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In this review, the physics of Pfaffian paired states, in the context of fractional quan-

tum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are

prime examples of topological (p-wave) Cooper pairing and are characterized by non-
Abelian statistics of their quasiparticles. Here we focus on conditions for their realization

and competition among them at half-integer filling factors. Using the Dirac composite

fermion description, in the presence of a mass term, we study the influence of Landau
level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are

selected when Landau level mixing is not strong, and can be taken into account pertur-
batively, the particle–hole (PH) Pfaffian state requires non-perturbative inclusion of at
least two Landau levels. Our findings, for small Landau level mixing, are in accordance

with numerical investigations in the literature, and call for a non-perturbative approach
in the search for PH Pfaffian correlations. We demonstrated that a method based on the

Chern–Simons field-theoretical approach can be used to generate characteristic interac-

tion pseudo-potentials for Pfaffian paired states.

Keywords: Fractional quantum Hall effect; half-integer filling factor; Pfaffian paired

states.
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1. Introduction

The fractional quantum Hall effect (FQHE)1 is a strongly correlated phenomenon of

electrons that is observed when they are confined to two dimensions and subjected

to a strong magnetic field perpendicular to the two-dimensional plane, in which

electrons live and interact. At special filling factors, i.e. ratios between the number

of electrons and the number of flux quanta piercing the two-dimensional plane,

experiments reveal highly entangled topological states of electrons with fractionally

quantized Hall conductance, for intervals of magnetic field (or density). Almost

exclusively the denominator of these fractions is an odd number, which can be

traced and connected to the fermionic statistics of electrons. A surprise came when

an even-denominator FQHE, at filling factor 5/2, was discovered.2 This introduced a

new paradigm in our understanding of (even-denominator) FQHE states: they may

be Bardeen–Cooper–Schrieffer (BCS) paired states of underlying quasiparticles. If

we neglect the role of spin in high magnetic fields, the most natural choice for

a pairing in a fixed Landau level (LL) is the unconventional, p-wave pairing of

spinless quasiparticles proposed in Ref. 3. The resulting state, Moore–Read state

is also called Pfaffian due to the necessary antisymmetrization of a collection of

pairs of quasiparticles — identical fermions, which do not possess any additional

characteristic like spin.

The underlying quasiparticles at even-denominator fractions beside the possi-

bility of having the BCS pairing correlations in a paired state, may in principle

exist in its parent, Fermi-liquid-like (FLL) state.4 Indeed such a state was probed

and detected at filling factor 1/2,5 and firstly theoretically described in Ref. 6. The

theoretical assessment of even-denominator FLL state(s) may lead also to further

understanding of the physics of the BCS pairing of underlying quasiparticles. An

important direction in this effort is the understanding of the FLL state that occurs

at a half-integer (denominator 2) filling of the system, and, at the same time, in

an artificial circumstance of a precisely half-filled LL. Namely, a LL is singled out

and half-filled. This mathematical limit of the physical system is highly relevant

for the understanding of the real system. Our understanding of FQHE phenomena

and real circumstances of FQHE experiments call for the concept of the projection

to a single LL. Very often the physics of FQHE is confined to a single LL, and

we can neglect the LL mixing — the influence of other LLs. Thus if the system

is at half(-integer) filling, it nearly possesses the particle–hole (PH) symmetry —

the symmetry under exchange of electrons and holes that a half-filled LL has. The

Halperin–Lee–Read (HLR) theory6 of the FLL state at half-filling does not possess

this symmetry (because it is a theory that does not include a projection to a fixed

LL), but a phenomenological, effective theory with Dirac quasiparticles, proposed in

Ref. 7 is manifestly invariant under exchange of electrons and holes, and describes

the artificial system of electrons that is confined to a single LL.

On the other hand, the Pfaffian paired state is not invariant under exchange

of electrons and holes. When the PH symmetry operation is applied to the
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Pfaffian, a new topological state is generated, Pfaffian’s conjugated partner, known

as anti-Pfaffian.8,9 Here we may ask whether a state exists, that is a collection of

p-wave Cooper pairs and respects the PH symmetry. Indeed one may argue that

the Dirac theory of the half-filled LL offers a distinct possibility7 known as PH

Pfaffian (PH symmetric Pfaffian). Before the proposal of the Dirac theory, studies

that were examining possibilities of additional, negative-flux pairing, in which an-

gular momentum of p-wave has opposite sign with respect to the one in Pfaffian,

also proposed the PH Pfaffian.10,11

While the relevance of Pfaffian and especially anti-Pfaffian for the explanation

of the FQHE at 5/2 is firmly established in numerical experiments confined to a

fixed LL with LL mixing (perturbatively) included via additional, three-body inter-

actions,12 we do not have a support for PH Pfaffian when numerical experiments are

confined to a fixed LL.13 But a recent experiment14 on thermal Hall conductance

is consistent with a PH Pfaffian scenario at 5/2. That the PH Pfaffian correlations

and topological order may be relevant even in the absence of the PH symmetry

(as is the case in experiments) may be shown by careful examination of various

experimental probes as discussed in Ref. 15.

Thus the question is whether for sufficiently strong LL mixing, that cannot

be treated perturbatively (as it is done in all numerical experiments confined to a

single LL), we can reach a regime in a uniform system when PH Pfaffian correlations

prevail. Or, is disorder needed to install the effective PH Pfaffian correlations?16,17

In any case LL mixing may play decisive role in selecting a specific kind of Pfaffian

state in experiments. In the following sections, Secs. 3 and 4, we will review our

work18,19 that used Dirac and Chern–Simons (CS) field-theoretical description to

examine the role of LL mixing and explore pairing at half-integer fillings, in general.

