie is the recombination rate coefficient for ion–electron
recombinations for the relevant dominant ions (e.g., see
expressions for xe in various limiting cases derived by Perez-
Becker & Chiang 2011a). We use these facts to scale directly
from IG99ʼs results (correcting for the fact that they supply
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column densities in terms of hydrogen nuclei while we use
hydrogen molecules instead).

The column density in our active region close to the
midplane, at a mean radial distance r∼0.05 au, is NH2 ∼
3×1024 cm−2, while in the active region above the dead zone,
at a mean r∼0.1 au, it is NH2∼1025cm−2 (see Figure 5). At
the same active region locations, we also have xe ∼3×10−10

and 10−10, respectively, due to thermal ionization, and nH2

∼1014cm−3 (Figure 4). Concurrently, at 1 au, for LX=
1029erg s−1 and photon energies of 5 keV, IG99ʼs Figure 5
implies ζX∼3×10−17 s−1 and 3×10−18 s−1 at NH2∼
3×1024 cm−2 and 1025 cm−2, respectively (results for 3
and 8 keV photons are only marginally different). Assuming, as
IG99 do, that molecular ions, specifically HCO+, are dominant,
and thus using a dissociative recombination rate coefficient of
k eHCO , =+ 2.4×10−7/(T/300 K)0.69cm3 s−1 (Woodall et al.
2007; Perez-Becker & Chiang 2011a) and scaling to our radii
of interest, where T∼103K, we then find that X-ray
ionization implies xe∼3×10−11 in our active region at
0.05 au and xe∼5×10−12 in the active region at 0.1 au; these
are roughly an order of magnitude smaller than xe from thermal
ionization cited above. We note that Bai & Goodman (2009)
provide an analytic fit to IG99ʼs ζX curves; we get the same
results using their fitting formula.

However, while X-rays first produce molecular ions, charge
transfer to metals is so rapid that it is metal ions that constitute
the dominant ionic species, if the metal abundance is high (as it
is in our non-depleted grainless case;6 e.g., Fujii et al. 2011;
Keith & Wardle 2014). In that case, in the absence of grains, it
is the metal ion (M+)–electron recombination rate coefficient,
k T2.8 10 300 KeM ,

12 0.86= ´ -+ ( ) cm3 s−1 (see Section 4.2),
that must be used to calculate the X-ray-driven xe. At the
relevant temperatures T∼103 K, we see that k eM , »+

10 5- ×k eHCO ,+ (i.e., metal ions recombine vastly slower than
molecular ones); consequently, the xe due to X-rays in our
metal-abundant active regions will be more than 2 orders of
magnitude higher than inferred above using HCO+, comple-
tely swamping the xe from thermal ionization. Of course,
metals may be severely depleted when grains are present;
however, this will decrease the thermal ionization fraction too,
so we expect X-rays to remain highly competitive with thermal
ionization in activating the MRI in the inner disk.

Note, however, that once a dead zone forms in the midplane,
the midplane column density quickly exceeds that in the
overlying active zone by more than an order of magnitude
(Figure 5). IG99ʼs results then imply an X-ray-induced
midplane xe at least 3 orders of magnitude smaller than that
deduced from X-rays in the active zone, and much smaller than
the midplane xe from thermal ionization. As such, X-ray
ionization will not change our result that a dead zone
eventually forms in the midplane and the active zone climbs
up above it. However, by enhancing the ionization in the
overlying active zone, and thus increasing the effective
viscosity parameter ā, X-rays will alter the location of the
pressure maximum. These effects will be quantified in our
upcoming work including X-rays (Jankovic et al. 2018, in
preparation).

Finally, we point out that, in past work, X-ray ionization has
widely been stated to be unimportant in the inner disk, with
thermal ionization of alkali metals being the dominant process
instead. Why then do we find X-rays to be at least as important
as thermal collisions? The reason is that previous studies have
drawn their conclusions based on the assumption of a surface
density distribution that monotonically increases radially
inward (e.g., the MMSN; Igea & Glassgold 1999). In that
case, the surface density in the innermost regions is indeed too
high for X-rays to penetrate to any significant depth in the disk.
Here, however, we examine a posteriori the degree of X-ray
ionization in our steady-state disk solution,7 in which the
surface density Σ is considerably lower inward of the pressure
maximum (see Figure 9 further below). Such a turnover in the
radial Σ profile is in fact a generic feature of steady-state
models that invoke a radially changing α-viscosity to produce a
pressure maximum in the disk (because the higher viscosity
inward of the pressure maximum requires a lower Σ to drive a
given Ṁ , by Equation (27); e.g., see solutions by Kretke &
Lin 2007, 2010). The severely depressed surface density in the
inner disk then allows much greater X-ray penetration and
ionization. Therefore, if protoplanetary disks start with a
standard monotonic Σ(r) profile, we conjecture that they will
evolve as follows: initially, thermal ionization will dominate in
the inner disk, driving it toward the steady-state solution we
find, and thereby reducing the surface density in these regions;
once the Σ here falls sufficiently (i.e., column densities drop to
∼1025–1024 cm−2), X-ray ionization will begin to complement,
and perhaps overtake, the ionization due to thermal collisions,
enhancing the MRI and thus the effective α. As argued above,
we do not expect this to alter the qualitative features of our disk
solution, but we do expect the precise locations of the DZIB
and the pressure maximum to change from our current results.
Hall Effect: Here we have neglected the effects of Hall

resistivity on the MRI. This does not prevent us, though, from
calculating the Hall Elsässer number χ everywhere within our
solution disk. The results are shown in Figure 5, where the
cross-hatched region denotes the Hall zone, i.e., where χ<1,
and hence where the Hall effect is important. We see that the
Hall zone essentially overlaps with the Ohmic dead zone and
also extends into the overlying active zone at radii 0.15 au.
Thus, if the net vertical field is anti-aligned with the disk spin
axis, we do not expect our solution to change very much: in this
field configuration, the Hall effect damps magnetically driven
radial angular momentum transport, so the active zone will end
at (and the pressure maximum will thus be located at) ∼0.15 au
instead of ∼0.25 au, while the dead zone (where Ohmic
resistivity already quenches the MRI) will remain dead. If the
net vertical field is aligned with the spin axis, on the other hand,
the HSI can activate magnetically driven radial transport within
the entire dead zone.
This suggests an explanation for the fact that close-in

Earths/super-Earths are not seen around ∼50% of stars. In
general, one expects a net vertical background magnetic field
threading the disk, due to either the stellar field or an external
interstellar field. Moreover, one expects the alignment/anti-
alignment of this field to be random relative to the disk angular
momentum vector, with a roughly equal distribution of either
geometry. Thus, in roughly half the systems, alignment
between the field and disk spin axis should lead to the HSI

6 Note that it is the metal abundance, and not the ionization potential, that is
the controlling factor here (because the keV X-ray energies greatly exceed the
electron binding energies in the metals). As such, the relevant metal here is
magnesium (with attendant ions Mg+), and not potassium as in our thermal
ionization calculations, since Mg is far more abundant than K: xMg/xK≈
4×102 (e.g., Keith & Wardle 2014).

7 Where the solution has been derived using the standard assumption of
thermal ionization alone.
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activating the dead zone, which will remove the pressure
barrier and thus suppress the formation of close-in small
planets; in the other half of systems, anti-alignment will damp
the HSI, allow the pressure barrier to form, and thus promote
the formation of such planets.