In Sec. 2, we will review the Dirac theory of the FLL state of underlying quasi-

particles — composite fermions at a half-filled LL, and select and describe a version

of the theory that is best fitted for a description of Pfaffian paired states. The mass

term in this theory mimics LL mixing (for small LL mixing has the role of those

additional (three-body) interactions in the electron representation), and the lim-

iting behavior of large mass may be identified with the usual HLR picture of the

FLL state of FQHE at half-filling.

In Sec. 3, within this version of the Dirac theory, we will probe the question of

topological pairing instabilities in a mean-field approximation (as usual in topolog-

ical explorations when we assume that topological characterization is immune to

the neglect of fluctuations). Instabilities will originate from the minimal coupling

term, i.e. the coupling with the CS gauge field, and we will be disregarding the

remaining influence of the Coulomb interaction, which has a pair-breaking effect.

Our interest will be to find which kind of Pfaffian will prevail at certain LL mixing,

if we assume a pairing instability.

In Sec. 4, we will discuss which model Hamiltonians for electrons, i.e. ef-

fective interaction pseudo-potentials (PPs) in fixed LLs lead to Pfaffian states.

Using CS field-theoretical description we recover dominant, already known PPs for
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Pfaffian and anti-Pfaffian in a fixed LL, and discuss the necessity to include non-

perturbatively at least one more LL to establish PH Pfaffian correlations, and list

pertinent PPs.19 Section 5 is reserved for a discussion and conclusions.

2. Theoretical Approaches to the Physics at a Half-Integer Filling

2.1. Wave-function approach

The basic explanation of the FQHE rests on the Laughlin wave function — the

ground state wave function for the most prominent effect at filling 1/3.20 The wave

function captures the basic correlations of electrons in a constrained space of an

isolated LL. To introduce the Laughlin wave function, we start with the single-

particle Hamiltonian,

H =
(p−A)2

2me
, (1)

of a particle in a constant magnetic field, B = Bz, with Ax = −(B/2)y and

Ay = (B/2)x, in a rotationally symmetric gauge. We fixed c = 1, e = 1, and ~ = 1.

The physics of FQHE is largely confined to a fixed LL and in the case of filling

factor 1/3, to the lowest LL (LLL). In the rotationally symmetric gauge and in the

LLL, the appropriate basis is given by the following single particle wave functions,

Ψn(r) =
1√

2πl2+2n
B 2nn!

zn exp

{
−
(

1

4l2B

)
|z|2
}
, (2)

where lB =
√

~c
eB , and n = 0, 1, 2 . . . is the guiding center angular momentum

number. Apart from the exponential factor, these wave functions depend only on

the coordinate z = x+iy, i.e. they make a holomorphic description, when we neglect

the factor which is the same for each Ψn(r). Thus many-body wave functions of

frozen spin electrons become polynomials in the z coordinate(s) in the LLL, as in

the following expression,

Ψ(r1, r2, . . . , rNe
) = P (z1, z2, . . . , zN ) exp

{
−
(

1

4l2B

) Ne∑
i=1

|zi|2
}
. (3)

The Laughlin wave function at filling factor 1/3 is specified by the Laughlin–Jastrow

choice for P ,

PL−J(z1, z2, . . . , zNe
) =

∏
i<j

(zi − zj)m , (4)

with m = 3. In this polynomial, the highest power of any zi; i = 1, 2, . . . , Ne is

Nm = m(Ne − 1) and this number also specifies the number of (single-particle)

states available to the system, i.e. the number of flux-quanta piercing the system,

Nφ = Nm + 1. Thus the ratio Ne/Nφ becomes 1/3 in the thermodynamic limit

when m = 3.
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For monotonically decreasing with distance repulsive interactions like Coulomb,

we may expect an extreme capacity of the wave-function to minimize the interaction

energy. Namely, as a function of a fixed electron coordinate, the wave function has

all (Nm) zeros on the other electrons, m = 3 per electron, though only one zero is

required by Fermi statistics. Equivalently, we may say that the zero on any other

electron is of the mth order as we study the limiting behavior when a fixed electron

approaches any other in (4).

Following the same logic, we may attempt the same construction at filling factor

1/2, but, because m = 2 in (4), in this case, we need additional factors that will

ensure that the wave function is antisymmetric. These additional factors should

not contribute or change the value of Nm in the thermodynamic limit (mN), and

thus, as additional factors in the total wave function, may be considered as its

“neutral part” — the part that does not see the macroscopic flux. (The Laughlin–

Jastrow part (4) would represent the charged part.) The neutral part may describe

a collection of fermionic quasiparticles (that do not see any macroscopic flux, i.e.

external magnetic field), and they may be in the first approximation non-interacting

(make a FLL state), or they may come in BCS pairs (make a bosonic condensate and

possibly a gapped state). Indeed experiment and theory are equivocal that the state

at filling factor 1/2 (in GaAs structures) is a FLL state of underlying quasiparticles,

and the state at filling factor 5/2 (in GaAs2) is effectively a gapped state of half-

filled second LL of frozen-spin (spinless) electrons, in which quasiparticles may pair.

The exact topological nature of the paired state at filling factor 5/2 is still under

debate.

But we may say that the most theoretically appealing (the most simple and

natural BCS pairing) guess for the gapped state at the half-integer filling factors

(in various experimental set-ups) is proposed in Ref. 3, and goes under name Moore–

Read state or Pfaffian (state). The Pfaffian wave function in the LLL is

ΨPf =
∑
σ

sgnσ

{
1

(zσ(1) − zσ(2))
· · · 1

(zσ(Ne−1) − zσ(Ne))

}∏
k<l

(zk − zl)2 , (5)

where the sum is over all permutations of Ne objects where Ne is an even number.

We omitted the exponential factors and the expression is unnormalized. In math-

ematics, if A = {aij} is N × N antisymmetric matrix, and N is even, its Pfaffian

is

pf(aij) = pf(A) =
1

2N/2(N/2)!

∑
σ∈SN

sgnσ

N/2∏
i=1

aσ(2i−1)σ(2i) , (6)

and pf(A)2 = det(A). In more physical terms, we see that the sum in the Moore–

Read wave function describes the antisymmetrization of a collection of Cooper

pairs, where each pair wave function, g(r), where r is the relative coordinate of a

pair, can be described as

g(r) ∼ 1

z
. (7)
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This special algebraic decay is the hallmark of the Pfaffian (Moore–Read) wave

function, and expresses a special kind of topological, long-range entanglement in

this function that represents a p-wave pairing. The construction is given in the

LLL, but can be easily generalized and considered in the second LL, i.e. in any

isolated LL.

The highest power of any zi in the Pfaffian wave function is Nm = 2Ne − 3,

i.e. Nm = 2Ne − S, where S = 3 is so-called shift — a topological number that

characterizes a state of a FQHE system on a curved background, such as a sphere.

If a state is PH symmetric, the shift should be invariant under the PH exchange.

We require Ne+Nh = Nm+ 1, i.e. the number of electrons, Ne, plus the number of

holes, Nh, should be equal to the number of available single-particle states. Thus

the state that we get by applying the PH transformation on Pfaffian, is a distinct

state, anti-Pfaffian, with shift equal to −1. This anti-Pfaffian state, that has distinct

topological features with respect to Pfaffian, was firstly described in Refs. 8 and 9.

We may wonder whether we may still have a p-wave pairing (the smallest angular

momentum pairing of spinless electrons) in a many-body wave function that is

invariant under PH exchange. It is not hard to see that in this case we must have

Nm = 2Ne− 1, and this implies some kind of a microscopic negative flux or simply

reversed p-wave pairing as in

gph(r) ∼ 1

z∗
. (8)

The naive guess would be that by doing the projection to the LLL, in the first

approximation, we have

gph(r) ∼ z . (9)

But, because for any set of complex numbers zi, i = 1, 2, . . . , N, ;N even, and

N > 2,

pf(zi − zj) = 0 , (10)

this does not lead to a non-trivial state in the LLL. Thus the question is whether a

half-filled isolated LL with special interactions can support a gapped state with PH

symmetry, i.e. PH (symmetric) Pfaffian. In the case of Pfaffian and anti-Pfaffian,

special interactions exist in an isolated LL21 (and they do not respect the PH sym-

metry). Furthermore, the negative flux pairing expression in (8) calls for inclusion

of other LLs, and maybe only with significant LL mixing, when the PH symmetry

is broken, we can stabilize the pairing correlations in (8). Even in this case, we will

call this exotic state PH Pfaffian.

2.2. Field-theoretical approach

2.2.1. Quasiparticles in the FQHE and the HLR theory at half-filling

We may separate the phase part from the rest of the Laughlin wave function at

filling factor 1/m, where m = 3, or from the Laughlin–Jastrow part of a ground
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state wave function at half-filling, when m = 2, and, then, define a decomposition

into two parts of any many-electron wave-function, Ψe, as

Ψe(r1, r2, . . . , rNe
) =

∏
i<j

(zi − zj)m

|zi − zj |m
Ψqp(r1, r2, . . . , rNe

) . (11)

The wave function Ψqp(r1, r2, . . . , rNe) represents a wave function of quasiparti-

cles after the unitary transformation defined by the phase factor: in the Laughlin

(m = 3) case quasiparticles are bosons, and at half-filling (m = 2) they are fermions.

This defines a CS transformation, or what we will refer to as a Zhang’s construction

of quasiparticles.22 In the field-theoretical terms, quasiparticles induce field a —

they are the sources of an artificial (internal) magnetic field b that also acts as an

additional field on quasiparticles,

ρqp = − 1

m

∇× a

2π
= − 1

m
b . (12)

In (12) ρqp is the quasiparticle density. We will discuss the CS field-theoretical

approach to the system at half-filling, i.e. the HLR theory with more mathematical

details below. Here we will note that in a mean-field picture the internal field will

cancel the external field. As a first approximation to the half-filling problem, we

will find that the ground state in the quasiparticle representation is simply a Slater-

determinant of free waves that are filling a Fermi sphere in the inverse space in two

dimensions, i.e. it represents a gas of fermionic quasiparticles. (The amplitude part

of the Laughlin–Jastrow factor can be recovered in the field-theoretical approach

by the random phase approximation (RPA) treatment of the density harmonic

fluctuations.)

Therefore, in the Zhang’s quasiparticle construction to each electron at position

w is attached the following phase factor:∏
i

|zi − w|m

(zi − w)m
, (13)

a flux tube. The ensuing quasiparticle sees two gauge fields: external and internal —

it is a quasiparticle that possesses charge, and the density of quasiparticles is equal

to the density of electrons.