We shall address this mechanism quantitatively in future
work; we only note here that our result—that χ<1 within the
Ohmic dead zone—is in qualitative agreement with that of Bai
(2017), who finds that the Hall effect is critical within the
classical Ohmic dead zone (albeit at much larger radii than in
our solutions).

8.1.3. rā( )

Figure 8 shows our solution for the vertically averaged
viscosity parameter ā as a function of radius. In the innermost
disk, ā saturates at ∼0.08 as the potassium becomes almost
entirely ionized (see top panel of Figure 7). It then falls
smoothly by nearly 3 orders of magnitude, reaching our
adopted floor value of 10DZ

4a = -¯ at ∼0.25 au. Beyond this
point, there is no MRI-active zone any more, and we assume a
constant DZa a=¯ ¯ (depicted by the dashed horizontal line in
Figure 8).

8.1.4. Disk Structure and Pressure Maximum

Figure 9 shows the (vertically isothermal) temperature,
midplane density, midplane pressure, and surface density as
functions of radius for our fiducial disk model. Beyond
∼0.25 au, where ā falls to DZā , we calculate these quantities
assuming a constant DZa a=¯ ¯ (as depicted by the dashed lines
in Figure 9).

The salient results are as follows: (a) There is a clear
maximum in the midplane gas pressure (and midplane gas
density) at ∼0.25 au, where ā reaches its floor value of DZā .
Note that this location is radially well beyond the DZIB, which
is located at ∼0.09 au; thus, the midplane pressure maximum is
situated within the dead zone, for the reasons discussed earlier.
(b) The surface density declines sharply inward of the pressure
maximum, falling by 2 orders of magnitude toward the disk
inner edge. This is a straightforward consequence of ā
increasing inward in this region coupled with a constant Ṁ ,
as discussed previously. (c) The temperature varies quite
slowly in the inner disk in this fiducial model, by less than a
factor of 2, and in particular remains lower than the dust
sublimation temperature of ∼1500 K except near the disk inner
edge. As such, small dust grains (which will be coupled to the
gas rather than being trapped in the pressure maximum) are
expected to have a significant effect on the MRI in this region,
which we examine in a subsequent paper.

8.1.5. Accretion Rates in Active, Dead, and Zombie Zones

The total inward accretion rate (which by definition is
radially constant in our steady-state solutions) is, at every
radius, the sum of the accretion rates within the individual
vertical layers of the disk (active, dead, and zombie). We
calculate these individual Ṁ using Equation (26); the results
are plotted in Figure 10. We see that the inward Ṁ through the
active layer is practically the sole contributor to the total from
the innermost radii out to ∼0.09 au, where the dead zone in the
midplane first develops; the Ṁ through the overlying zombie

zone (due to non-MRI torques) steadily increases over this
radial span but is negligible compared to the active zone value.
Once the Ohmic dead zone forms, the inward accretion through
it (again, due to non-MRI torques) rapidly increases (as the
thickness of this layer grows), while the Ṁ in the active and
zombie zones correspondingly decrease. Indeed, beyond
∼0.15 au, the inward Ṁ in the dead zone exceeds the total
value; this is compensated for by decretion (outward flow of
mass) in the active and zombie zones, which ensures that the
total inward accretion rate remains constant at the desired value
(10−9Me yr−1 here).
A little reflection shows that in a nontrivial and nonpatho-

logical disk, i.e., one in which the disk properties vary radially
in a physically plausible manner, such inconstancy of the
accretion rates within the individual layers is unavoidable if the
total Ṁ is to remain fixed: if we demand that the total value be
invariant, then we do not have any separate justifiable knobs to
turn to ensure that the individual contributing rates remain
constant as well.
Does this phenomenon represent a growing instability?

Certainly the buildup of mass at some locations, and excavation
at others, that the radially varying accretion rates will generate in
the individual layers will tend to drive the disk away
from our equilibrium solution. However, these changes in
the vertical density profile will occur over a local viscous
timescale, given by t rvisc

2 n~ ¯ (where n̄ is the vertically
averaged local viscosity). By Equations (1) and (2) cs

2n a= W¯ ¯ in

Figure 10. Accretion rates through the active zone (filled black circles), zombie
zone (filled gray circles), and dead zone (open circles) for our fiducial model.
The solid black line represents the sum of the three rates (i.e., the total accretion
rate through the disk, held fixed at Ṁ =10−9 Me yr−1 in this model). The top
panel shows inward (positive) accretion rates, and the bottom panel shows
outward (negative) rates. A few small anomalies—the minor jitter in the active
zone (and thus total) rate around 0.04 au, and the anomalously large first two
points in the dead zone accretion rate, at 0.09 au—result from our finite grid
resolution at locations where the disk resistivities undergo sharp changes (we
have left them in to show the limits of our precision). See Section 8.1.5.
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our vertically isothermal disk, so t z rHvisc
1 2 1a~ W ~- - -¯ ( )

z r tH
1 2

dyna- -¯ ( ) , where tdyn∼1/Ω is the dynamical timescale.
Simultaneously, the disk will tend to relax back to a hydrostatic
equilibrium vertical profile (which is assumed in our solution) on a
timescale given by tH∼zH/cs∼1/Ω∼tdyn. Note that the
instantaneous perturbations in the vertical density profile here do
not represent a change in the total surface density Σ at any
location: the latter remains constant (by Equation (27), since the
total Ṁ is fixed at our steady-state value), i.e., the density
perturbations sum to zero vertically. Thus, the disk will tend to
relax to the same hydrostatic equilibrium vertical profile as in our
solution. Now, in a normal thin disk, the disk aspect ratio zH/r =
1, so for a standard 1a <¯ , we have tvisc ? tdyn. Figure 11
demonstrates this explicitly for our disk: we see that tvisc is orders
of magnitude larger than tdyn over our radii of interest.
Consequently, we expect the density perturbations introduced by
the variable accretion rates to be vertically smoothed out, and
hydrostatic equilibrium re-established, much more rapidly than
these perturbations can grow; our steady-state solution will then
remain valid in a (dynamical) time-averaged sense.

8.1.6. Viscous Instability

In our steady-state solutions, the surface density Σ and hence
the accretion rate are temporally constant. Perturbations in Σ,
however, may lead to a viscous instability as follows (see
Pringle 1981). The general evolution equation for the disk
surface density is

t r r
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where j is the specific angular momentum at any disk location,
and n̄ is again the vertically averaged viscosity. For the specific
case of a Keplerian disk, we have GM r3

*W = and j=r2Ω,
and the above reduces to
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Changes in Σ will occur on a viscous timescale. We have
already noted that vertical hydrostatic equilibrium is estab-
lished over a timescale tdyn = tvisc. Similarly, the disk will
relax to thermal equilibrium over a time given by the ratio of
the thermal energy content per unit area to the rate of viscous
heating (=rate of cooling in equilibrium) per unit area:
t P z c tH sth gas