On the other hand in the Read’s construction23 of quasiparticles, we start with

the notion of fluxes (flux quanta or vortices) that can be introduced by external

field in the system, and can be described by the following construction,∏
i

(zi − w)m , (14)

i.e. by insertion of m Laughlin quasiholes. We can make this object neutral by

adding a unit of charge, more precisely an electron, to it, and in this way define

the Read’s quasiparticles as neutral objects, number of which is proportional to

the number of external field flux quanta piercing the system. This view is in a

way a dual approach (equivalent description of the same theory from a different
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point of view) that was initially applied to bosonic systems where the description

in terms of elementary particles — bosons was traded for the description in terms

of excitations — vortices.24

In any case both approaches take into account the precise commensuration

between the number of electrons and the number of flux quanta in a system at a

fixed filling factor, in our case 1/2.

The CS approach at 1/2, based on the Zhang’s construction of quasiparticles,

begins with the following Lagrangian (density),

L = Ψ∗cf(i∂t −A0 − a0)Ψcf −
Ψ∗cf(p−A− a)2Ψcf

2m
− 1

2

1

4π
a∂a . (15)

In (15), Ψcf represents a fermionic (Grassmann quasiparticle) field, and the CS term

is defined by a∂a ≡ εµνλaµ∂νaλ, µ, ν, λ = 0, 1, 2 (denote one time and two spatial

coordinates), the summation over repeated indices is understood, and aµ = (a0,a) is

a three-vector. The cf stands for composite fermions, a general name for underlying

quasiparticles.

Considering the classical equations of motion, from δL
δa0

= 0, we get

−Ψ∗cfΨcf −
1

2

∇× a

2π
= 0 . (16)

(Above ∇ × a denotes the z component of the vector, and can be considered as

a scalar in this two-dimensional theory.) In the mean-field, when we assume that

the density of quasiparticles is uniform, the internal field, ∇×a2π , exactly cancels the

uniform external field at half-filling,

∇×A

2π
= 2Ψ∗eΨe = 2Ψ∗cfΨcf , (17)

where Ψ∗eΨe stands for the uniform electron density.

The Lagrangian in (15) is the basis or starting point for the HLR theory, which

describes the physics at 1/2 as a FLL state of (fermionic) quasiparticles. We may

notice, from the form of the Lagrangian, that the electron density–current vector

is equal to the one of quasiparticles,

− δL
δAµ

= jµe = jµcf . (18)

2.2.2. Dirac quasiparticle description of half-filled LL and at half-filling

In this section, we will first review the Dirac theory for a half-filled LL proposed

in Ref. 7 and then consider its extension in the presence of a mass term that is

relevant for the general case (with LL mixing) at half-filling.

We start with an isolated LL (of classical electrons) that is half-filled. It has

the PH symmetry — the symmetry under exchange of electrons and holes. The

low-energy physics of a zeroth LL of Dirac electrons in the weak coupling limit

should correspond to the low-energy physics of isolated LL (of classical electrons).7
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Pfaffian paired states for half-integer fractional quantum Hall effect

Thus we consider the Dirac problem in an external (magnetic) field, which is a

background field (no dynamics):

LD = iΨγµDA
µΨ + interactions = iΨ(γ0Dt + γ ·D)Ψ + interactions (19)

where Dt = ∂
∂t+iA0 and D = ∇−iA, and γµ, µ = 0, 1, 2 are 2×2 gamma matrices

for the Dirac description in two spacial dimensions, and Ψ is a two-component

Grassmann field.

The Dirac system is a neutral system and there is no Hall conductance. To make

up for this, i.e. to continue to discuss an isolated LL (of classical electrons), which

has 1/(4π) of the units (e2/~) of Hall conductance, we consider

LA = iΨγµDA
µΨ− A∂A

8π
+ interactions. (20)

If we define the density–current of electrons as

jµel = − δL
δAµ

, (21)

it follows that for densities,

ρel = ρD +
∇×A

4π
. (22)

Because, ρD (average density of the Dirac system) = 0, we have a non-zero density

of electrons

ρel

B
=

1

2
, (23)

where B = ∇×A
2π is the uniform external magnetic field. Also

jel = jD + ε̂
E

4π
, (24)

where ε̂ is a 2 × 2 matrix, εxy = −εyx = 1, εxx = εyy = 0. Thus, with ρD = 0 and

jD = 0, we are at half-filling, and the Hall conductance is equal to 1
4π ( e

2

~ ).

Following Ref. 7, in a dual picture, we postulate a new Lagrangian, L, with new

dual Dirac field χ:

L = iχγµDa
µχ+ a

∂A

4π
− A∂A

8π
+ · · · (25)

where · · · denotes higher order terms. (We will ignore these higher order terms

below and consider classical equations of motion in the framework of the linear

response theory.) Why would we expect this Lagrangian in a dual picture? We

provide an analysis with more details below, but here we may note that the Dirac

(two-component) formalism is expected also in a dual picture, because it makes

possible that the PH symmetry is manifestly included as demonstrated in Ref. 7.

Also note that the dual fermion is not directly coupled to the external field, and,

as we show below, the Lagrangian describes a Dirac system at a finite density, in

agreement with our expectation that the system is in a FLL state of quasiparticles.

For further details on the dual approach see Refs. 25 and 26.
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(i) It seems that χ’s represent Read’s quasiparticles. Indeed, if we consider the

following equation of motion,

0 =
δL
δa0

= −ρχ +
∇×A

4π
, (26)

we can conclude that the density of χ depends on the number of flux quanta.

On the other hand,

ρel = − δL
δA0

= −∇× a

4π
+

∇×A

4π
, (27)

and, at half-filling, in the mean-field approximation, ∇× a = 0. Thus, χ’s do

not experience any uniform, non-zero gauge field, b = ∇×a
2π , that couples χ’s

indirectly to the external field. Therefore, χ’s are, in the first approximation,

neutral objects, but with the Dirac’s singularity in the inverse space at k = 0.

In this way, they have a non-analytical feature that we do not expect from a

description that is based on Read’s quasiparticles. We find that the effective

theories based on the description with the Dirac’s quasiparticle are very useful

when considering the pairing physics, as they capture the time-reversal and

parity breaking (that is essential for the pairing physics) as we will explain

later in this section.

(ii) We expect that the effective theory of a half-filled LL should describe a Fermi-

liquid of quasiparticles (if we do not consider the BCS instability). Indeed, in

the mean-field approximation, in the first approximation, the internal field (b)

is zero, and the theory describes a Dirac Fermi-liquid.

(iii) If we vary a in L we find

jD = ε̂
E

4π
. (28)

Also,

jel = − δL
δA

= ε̂
E− e

4π
, (29)

where e is the electric field due to the potential aµ. Next, we assume that even

in the presence of disorder, the PH symmetry is respected, and in the linear

response we have,

jD = σ̂De , (30)

where σD
xx = σD

yy 6= 0 represents a longitudinal conductance, and σD
xy = σD

yx = 0

(the Hall conductance is zero). The zero Hall conductance is an expression of

the PH symmetry and a property of Dirac fermions. These three equations,

(28), (29), and (30), combined lead to the conclusion that the Hall conductance

of electrons is 1
2 ( e

2

h ), which we expect to be the case in the theory of the system

with classical electrons that respects the PH symmetry.27
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It is important to notice that σD
xy = σD

yx = 0 is not an only natural “choice” for

the response of the non-interacting Dirac system (conus) to a perturbation due to

a gauge (internal aµ) field. To get the Hall conductance, we assume the presence of

the mass term in the non-interacting Dirac description,

LD = iχγµDa
µχ−mχχ . (31)

The σD
xy can be found by integration of Berry curvature in the inverse (k) space,27,28

by choosing a specific gauge for eigenstates, and integrating over occupied states.

In this way, we can get contributions (in units e2/~):

sgn(m)
1

4π

(
1− |m|√

k2
F +m2

)
, (32)

from the positive-energy states that are filled for 0 ≤ |k| < kF , and

−sgn(m)
1

4π
, (33)

from the negative-energy states. There are two natural ways to take into account

these two contributions: (1) to add them,

σD
xy = − m√

k2
F +m2

, (34)

i.e. adopt a “dimensional regularization,” or (2) to consider only the contribution

from the positive energy solutions:

σD
xy = sgn(m)

1

4π

(
1− |m|√

k2
F +m2

)
, (35)

i.e. adopt a “Pauli–Villars regularization.” It is obvious that in order to get an

appropriate response in the Dirac theory (of the half-filled LL) we need to assume

and apply the dimensional regularization in the field-theoretical treatment.

We can also conclude that by choosing an appropriate singular gauge (phase)

transformation on the negative energy eigenstates, we can switch from the dimen-

sional regularization to the Pauli–Villars regularization (and vice versa). This trans-

formation can be understood as an adoption of a new quasiparticle picture and a

new Lagrangian (here without higher order terms):

L = iχqpγµDa
µχ

qp − a∂a

8π
+ a

∂A

4π
− A∂A

8π
. (36)

To find the same response as before, we have to adopt Pauli–Villars regularization

(when integrating out fermions and generating quadratic terms in a) with a positive

mass to cancel the second term in L. Physically we indeed switched to a new

quasiparticle picture of Zhang’s type. To see that let’s consider the full theory with

a positive (m > 0) mass term:

L = iχqpDaχ
qp −mχqpχqp − a∂a

8π
+ a

∂A

4π
− A∂A

8π
. (37)
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(i) From the equations of motion,

0 =
δL
δaµ

= −jqp,µ
χ − ∂a

4π
+
∂A

4π
, (38)

and

jµel = − δL
δAµ

=
∂A

4π
− ∂a

4π
, (39)

it follows that, jµel = jqp,µ
χ , as usual in the CS theory, i.e. the theory directly

relates to the Zhang’s quasiparticle construction.

(ii) If we let m → ∞ the effective Lagrangian becomes the HLR after the shift

aµ → aµ +Aµ.29

We can conclude that the Lagrangian in (37), with m = 0, describes the physics

of an isolated (PH symmetric) LL using the Zhang’s quasiparticle picture. The

introduction of non-zero m represents LL mixing, i.e. a measure of the inclusion of

other LLs, so that for large m we can recover the HLR theory that does not reduce

the effective physics of the electron system to a single LL.