2 2 2 1
dynn n a~ S W ~ W ~ -( ) ( ¯ ) ( ¯ ) ¯ . Thus, for

1a <¯ , we have tdyn<tth=tvisc (as Figure 11 explicitly
shows for our disk), and we expect the disk to be in both
thermal and hydrostatic equilibrium over the timescales on
which Σ varies. In this situation, the mean viscosity at a fixed
radius will depend only on the local surface density, i.e.,

r,n n= S¯ ¯ ( ), and Equation (29) is a nonlinear diffusion
equation for Σ. For steady-state solutions, the left-hand side of
Equation (29) is zero; we wish to investigate the effect of a
small perturbation about any such equilibrium solution Σ0.
Define x nº S¯ . Then any small variation in the surface
density, 0 0 dS  S + S, implies a variation x x x0 0 d + ,
with x xd d= ¶ ¶S S( ) . Inserting the perturbed value of Σ into

Equation (29) then gives the time evolution equation for the
perturbation δx:
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This linear diffusion equation for δ x is well behaved if and
only if the diffusion constant ∂x/∂Σ is positive; instability
results otherwise. Hence, using cs

2n a= W¯ ¯ in our disk to
evaluate the diffusion constant, we arrive at the viscous
instability condition:
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A negative diffusion constant implies that surface density
inhomogeneities will be amplified: overdense regions will grow
denser, while underdense ones will become even more rarefied. In
other words, an axisymmetric disk will tend to break up into rings.
To investigate whether our inner disk is viscously unstable,

we proceed as follows. We assume that, given a local
perturbation in surface density Σ, the local disk parameters (ā,
cs, x, Ṁ ) tend toward their steady-state values corresponding to
the perturbed value of Σ. This allows us to evaluate the
instability criterion by comparing the different equilibrium
solutions we have calculated. We also find it useful to change
variables from x to Ṁ , in order to connect to our steady-state
solutions for different values of Ṁ .
In general, t r M r2 1p¶S ¶ = ¶ ¶-( ) ˙ . For steady state,

Ṁ must be radially constant; in this case, combining the latter
expression with Equation (29) yields the equilibrium solution
M f3 r0 p n= S˙ ¯ (equivalent to Equation (27) with our
definition of n̄). Thus, M x0 0µ˙ (with the constant of
proportionality independent of Σ), and the instability condition
∂x/∂Σ<0 may be expressed as M 0¶ ¶S <˙ , or equivalently
as M 0¶S ¶ <˙ . Evaluating the latter expression, we can write
the instability criterion as
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In Figure 12, we plot the steady-state Σ solution as a
function of radius, for various Ṁ spanning±0.3 dex around
our fiducial value of 10−9Me yr−1. We immediately see that, at

Figure 11. Viscous, thermal, and dynamical (orbital) timescales as a function
of radius for our fiducial disk model. See Sections 8.1.5 and 8.1.6.
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any fixed radius beyond ∼0.035 au, Σ increases as
Ṁ decreases, i.e., M 0¶S ¶ <˙ . Thus, most of the disk is
viscously unstable. This is shown more explicitly in Figure 13,
where we plot M¶S ¶ ˙ (calculated by deriving the steady-state
Σ for Ṁ =10−9Me yr−1 ± 1%) against radius; the quantity is
negative over all but the innermost disk regions. By
Equation (32), the instability criterion may also be expressed
as a condition on the summed change in ā and cs

2 as a function
of the change in Ṁ . In Figure 14, we plot each of these two
terms separately. It is apparent that the instability is caused
primarily by the large change in ā with Ṁ , with the change in
sound speed making only a minor contribution. We shall see
explicitly how ā changes with accretion rate in Section 8.3.

8.1.7. Opacity

In this work, we have assumed a constant opacity of
10 cm2 g−1 throughout our calculation domain. Given the

pressure and temperature structure derived thereby for our
solution disk, we check the validity of this assumption
a posteriori, by using the detailed tables of Zhu et al. (2012)
to compute the opacities predicted as a function of pressure and
temperature.
The results are plotted in Figure 15. We see that the predicted

opacity over the bulk of our disk solution is 5–10 cm2 g−1

(primarily due to grains; see below), very close to our assumed
value. The only exception is the innermost disk, at 0.03 au,
where the expected opacities are 1–2 orders of magnitude lower
(as grains disappear). However, this small inner region is not
consequential to our results at larger radii, e.g., regarding the

Figure 12. Steady-state solutions for the surface density Σ as a function of
radius, for model parameters M*=1 Me, 10DZ

4a = -¯ , and varying accretion
rates Ṁ =10−9.3

–10−8.7 Me yr−1 in steps of 0.1 dex. Over most of the disk
(except the innermost regions), the surface density increases with decreasing
accretion rate. See Section 8.1.6.

Figure 14. Mln lna¶ ¶( ¯ ) ( ˙ ) (top) and c M2 ln lns¶ ¶( ) ( ˙ ) (bottom) as a
function of radius, for our fiducial disk model. See Section 8.1.6.

Figure 15. Rosseland mean opacity (in cm2 g−1) calculated a posteriori for our
fiducial disk model, plotted as a function of disk location (with height in units
of vertical column). The dashed curve denotes one pressure scale height. Over
most of our region of interest in the disk, the derived opacity is within a factor
of two of 10 cm2 g−1, consistent with our a priori adoption of this value
everywhere. See Section 8.1.7.

Figure 13. M¶S ¶∣ ˙ ∣ as a function of radius for our fiducial disk model. The
solid line denotes M 0¶S ¶ >˙ (viscously stable), while the dashed line
denotes M 0¶S ¶ <˙ (viscously unstable). The disk is thus unstable at radii r
 0.03 au. See Section 8.1.6.
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DZIB and the pressure maximum. In summary, therefore, our disk
solution is overall self-consistent vis-à-vis the adopted opacity.

Note that we have not explicitly included grains in our
calculations. Nevertheless, our assumed opacity of 10 cm2 g−1

is the fiducial value adopted widely for dusty accretion disks
and is validated over most of the disk by the opacity
calculations above that do account for grains. In other words,
grains are implicitly included in our opacities. On the other
hand, dust will also markedly influence the chemistry and the
MRI (see Section 8.1.2); these grain effects are ignored in this
work (we treat them in a subsequent paper; Jankovic et al.
2018, in preparation).

8.1.8. Validity of the Strong-coupling Limit

The criteria we use for active MRI in the presence of
ambipolar diffusion (Equations 11(a), (b)), derived from the
MRI simulations of Bai & Stone (2011), require that we be in
the strong-coupling limit, i.e., in the single-fluid regime. The
conditions for the latter are (see Appendix A) (1) ρn?ρi
(which is always satisfied in our case wherein potassium is
the only ionized species, since the abundance of K puts a
hard upper limit of ∼10−7×mK/mH2 = 1 on i nr r ) and
(2) trcb=tdyn, where trcb is the recombination timescale. The
latter condition expresses the requirement that ionization–
recombination equilibrium be established on timescales shorter
than the dynamical time on which other relevant disk physics
(such as field amplification by Keplerian shear) occurs. Since
ionization is generally very fast, it is the recombination time
that forms the bottleneck in establishing ionization equilibrium,
hence the criterion trcb=tdyn. If this is not satisfied, then the
MRI simulation results do not represent a steady state.