3. Pfaffian Paired States at Half-Integer Filling

In this section, we will adopt the Dirac quasiparticle picture that is given by the

Lagrangian in (37) for a FQHE system at a half-integer filling factor. Thus, the

starting Lagrangian is

L = iχγµDa
µχ−mχχ−

m

|m|
a∂a

8π
+ a

∂A

4π
− A∂A

8π
, (40)

where for simplicity we omitted qp letters when writing χ fields with respect to

(37), but we should be aware that for any probes (perturbative expansions) the

Pauli–Villars regularization is understood. We generalized the Lagrangian in (37)

for both signs of mass m (to cancel the additional contribution due to the assumed

Pauli–Villars regularization, the first term in (35)). It follows that

jµχ = − m

|m|
∂a

4π
+
∂A

4π
, (41)

and

jµel = −∂a
4π

+
∂A

4π
, (42)

as a generalization of (38) and (39) to both signs of mass. Exactly at half-filling,

i.e. when in a uniform, constant magnetic field we have on average one electron per

two flux quanta, we may solve (41) in the Coulomb gauge, ∇ ·a = 0. The solutions

are22

ax(r) = 2
m

|m|

∫
dr′i

y − y′

|r− r′|2
δρχ(r′) , (43)
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and

ay(r) = −2
m

|m|

∫
dr′i

x− x′

|r− r′|2
δρχ(r′) , (44)

and δρχ(r′) = χ†(r′)χ(r′) − ρ̄, where ρ̄ is a constant (external flux density). We

would like to analyze the effect on pairing of the interaction term,

Vint = −aχγχ . (45)

In the following, representation of γ matrices,

γ0 = σ3, γ1 = iσ2, γ2 = −iσ1 , (46)

where σi, i = 1, 2, 3 are Pauli matrices, we have

Vint = −aχ+σχ . (47)

In this representation, we have the following expression for the interaction:

Vint = −i2 m

|m|

∫
dr′δρχ(r′)χ†(r)


0

z̄ − z̄′

|r− r′|2

− z − z′

|r− r′|2
0

χ(r) . (48)

On the other hand, the presence of the mass term in the Dirac system leads to the

following eigenproblem, [
m− ε k−

k+ −m− ε

]
χ(k) = 0 , (49)

where k− = kx− iky and k+ = kx+ iky. The positive eigenvalue, ε =
√
|k|2 +m2 ≡

Ek, corresponds to the following eigenstate,

χE =

[
m+ Ek

k+

]
1√

2Ek(Ek +m)
. (50)

As we consider relevant only (positive energy) states around kF , we will keep only

these states in the expansion over k-eigenstates of field χ(r), and, further, only

consider the BCS pairing channel in Vint. Thus (in the second-quantized notation)

χ(r) =
1√
2V

∑
k

exp{ik · r}χE(k)ak + · · · , (51)

and

V BCS
int =

m

|m|
2π

8V

∑
k,p

a†kapa
†
−ka−p ×

1

EkEp(m+ Ek)(m+ Ep)

×{(m+ Ek)(m+ Ep) + k−p+}

×
[
m+ Ek, −k−

] 
0

1

k+ − p+

− 1

k− − p−
0


[
m+ Ep

−p+

]
. (52)
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We used:
∫
dr 1

z exp{ikr} = i 2π
k+
. We may rewrite this expression (taking into ac-

count the antisymmetry of the fermionic operators) as

V BCS
int =

∑
k,p

Vkpa
†
kapa

†
−ka−p , (53)

where

Vkp =
2π

8V

1

Ek · Ep

×
[
−4|m|kpi sin(θp − θk)

|k− p|2
− m

|m|
(Ek + Ep + 2m)(Ek −m)(Ep −m)

× exp{i2(θp − θk)} − 1

|k− p|2

]
. (54)

Now we will adopt the mean-field BCS approximation, in an expectation that the

topological characterization of pairing instabilities, will stay unchanged under this

approximation. In the following, we will review the relevant parts of the BCS mean-

field theory. We will follow the notation of Ref. 30. The effective Hamiltonian is

Keff =
∑
k

{
ξka
†
kak +

1

2
(∆∗ka−kak + ∆ka

†
ka
†
−k)

}
, (55)

and in our case ξk = Ek−µ, with Ek =
√
|k|2 +m2. The Bogoliubov transformation

is

αk = ukak − vka†−k , (56)

with

vk
uk

=
−(Ek − ξk)

∆∗k
, |uk|2 =

1

2

(
1 +

ξk
Ek

)
,

|vk|2 =
1

2

(
1− ξk
Ek

)
,

(57)

and Ek =
√
ξ2
k + |∆k|2.

On the other hand, if we start with a Cooper channel interaction and do the

BCS mean-field decomposition with b†k = a†ka
†
−k∑

k,p

Vkp b
†
k bp =

∑
k,p

Vkp〈b†k〉bp +
∑
k,p

Vkpb
†
k〈bp〉 −

∑
k,p

Vkp〈b†k〉〈bp〉 , (58)

and specify u−k = uk = u∗k and v−k = −vk, then

∆∗p
2

=
∑
k

Vkp〈a†ka
†
−k〉

=
∑
k

Vkp〈(ukα†k + v∗kα−k)(−v∗kαk + ukα
†
−k)〉 , (59)
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i.e.