We use Equation (13) to calculate trcb everywhere in our
solution disk, and we compare it to the local tdyn; the results are
shown in Figure 16. We find that in fact the required condition
on trcb is met only in the innermost disk close to the midplane,
and nowhere else. The reason is clear: with effectively only a
single chemical species (K), there is only one, relatively slow,
recombination channel; thus, trcb ( T neµ ) only becomes
small enough to fall below tdyn at the smallest radii, where ne is
highest (see Figure 4; the weaker dependence on T, combined
with the relatively small variation in T in our solution—see
Figure 9—means that the temperature does not alter trcb very
much). As such, our disk solution is to be interpreted only as an
idealized case that holds if ionization equilibrium is established
with a single alkali species. Whether such an equilibrium can
indeed be reached, or maintained, when the disk and field are
otherwise evolving on much shorter dynamical timescales is
unclear.8

Nevertheless, our disk solutions are useful for two reasons.
First, actual disks should support far more complex chemical
networks, including both molecular ions and grains in addition
to metal ions. With the much larger number of recombination
channels available in such physically realistic circumstances,
we do expect the time to attain ionization equilibrium to usually
be shorter than the dynamical one (e.g., Bai 2011). In that case,
as long as ā follows the general form in our solutions (high
value at very small radii, and tapering off with increasing
distance), our results, regarding the behavior of the various
zones and the trends in the MRI and accretion rates, should
remain qualitatively applicable (though the quantitative loca-
tions of the pressure maximum and so forth will certainly
change). Second, our analysis provides a general method for
self-consistently solving the problem of an α-disk coupled to
the MRI (and for checking the validity of the solution
a posteriori, as done here). This methodology will remain
applicable, whatever the specifics of the chemical network.

8.2. Variations in āDZ

Figures 17–19 show our disk solutions for the same M* and
Ṁ as the fiducial case, but with 10DZ

3a = -¯ and 10−5 (instead
of 10−4). These results closely resemble the fiducial solution,
but with a couple of important quantitative differences.
First, because ā declines with increasing radius, the pressure

maximum (located where ā hits the floor value DZā ) occurs at a
smaller radius (∼0.12 au) for 10DZ

3a = -¯ compared to the
fiducial case (∼0.25 au); conversely, it is at a larger radius
(∼0.4 au) for 10DZ

5a = -¯ . in fact, as Figure 20 shows, the
radial location of the pressure maximum as a function of the
floor value DZā is approximately a power law: rP DZ

1 4
max aµ - .

This follows from the fact that our solutions ā as a function of
radius approximately decrease as power laws beyond 0.1 au,
and the location of the pressure maximum corresponds to the
radius at which this power law falls to the floor value DZā (right
panels of Figure 18).
Second, while all three DZā solutions are quite similar at

radii inward of the pressure maxima, they are not exactly the
same: specifically, the field strengths in the three cases diverge
beyond ∼0.09 au (left panel of Figure 18), which is where the
dead zone first arises (compare Figures 5 and 17). This stems
from the fact that the total Ṁ at any radius is the sum of
the individual accretion rates through the active, dead, and

Figure 16. Recombination timescale (trcb) vs. dynamical timescale (tdyn) as a
function of location in our fiducial disk model. The solid black curve denotes
the disk midplane, and the dashed curve denotes one pressure scale height. The
green region is where trcb<tdyn (and thus where the single-fluid approximation
is valid); in the rest of our fiducial disk, trcb>tdyn. See Section 8.1.8.

8 Answering this question rigorously requires a general two-fluid simulation
(of which the one-fluid regime is a special case), including source and sink
terms for the ions in order to account for an evolving ionization fraction (we
thank X. Bai for useful discussions on this issue). Note that the idealized two-
fluid simulations of Hawley & Stone (1998, hereafter HS98; see Appendix A)
assume a fixed ion fraction and so do not address this issue directly.
Nonetheless, if trcb?tdyn, then the ionization fraction may be assumed to be
approximately constant over tdyn, with all the relevant species being completely
ionized (since the ionization timescale alone is very short). In this sense, the
HS98 results may be applied to a disk like ours, with only a single alkali
species, with the specification that all the alkali atoms be ionized. We cannot,
however, apply the HS98 results to the ionization fractions we have derived
assuming Saha equilibrium, because trcb?tdyn means that Saha equilibrium is
simply not established over the dynamical timescales relevant to the HS98
simulations. At any rate, as discussed in the main text above, we do not expect
a chemical network comprising only one alkali to be generally representative of
real disks, so we do not pursue this line of inquiry further here.
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Figure 17. Same as Figure 5, but now for 10DZ
3a = -¯ (left) and 10 5- (right).

Figure 18. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for 10DZ
3a = -¯ (open circles) and 10DZ

5a = -¯ (filled
gray circles) are overplotted on the results for our fiducial model with 10DZ

4a = -¯ (filled black circles; the fiducial results are the same ones shown in Figures 6 and 8,
respectively).

Figure 19. Various disk parameters as a function of radius: same as Figure 9, but now for 10DZ
3a = -¯ (left) and 105 (right).
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zombie layers at that location. As discussed in Section 8.1.5 for
the fiducial case, the accretion rate in the low-density zombie
zone makes a negligible contribution to the total; hence, at radii
where the active zone dominates in the midplane, the
Ṁ through it (controlled by the B-field) is essentially constant
at the fixed total rate. Thus, the field strength at these radii
remains the same for the three DZā cases considered (which all
have the same total Ṁ ). Once a dead zone forms in the high-
density midplane, however, the accretion rate through it makes
a significant and radially increasing contribution to the total
rate; the rate through the active zone then compensates (in
order to keep the total Ṁ fixed) by declining rapidly with
radius, facilitated by a steep decrease in the field strength (see
Figure 10). Since the accretion rate through the dead zone
increases with DZā , a higher (lower) DZā leads to a steeper
(shallower) fall-off in field strength (and thus in the active zone
accretion rate) with radius, as depicted in Figure 18.

8.3. Variations in Ṁ

Figures 21–24 show our disk solutions for the same M* and
DZā as the fiducial case, but with Ṁ=10−8 and

10−10Me yr−1 (instead of 10−9Me yr−1). The salient devia-
tions here from the fiducial case are all rooted in the fact that a
higher Ṁ elevates the viscous heating rate, leading to a larger
ionization fraction at a given location.

First (Figures 21 and 24), the pressure maximum is pushed
out to ∼0.7 au when Ṁ =10−8 Me yr−1 and in to ∼0.07 au
when Ṁ=10−10 Me yr−1, compared to ∼0.25 au for the
fiducial accretion rate. An increase (decrease) in ionization
fraction yields a higher (lower) ā at a fixed radius, so the
pressure maximum (achieved where ā falls to DZā ) occurs at a
larger (smaller) radius for a given DZā . As Figure 25 shows, the
radial location of the pressure maximum as a function of the
accretion rate is approximately a power law: rPmax µ Ṁ1/2.

Second (Figure 21), for the higher Ṁ =10−8 Me yr−1, the
inner edge of the dead zone recedes to a larger radius (∼0.4 au,
versus 0.09 au for the fiducial case). The inner edge of the Hall
zone is pushed out as well, but not as much, resulting in this
zone now intruding on the MRI-active zone. For the lower Ṁ
=10−10 Me yr−1, on the other hand, the dead zone extends all
the way to the disk inner edge; the active zone only occurs
sandwiched between the dead and zombie zones and never
extends to the midplane. Interestingly, the very low ionization
fractions in this solution also allow the appearance of a region
where Ohmic resistivity ηO dominates over both ηH and ηA (red

sliver at the disk outer edge in Figure 22; the only time such a
region appears in our solutions).
Third (Figure 23, right panel), ā saturates at ∼0.1 at small

radii as the accretion rate increases to 10−9 Me yr−1 (left
panel of Figure 22). The saturation occurs because, at these Ṁ ,
potassium is almost completely ionized at small radii over the
entire vertical extent of the disk (e.g., see top left panel of
Figure 4, which shows that, near the disk inner edge in the
fiducial case, xe≈(1–2)×10−7 from the midplane to the
disk surface: very close to the maximum possible value of xe in
our disks, equal to the abundance of K, of ∼2×10−7; for
10−8 Me yr−1, xe [not shown] is even closer to this upper limit
at small radii). This explains why we found, in Section 8.1.6,
that the innermost regions of our fiducial disk are viscously
stable: this instability is mainly controlled by the change in ā
with Ṁ (see Equation (32) and Figure 14), and this change is
by definition very small when ā is close to saturation. Note as
well that ā is saturated out to a much larger radius for 10−8

Me yr−1 compared to the fiducial case (because the ionization
fraction grows with Ṁ ), implying that the inner disk becomes
viscously stable over an increasing radial extent as the
accretion rate climbs.

8.4. Variations in M*
Figures 26–28 show our disk solutions for the same Ṁ and

DZā as the fiducial case, but with M*=0.1Me(instead of
1Me). Note that the inner edge of the disk, assumed to lie at
the stellar surface in our calculations, is also smaller in this case
(Rin=R*≈1 Re, compared to ∼2.3 Re for the fiducial mass).
We see that the solutions for the two different stellar masses

are nearly identical, except that the solutions for the lower mass
are compressed radially inward by a roughly constant multi-
plicative factor (i.e., shifted inward by a constant additive
factor, on the logarithmic radial scale in the plots). This is
explained by the functional form of the fundamental parameters
ρ, Pgas, and T in a steady-state α-disk (Equations (4)–(6)).
Specifically, the dependence of each of these parameters on the
stellar mass M* and orbital radius r can be expressed as a
dependence on the combined parameter M*/r

3 (the additional
dependence on r via fr is negligible for r?Rin). Dependencies
on ā and the opacity κ do not change this fact, since the latter
quantities are themselves functions of ρ, Pgas, and T. As such,
for a fixed accretion rate, the solution at any radius ra, for
a stellar mass M*a, is identical to that at radius rb º
r M Ma b a

1 3
* *( ) for a stellar mass M*b.

9. Discussion and Conclusions

The IOPF mechanism depends on the presence of a midplane
pressure maximum, arising initially from the change in
viscosity between the MRI-active innermost disk and the
adjacent dead zone. We have investigated the formation and
location of this first pressure maximum by solving the coupled
equations for MRI-driven viscosity with thermal ionization and
an α-disk structure in steady state. We examine a range of disk
accretion rates ( 10−10 to 10−8Me yr−1) and stellar masses
(0.1–1Me). Within the dead and zombie zones, where the
viscosity comes from non-MRI hydrodynamic and/or gravita-
tional stresses, we assume a constant viscosity parameter DZā
(which also sets a “floor” on the MRI-driven α), set to a
fiducial value in the range 10−3 to 10−5. We find the following:

Figure 20. Radial location of the pressure maximum as a function of DZā ,
showing the approximate power-law dependence rP DZ

1 4
max aµ -¯ .
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(1) A midplane pressure maximum does form, but it is
located within the dead zone, rather than at the DZIB as
usually assumed. This is a general consequence of two
factors: first, the midplane pressure does not depend on
the local value of α, but rather on its vertically averaged
effective value ;ā second, the MRI-active zone does not
end abruptly at the DZIB, but instead continues outward
above the dead zone, so that ā falls to its minimum

value DZā (causing a pressure maximum) beyond the
DZIB.

(2) The radial location of the pressure maximum has
approximately power-law dependencies on αDZ, stellar
mass, and accretion rate: rP DZ

1 4
max aµ - , M*

1/3, and Ṁ1/2.
(3) Inward of the pressure maximum, the surface density Σ in

our steady-state solutions decreases radially inward, instead
of increasing monotonically as usually assumed (e.g., in the
MMSN). This is a general feature of all solutions with a
constant accretion rate and an α that increases inward (since
a lower Σ is required to produce the same Ṁ with a larger
α). The very low Σ that results in these inner disk regions
has two consequences (points 4 and 5 below).

(4) At these low Σ, Hall diffusion rather than Ohmic
resistivity dominates near the midplane. Specifically, for
the range of M*, Ṁ , and αDZ considered here, the Hall
Elsässer number χ<1 within the Ohmic dead zone in
our solutions. As such, in the presence of a net vertical
background field aligned with the disk spin axis, the Hall
effect can reactivate the dead zone, thereby removing the
pressure maximum and suppressing the IOPF mech-
anism. This might explain why close-in small planets are
not found in roughly half of all systems: any background
stellar or interstellar field threading the disk will be
randomly aligned/anti-aligned with the disk spin axis,
yielding alignment in statistically half the cases.

(5) At these low Σ, X-ray ionization can become competitive
with thermal ionization, contrary to the standard assump-
tion that the X-rays may be ignored here. In our analysis,
where X-rays are not included (their effects are only
investigated a posteriori), the MRI-active zone eventually
ends where thermal ionization peters out, and ā falls to the
floor value αDZ (forming a pressure maximum there). In
real disks, we expect that the MRI-active layer above the
dead zone will eventually become X-ray supported, and
thus continue outward to join up with the active layer in
the midplane beyond the outer boundary of the dead zone

Figure 21. Same as Figure 5, but now for an accretion rate Ṁ =10−8 Me yr−1 (left) and 10−10 Me yr−1 (right).

Figure 22. Same as Figure 2, but for an accretion rate Ṁ =10−10 Me yr−1.
This is the only one of our various disk models in which an Ohmic-dominated
region arises (red sliver in bottom right corner of both panels).
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(e.g., see disk solutions with X-ray-driven MRI by
Mohanty et al. 2013). In this case, the minimum value
of ā will be somewhat higher than αDZ (since the disk

never becomes completely dead vertically); what this
precise value is, and where it is achieved (and thus a
pressure barrier is formed), will be X-ray dependent.

Figure 23. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for Ṁ =10−10 Me yr−1 (open circles) and
Ṁ =10−8 Me yr−1 (filled gray circles) are overplotted on the results for our fiducial model with Ṁ =10−9 Me yr−1 (filled black circles; the fiducial results are the
same ones shown in Figures 6 and 8, respectively).

Figure 24. Various disk parameters as a function of radius: same as Figure 9, but
now for an accretion rate Ṁ =10−8 Me yr−1 (top) and 10−10 Me yr−1 (bottom).

Figure 25. Radial location of the pressure maximum as a function of the
accretion rate Ṁ , showing the approximate power-law dependence
r MP

1 2
max µ ˙ .