∆∗p
2

=
∑
k

Vkpv
∗
kuk =

∑
k

Vkp(−)
∆∗k
2 Ek

. (60)

In our case Vkp is given in (54). The numerical solutions of the BCS self-

consistent equation, when the parameter kF is kept fixed, but mass m is varied, for

channels l = 1, 3,−1, with ∆∗k = |∆k| exp{ilθk} are described in Fig. 1. We find

that ∆∗k = |∆k| exp{−ilθk}, l = 1, 3,−1 are solutions if we switch gauge for the

eigenstates of the Dirac equation, i.e. instead of (50) we take

χE =

[
k−

Ek −m

]
1√

2Ek(Ek −m)
. (61)
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Fig. 1. (Color online) The solution of the self-consistent BCS problem. Left column: radial direc-

tion k-dependent pairing amplitude for various values of m. Channel l = 1 solution (PH Pfaffian)
only depends on |m|, while l = 3 (anti-Pfaffian) and l = −1 (Pfaffian) channel solutions are

symmetric with the sign-flip of m. Upper right panel: dependence of the maximum of the pairing

amplitude on m (always found at the Fermi level kF ). Lower right panel: total energy of the
different pairing solutions compared to the normal state energy. Gray vertical lines denote the

transition between different channels. Color in the background corresponds to the energetically

favorable channel at the given m: a measure of LL mixing. The color of lines: Pfaffian: green,
anti-Pfaffian: orange, PH Pfaffian: blue. Reprinted with permission from Ref. 18 © the American

Physical Society.
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Thus we get two sets of solutions, because the effective theory does not possess

the knowledge of the direction of the external magnetic field. Despite this, we

have a clear prediction that for small m, LL mixing, depending on the sign of

m we have Pfaffian or anti-Pfaffian, and for large m the PH Pfaffian solution is

possible. Thus, in principle, the PH Pfaffian is possible in this effective theory of

quasiparticle pairing. The nature of this state, whether it is gapped or gapless

state of electrons, needs further investigations (though we see that the Bogoliubov

quasiparticle spectrum is gapped).

These predictions on topological pairing, when the LL mixing (mass m) is small,

are in accordance with numerical experiments (a) in the second LL, because for

m = 0 there is a Schrodinger cat superposition of Pfaffian and anti-Pfaffian,31,32

and depending on the LL mixing (sign of PH breaking mass) we have Pfaffian or

anti-Pfaffian, and (b) in the LLL, where a PH Pfaffian wave function has a large

overlap with the composite fermion Fermi-liquid wave function,13,33 in accordance

with Fig. 1 where the PH Pfaffian-like state is continuously connected to the excited

composite fermion Fermi-liquid state at m = 0 and cannot represent a gapped state

in an isolated LL.

The dimensionless m in the theory is a measure of the PH symmetry breaking

and LL mixing, although the precise relation between m and

κ =
e2

εrlB

~ωc
, (62)

i.e. the ratio between the characteristic interaction energy and cyclotron energy,

known as a LL mixing coefficient, we do not know. In (62), εr is the dielectric

constant of the background material, ~ωc = ~eB
mbc

, and mb is the electron band mass.

As we keep the density, ρ = ν
2πl2B

= 1
2

1
2πl2B

, i.e. kF fixed, from the mathematical limit

of the PH symmetric case when m = 0, we reach various systems (experimental

settings) by changing the interaction strength (dielectric constant εr). Thus m,

in principle, can be connected with κ, which can be considerable in experiments.

(According to Ref. 41 the parameter κ is given by 2.6/
√
B, 14.6/

√
B, 16.7/

√
B,

22.5/
√
B, in n-doped GaAs, p-doped GaAs, n-doped ZnO, and n-doped AlAs, with

B measured in Tesla.)

4. Model Interactions for Pfaffian Paired States

It is important to know model interactions for model wave functions in order to

probe their stability and nature. In the case of bosons, the Pfaffian state at filling

factor 1 is

Ψb
Pf =

∑
σ

sgnσ

{
1

(zσ(1) − zσ(2))
· · · 1

(zσ(Ne−1) − zσ(Ne))

}
×
∏
k<l

(zk − zl) . (63)
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The model interaction for which this state is an exact, densest state of zero energy34

is

H = v
∑
〈ijk〉

δ2(zi − zj)δ2(zi − zk) , (64)

where v > 0 and the sum is over all distinct triples of particles. Thus if three

bosons meet (come as close as possible) this will cost repulsive energy. In the case

of fermions at filling factor 1/2, the Pfaffian model interaction is a generalization

of the boson interaction to the one that, if three fermions come as close as possible,

again, only this will cost energy. The lowest angular momentum wave function of

three electrons in the LLL can be described as

Ψ(r1, r2, r3) ∼
∑
σ

sgnσz2
σ(1)z

1
σ(2)z

0
σ(3) exp

{
− 1

4lB
(|z1|2 + |z2|2 + |z3|2)

}
. (65)

We may conclude that if M(angular momentum) = 3 for three electrons this will

cost interaction energy. Indeed, it can be argued, just as in the case of the Laughlin

state and two-body PPs,35 that in the case of Pfaffian we need to specify only a

truncated series of three-body PPs with definite three-body angular momenta. At

filling factor 1/2, only non-zero three-body PP is the one for M = 3. (For bosons,

at filling factor 1, the only non-zero three-body PP is for M = 0.)