Figure 26. Same as Figure 5, but now for a stellar mass M*=0.1 Me.
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(6) A linear stability analysis of our equilibrium disk solutions
indicates that most of the inner disk is viscously unstable
( M 0¶S ¶ <˙ ), with the inner edge of this unstable region
moving outward with increasing Ṁ . The instability is driven
primarily by the change in ā (due to variations in the
ambipolar and Ohmic diffusivities) as a function of Ṁ . To
zeroth order, this instability will cause the inner disk to break
up into rings. A more detailed nonlinear analysis, together
with the inclusion of more realistic disk physics (i.e.,
inclusion of grain effects on the MRI, and a more rigorous
treatment of the disk thermal structure, ionization including
X-rays, and opacities), is required to verify the presence of
the viscous instability.
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Appendix A
Discussion of Conditions for Active MRI

Our treatment of the conditions for active MRI generally
follows that of Mohanty et al. (2013); we summarize the salient
points here. Magnetic torques are important for mass and angular
momentum transport in the disk only if the gas is sufficiently
coupled to the field, i.e., if gas motions can generate magnetic
stresses faster than they can diffuse away owing to a finite
resistivity η. In a Keplerian disk, these stresses arise owing to
orbital shear, so the relevant timescale for field generation is the
orbital period, i.e., the dynamical timescale tdyn∼1/Ω.
For local tangled fields generated by MRI-induced turbulence,

the height of the thin disk sets an upper limit on the wavelength
of MRI modes, and hence on the dissipation timescale, so it is
the vertical direction that is relevant. For a vertical mode with
wavenumber k, the Ohmic dissipation rate is ∼k2ηO, while the
growth rate is kv z , where v z is the vertical component of the
local Alfvén velocity (v B 4z z prº , for a local vertical field
strength Bz and gas density ρ; MRI simulations by Sano et al.
(2004) indicate that B B 25z

2 2~ , where B is the rms field
strength). Since the maximum growth rate is Ω, the wavenumber
of the fastest-growing mode is k v z= W . Stipulating that the
growth rate of this mode exceed its dissipation rate then yields
the Ohmic Elsässer number criterion for active MRI:

v
1, 33z

O

2


h
L º

W
> ( )

whether the net background field is vertical, toroidal, or zero (Sano
& Stone 2002). Moreover, we will see below that efficient MRI
additionally requires the gas pressure in the disk (Pgas) to
substantially exceed the magnetic pressure (PB). For gas with
sound speed cs, Pgas (∝cs

2)?PB (∝v2
) implies cs/v ?1,

guaranteeing that the wavelength ∼v z /Ω(<v/Ω) of the fastest-
growing mode is indeed much smaller than the disk scale height
zH∼cs/Ω.
The rationale for the Ohmic Elsässer criterion may be

understood more clearly by considering the general induction
equation for magnetic fields (e.g., Wardle 2007):
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where v and B are the neutral velocity and magnetic field
vectors, respectively, “ ”̂ denotes a unit vector, and “⊥” indicates
the component of a vector perpendicular to B. The first expression

Figure 27. Left: field strength B as a function of radius. Right: ā as a function of radius. In both plots, results for M*=0.1 Me (open circles) are overplotted on the
results for our fiducial model with M*=1 Me (filled black circles; the fiducial results are the same ones shown in Figures 6 and 8, respectively).

Figure 28. Various disk parameters as a function of radius: same as Figure 9,
but now for a stellar mass M*=0.1 Me.
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on the right is the inductive term (I), while the second, third, and
fourth terms represent Ohmic (O), Hall (H), and ambipolar (A)
diffusion, respectively. Clearly, in magnitude, I∼ΩB while O∼
ηOB/L

2; moreover, as noted above, L v z~ W is the character-
istic length scale of the fastest-growing MRI mode (and thus the
relevant scale for field diffusion too). Thus Λ∼I/O, and
Equation (33) simply expresses the intuitive notion that, for
robust MRI-driven field amplification when Ohmic resistivity is
the prime diffusive channel, the ratio of the inductive to the
Ohmic term must exceed unity. A region where Ohmic diffusion
kills the MRI, and thus Equation (33) is not satisfied (i.e.,
Λ<1), is called a dead zone.

Analogously, when the Hall term dominates the diffusivities on
the right-hand side of the induction equation, we expect it to
strongly affect the MRI when the Hall Elsässer number χ satisfies

v
1. 35

H

2
c

h
º

W
<

∣ ∣
( )

We call a region satisfying Equation (35) the Hall zone. The nature
of the Hall term’s effect on the MRI, however, is very different
from that of Ohmic resistivity: in the presence of a net background
vertical field threading the disk, the nondissipative character of
Hall diffusion implies that it may amplify or suppress the MRI
depending on whether the field is aligned or anti-aligned with the
rotation axis of the disk (i.e., whether B 0W >· or <0; this
behavior can be understood by noticing that flipping the direction
of B changes the sign of every term in the induction equation,
Equation (34), except the Hall one (e.g., Wardle 1999; Balbus &
Terquem 2001). These issues have been explored in a linear
analysis by Wardle & Salmeron (2012), and in various more recent
nonlinear simulations (see discussion of simulation results in
Section 2); Xu & Bai (2016) have also explored similar Hall
diffusion effects when, in the presence of a net field, grains cause a
flip in the sign of ηH that mimics a reversal in field polarity.

Including the quantitative effect of Hall diffusion on the MRI
is thus nontrivial and beyond the scope of this exploratory paper;
as such, we ignore it here. We do calculate the magnitude of all
three resistivities (ηO, ηH, and ηA) and show their relative
strengths over our region of interest; however, in Hall-dominated
areas, we use either the Ohmic Elsässer criterion (Equation (33))
or the ambipolar condition (discussed below; Equations (36) and
37(a)) to evaluate the MRI efficiency, depending on whether ηO
or ηA is the next-strongest resistivity.

For ambipolar diffusion, the Elsässer number Am is again
defined analogously to the Elsässer number Λ for Ohmic
diffusion, but with ηA replacing ηO

9:

Am
v

. 36
A

2


h
º

W
( )

Note that Am is independent of the field strength B, since v2
 ∝

B2 and so is ηA (see Section 4.3).10 Wardle (1999) argued that
the appropriate criterion for efficient MRI, when ambipolar

diffusion dominates instead of Ohmic, should in fact mirror
Equation (33), i.e., Am>1. When electrons and ions are the
only charged species, the latter condition reduces to γi
ρi/Ω>1 (see Section 4.3), where γi is the neutral–ion
collisional drag coefficient and ρi is the ion density. This
implies that the MRI can flourish in the presence of ambipolar
diffusion (i.e., the field, to which the ions and electrons are
frozen, will be sufficiently coupled to the mainly neutral fluid)
only if a neutral particle collides at least once per orbit with an
ion. This condition has often been used to investigate
ambipolar-dominated disk regions (e.g., Turner et al. 2010).
On the other hand, Hawley & Stone (1998) suggested that

the above criterion is too lenient. Their 3D local shearing-box
simulations, using an idealized two-fluid approximation (ions
+ neutrals; ionization and recombination are not considered, so
ion and neutral numbers are individually conserved), indicated
that efficient MRI with ambipolar diffusion requires neutral–
ion collisions to be at least 100 times more frequent, i.e., γi
ρi/Ω100.
However, more recently, Bai & Stone (2011) have argued that it

is not the two-fluid approximation but the strong-coupling limit
that is most applicable to protoplanetary disks. This limit holds
when two criteria are met: (a) the neutral density vastly exceeds the
ion density, ρn?ρi, a condition invariably satisfied in these disks;
and (b) the recombination timescale is much shorter than the
orbital period (dynamical timescale), trcb= tdyn (∼1/Ω), which
Bai (2011) demonstrates is true over most of the disk as well (see
discussion below). In this case, the ion inertia may be neglected,
the ion density is controlled entirely by ionization–recombination
equilibrium with the neutrals, and the problem reduces to a single-
fluid (of neutrals) approximation. In this strongly coupled limit,
with the ratio of the inductive to ambipolar term further given by
the general expression for Am in Equation (35) (instead of just the
reduced value γiρi/Ω), Bai & Stone (2011) find that the MRI can
operate at any value of Am, provided that the field is sufficiently
weak. Specifically, the MRI can be sustained as long as the plasma
β parameter, β≡Pgas/PB, satisfies

, 37aminb b> ( )

where the minimum value of β is a function of Am,

Am
Am Am

50 8
1 , 37bmin 1.2

2

0.3

2 1 2

b = + +⎜ ⎟ ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

and PB=B2/8π. Note from Equation 37(b) that βmin

approaches (50/Am1.2) for Am  1 and asymptotes to 1 from
above as Am  ¥. Hence, condition 37(a) for active MRI
demands that the gas pressure dominate over the magnetic
pressure in the disk, as stated earlier. Following Mohanty et al.
(2013), we denote locations where Equations 37(a), (b) are not
satisfied (i.e., β<βmin), and thus the MRI is quenched by
ambipolar diffusion, as zombie zones.
Bai (2011) shows that trcb = tdyn, i.e., the strong-coupling

limit applies, when complex chemical networks are invoked and
grains are abundant; he cautions that this limit may not hold in
simpler formulations, as recombination pathways become
limited. This warning is potentially germane to us, since, in
our simplified treatment of thermal ionization here, the chemical
network comprises only one channel (M M e++ - , whereM
is a single species of alkali metal), and grains are moreover

9 We use v here instead of the v z employed in the Ohmic Elsässer number
definition in Equation (33), since we will adopt (in Equations 37(a), (b)) the
results of the numerical simulations by Bai & Stone (2011), who use the total
Alfvén velocity to define Am.
10 A typo in the text of Mohanty et al. (2013) suggests that Am depends on B
through both ηA and v

2; while this is formally true, the two dependencies in
fact cancel out. This does not vitiate any results in Mohanty et al. (2013), since
their actual calculations of Am are correctly implemented.
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omitted. We proceed by first assuming that the strong-coupling
limit holds for us as well, and thus we use conditions 37(a),
(b) to determine whether the MRI can operate in ambipolar-
dominated regions; we then check whether trcb=tdyn holds in
these regions in the disk solutions derived, to verify consistency
(see discussion and Equation (15) in Section 4.2, and detailed
discussion in Section 8.1.8).

Appendix B
Connecting the MRI and α-disk Formulations

For a general shear stress Trf in the disk, the viscosity
parameter αT is defined by the relation

T r
d

dr
P c , 38r T T sgas

2nr a a rº
W

= - = -f⎜ ⎟⎛
⎝

⎞
⎠ ( )

where the first equivalence in parentheses is the definition of
Trf and ν is the viscosity. The negative sign on the right-hand-
side terms enforces the convention that the α-parameter be
positive (since Trf∝dΩ/dr<0 in a Keplerian disk). We have
labeled the α-parameter with the subscript “T” to explicitly
denote that it is defined here in terms of Trf, instead of in terms
of the viscosity ν as done in the Shakura–Sunyaev model
(Equation (1) in the main text; we connect the two definitions
further below). For any particular driver of shear stress (e.g.,
the MRI), we will find it mathematically convenient to define
an effective viscosity parameter Tā , given by the pressure-
weighted vertical average of αT:

P dz

P dz

dz

dz
, 39T
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ò

ò

ò
a

a a r

r
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where the integrals are over the total thickness of the layer
(summed over both sides of the midplane) where the specified
shear stress operates. The second equality above, which defines

Tā as a density-weighted vertical average, holds when the disk
is vertically isothermal (so that cs is constant with height).
Using Equation (38), this yields the useful form

T dz P dz c dz, 40
h

r T
h

T s
h2 2

gas
2

2ò ò òa a r= - = -f ¯ ¯ ( )

where the first equality is general and the second again true for
a vertically isothermal disk. For the specific case of MRI-driven
turbulence, the vertical integral of the turbulent stress is given
by (e.g., Wardle 2007)

T dz
h

B B
hB

2 8
, 41

h
r r

2
, MRI

2

ò p p
= - á- ñ » -f f ( )

where Br and Bf are the radial and azimuthal components of the
field, respectively, B B h B B dz2r h r

1
2òá- ñ º -f f

-( ) , and B is
the rms field strength. The second equality flows from the result
of MRI simulations by Sano et al. (2004) that B B B4 r

2 ~ á- ñf .
Replacing the vertical integral on the left by using the first
equality in Equation (40), noting that the vertical average of

Pgas over the MRI layer is P P dz h2
hgas 2 gasòá ñ º ( ) , recogniz-

ing that PB=B2/8π is the magnetic pressure, and using the
definition of the plasma-beta parameter β ≡ Pgas/PB, we finally

arrive at

1

2
42TMRIa

b
»

á ñ
¯ ( )

for MRI-driven turbulent stresses (as denoted by the subscript
on Tā on the left-hand side). Here P P P Pgas B gas Bbá ñ º á ñ = á ñ
is the vertical average of the plasma-beta parameter over the
active layer thickness 2h (the second equality comes from our
assumption that the field strength is constant over this
thickness). Bai & Stone (2011) also arrive at Equation (42);
it is essentially a restatement of the assertion above that
B B B4 r

2 ~ á- ñf , as they discuss.
Now, at any radial location in the disk, we expect the vertical

structure to be multilayered, with the most general structure
being a dead zone (where Ohmic resistivity suppresses the
MRI) straddling the midplane, a zombie zone (where ambipolar
diffusion shuts off the MRI) near the disk top and bottom
surfaces, and an MRI-active layer sandwiched in between. The
shear stress within the MRI-active and inactive layers is driven
by different physical mechanisms, and hence Tā within these
layers will be (very) different. It is therefore convenient, in
analogy with Equation (39) for the individual disk layers, to
define an average viscosity parameter Tavgā over the entire
thickness of the disk:

P dz

P dz
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dz
. 43T
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For a vertically isothermal disk, which is assumed in this paper
(and where the second equality above applies), Tavgā can be put
in a very simple form by noting that

T dz c dz T dz ,

44

r T s
i h
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2
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( )

where the first equality comes from combining Equations (38)
and (43). The second equality simply breaks up the vertical
integral over the total disk thickness into a sum of integrals
over zones with different shear-stress mechanisms; 2hi and Trf,i
denote, respectively, the thickness of the ith zone (summed
over both sides of the midplane) and the form of the shear-
stress tensor there. Using the second equality in Equation (40)
to replace the individual integrals under the summation above,
and dividing throughout by the mean molecular mass μ, we get

N

N
, 45T

i i T
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i

avg

å
a

a
=¯

( ¯ )
( )

where N dzi hi
ò r mº is the (one-sided) column density of

each ith zone, and N dz Ni itot 0ò r mº = å
+¥

is the (one-
sided) total column density from the surface to the midplane
(we assume that the disk is symmetric about the midplane).
Thus, for a vertically isothermal disk, Tavgā is the column-
weighted vertical average of the effective viscosity parameters

Tiā within each zone (MRI active, dead, and zombie; we will
denote these zones by i=MRI, DZ, and ZZ, respectively).
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Now, the parameter α that is used to derive the Shakura–
Sunyaev disk equations is defined in terms of the viscosity ν
(Equation (1) in the main text), while αT is defined in terms of
the shear stress Trf (Equation (38)). Combining these two
equations with the definition Trf ≡ ν ρ r dΩ/dr, we see that

2

3
, 46Ta a= ( )

where the factor of 2/3 comes from dΩ/dr in a Keplerian disk.
Moreover, the Shakura–Sunyaev equations (Equations (3)–

(6) in the main text) are derived on the basis of vertically
integrated quantities (Σ and Ṁ ; see H16). As such, it is not α
that enters directly into these equations, but more precisely the
effective parameter ā, which is a vertical average over the entire
disk thickness defined analogously to Equation (43):
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Combining this with Equations (43), (46), and (45) yields
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where the last equality holds for the vertically isothermally
case. Note that 1 2TMRIa b» á ñ¯ ( ) by Equation (42). In the dead
and zombie zones, the effective parameters TDZā and TZZā are set
by hydrodynamic and/or gravitational instabilities, and we set
their values guided by the results of numerical simulations (see
below). Furthermore, without detailed simulations of how the
viscosity in the dead and zombie zones might differ, we assume
that the effective viscosity parameters are the same in both
zones: T TDZ ZZa a=¯ ¯ . Then, for the vertically isothermal condi-
tions that we adopt, we may write

N N N

N
, 49MRI MRI DZ ZZ DZ

tot
a

a a
=

+ +¯ ¯ ( ) ¯ ( )

where 2 3 1 3TMRI MRIa a bº » á ñ¯ ¯ ( ) and 2 3TDZ ZZ DZa a a= º¯ ( ¯ ) ¯ .
Based on simulations (e.g., Dzyurkevich et al. 2010, 2013, and
references therein; Malygin et al. 2017, and references therein), we
adopt a fiducial value of 10DZ

3a = -¯ , 10−4, or 10−5.
Finally, the accretion rate (positive inward) due to the shear

stress within any ith zone (MRI active, dead, or zombie) is
given by
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For the vertically isothermal case, we can replace the stress
integral using the last equality in Equation (40), which yields
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where i=MRI, DZ, or ZZ, and MRIā and DZā ( ZZa= ¯ by
assumption here) are defined above. We use this formula to
calculate the accretion rates within the individual disk zones.

Note that, for the specific case of accretion within the MRI
zone, we can combine Equations (41) and (50) to alternatively
write

M
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r hB
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This shows explicitly how, given a disk structure and chemistry
(ionization), the field strength B controls the accretion rate
through the MRI-active layers: directly via its appearance in the
above formula, and indirectly by influencing the magnitudes of
the Ohmic Elsässer number Λ and the plasma β parameter,
which in tandem set the active layer thickness h.
For a general shear stress Trf, the total accretion rate at any

radius is (analogous to Equation (50) but now integrated over
the entire disk thickness)
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If the total accretion rate is radially constant (as we shall
demand for our equilibrium solutions), then, multiplying
throughout by vK and integrating both sides over radius, from
the disk inner edge Rin out to any desired radius r, we get
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The factor f R r1r inº -( ) is the same one that appears in
the Shakura–Sunyaev equations in Section 3; it arises from the
radial integral of vK. Note that there is no equivalent
contribution from the disk inner edge when radially integrating
the ∂/∂ r term on the right-hand side of Equation (53), since
Trf ∝ dΩ/dr=0 at the inner edge: in the α-disk model, Rin is
by definition the location where the angular velocity Ω plateaus
and turns over.
Finally, combining the first equality in Equations (44) and

(48) to replace the vertical integral of the shear stress in
Equation (54) above, and using the definition of surface density

dzò rS º
-¥

+¥
, we arrive at
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the standard expression for a constant accretion rate in a
vertically isothermal α-disk model.

Appendix C
Polynomial Fits to Solutions for rā( ) and B(r)

We fit our rlog logā( ) and B rlog log( ) solutions with
piecewise polynomials over one, two, or three distinct intervals
in radius r. The fits are of the form y c c x c x ...0 1 2

2= + + + ,
where y loga= ¯ or Blog , x rlog= , and cn is the nth
polynomial coefficient. We list the radius intervals and
polynomial coefficients for our various disk models in
Tables 2–7. The starting radius for the innermost interval for
all models is Rin=R* (=1 Re for M*=0.1Me and 2.3 Re
for M*=1Me).
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Table 2
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.5526396 −9.0739395 −3.1434803 −0.22451420
0.232 −6.6333076 −4.3837696 −0.37942259

B rlog log( ) 0.048 −1.3996038 −2.7297839 −0.57806547
0.090 0.90110720 −1.4531042 −0.92303502
0.232 −65.562920 −307.15327 −531.13562 −407.62824 −116.78615

Table 3
Disk Model: M*=0.1 Me, Ṁ =10−9 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.023 −12.472096 −12.102624 −3.8119263 −0.3015077
0.108 −8.103168 −4.5772352 −0.34497049

B rlog log( ) 0.023 −2.6963071 −3.4619552 −0.66750054
0.042 0.40642769 −1.9598652 −0.89520128
0.108 −233.05517 −779.1073 −972.0254 −538.41475 −111.58188

Table 4
Disk Model: M*=1 Me, Ṁ =10−10 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.066 −11.604954 −9.0560947 −2.2069353

B rlog log( ) 0.066 −169.31517 −454.52007 −454.24907 −201.59358 −33.457131

Table 5
Disk Model: M*=1 Me, Ṁ =10−8 Me yr−1, αDZ=10−4

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.190 −6.7811175 −12.02901 −8.2440562 −1.8594328
0.730 −4.5536009 −4.1222938 −0.17861849

B rlog log( ) 0.190 −0.18901295 −1.6613468 −0.22499278
0.362 1.2930281 −0.098087489 −0.85474294
0.730 −1.2770216 −25.759443 −116.39124 −238.42566 −180.2177

Table 6
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−5

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.9655034 −9.8830202 −3.6673762 −0.33667805
0.415 −6.5991431 −4.2982932 −0.33100659

B rlog log( ) 0.048 −1.4088427 −2.7388476 −0.58018993
0.092 0.99828119 −1.2919053 −0.85648004
0.415 −3.0815134 −20.240474 −39.070548 −34.357312 −11.153956

Table 7
Disk Model: M*=1 Me, Ṁ =10−9 Me yr−1, αDZ=10−3

Fitted Function Interval End Radius (au) c0 c1 c2 c3 c4

rlog logā( ) 0.048 −8.9910621 −9.9615069 −3.7341083 −0.35427178
0.127 −6.7619972 −4.6539156 −0.51395667

B rlog log( ) 0.048 −1.3612921 −2.6728148 −0.55758751
0.086 0.80147769 −1.6020543 −0.97716225
0.127 −3619.2649 −14562.646 −21960.398 −14712.958 −3694.7273
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