These model interactions are highly artificial if we want to model and probe real

physical systems. In the FQHE, we can always specify the base LL from which most

of correlations originate, but should also consider the effects of LL mixing. Beside

the Coulomb (two-body) interaction at a half-integer filling factor, we may take

into account perturbatively the effects of LL mixing, by considering special three-

body interactions.37–41 In this way we may find a characteristic series of three-body

PPs for Pfaffian state, when considering the specific problem of the second LL and

associated LL mixing contribution. A PP is a certain characteristic energy, VM ,

associated with a three-body state at total angular momentum M . (The dimension

of the subspace of a fixed angular momentum for three particles may be larger

than one for higher M , and VM may be a matrix.) In the case of Pfaffian, the

dominant, first three values of three-body PPs, for M = 3, 5, 6 are negative and
VM=5

VM=3
∼ 0.4 and VM=6

VM=3
∼ 0.7.41 We may ask what would be a characteristic series

for PH Pfaffian, if we assume that the PH Pfaffian state or phase exists, and expect

that some kind of three-body interaction will be relevant also in this case.

To answer this question we may consider again the CS formalism, not directly

connected with considerations in Sec. 3. We will recall34 the effective derivation

of the Pfaffian physics, by a part of the kinetic term in the non-relativistic CS

description. (Thus these considerations will not relate to the solution in Sec. 3, in

the large m limit, when we take into account the complete kinetic term.) We will

use this formal derivation to propose a method for recovering model interactions

for Pfaffian and PH Pfaffian. (By using the PH exchange we can reach a model

interaction also for anti-Pfaffian.)
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To get (formally) the Pfaffian pairing solution we may consider the kinetic en-

ergy part of the (non-relativistic) CS approach in (15), i.e. the part of the Hamil-

tonian given by

H =
Ψ+

cf(p−A− a)2Ψcf

2m
, (66)

with B = Bz, with Ax = −(B/2)y and Ay = (B/2)x , as before, and

ax(r) = 2

∫
dr′i

y − y′

|r− r′|2
δρcf(r

′) , (67)

and

ay(r) = −2

∫
dr′i

x− x′

|r− r′|2
δρcf(r

′) , (68)

as before, in the Coulomb gauge ∇ · a = 0, and δρcf = Ψ+
cfΨcf − ρ, where ρ is the

average density. We consider the following part of the implied interaction,

Va = −ajcf , (69)

with

jcf =
1

2m
[Ψ+

cf(pΨcf)− (pΨ+
cf)Ψcf ] , (70)

more specifically its Cooper channel part.

After simple steps,19 we arrive at the Cooper channel part,

V C
int =

4π

m

1

V

∑
k,p

|k||p| i sin(θk − θp)
|p− k|2

a†kapa
†
−ka−p . (71)

Note that in this case (following the mean-field equations and derivation in Ref. 30,

or in Ref. 19) we find that the Cooper pair wave function behaves as,

lim
|r|→∞

g(r) ∼ 1

z
. (72)

This implies the Pfaffian construction (after the unitary CS transformation into the

electron representation), if we recall that the choice of A in (66) implies a holomor-

phic Laughlin–Jastrow factor (more precisely a phase factor after the unitary CS

transformation) that is associated with the usual description of the Pfaffian state

in (5). If we had an extra minus sign in (71), this would lead to the antiholomorphic

pairing, i.e. the PH Pfaffian pairing.

To derive the model interactions for Pfaffian and PH Pfaffian, we assume that

we can use an effective non-relativistic CS description to describe the pairing of

underlying quasiparticles (composite fermions). On the basis of the previous con-

sideration ((69) and (71)), we consider an effective Hamiltonian,

Hef
BCS =

1

2m
Ψ†cf(p)2Ψcf + λδajcf , (73)

where δa = A + a, and the coupling λ is negative in the Pfaffian case and positive

in the PH Pfaffian case. Thus we assumed that a complete (non-relativistic) CS
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description that includes all effects of interactions can be reduced to the effective

form if a pairing occurs. By using the non-relativistic CS description we take into

account PH symmetry breaking necessary to stabilize these pairing states.

If we apply the CS transformation in reverse,19 going from the composite fermion

representation to an electron one, we arrive at the following effective Hamiltonian

for electrons,

Hel
BCS =

1

2m
Ψ†(p−A)2Ψ− 1

2m
(δa)2Ψ†Ψ + (1 + λ)δaJel + (1 + λ)

1

m
(δa)2Ψ†Ψ ,

(74)

where

Jel =
−i
2m

Ψ†(∇+ iA)Ψ− [(∇+ iA)Ψ]†Ψ , (75)

is the (gauge invariant) electron current.

We concentrate on the effective three-body (electron) interaction that is present

in the Hamiltonian,

V 3
BCS(λ) = (1/2 + λ)

1

m
: (a)2Ψ†Ψ : . (76)

The three-body interaction in coordinate representation is

V (r1, r2, r3) = (1/2 + λ)
4

m

(r3 − r1)(r3 − r2)

|r3 − r1|2|r3 − r2|2
. (77)

To describe the relevant matrix elements for LL(s), we will choose our base LL to

be the LLL, which is the most natural choice when we consider a CS description; the

very CS transformation is based on the Laughlin–Jastrow correlations in the LLL.

Thus, for example, we will relate the effective PPs that we know for the Pfaffian

state, based on the perturbation theory, in the second LL, with here calculated

PPs, based on the CS description, in the LLL.

To describe relevant three-body PPs (VM ) in the LLL, we introduce rescaled

matrix elements, ∆M=2k+3l,

VM =

∫
dr1

∫
dr2

∫
dr3V (r1, r2, r3)|Ψk,l(r1, r2, r3)|2 = (1/2 + λ) · 4/m ·∆M=2k+3l ,

where Ψk,l are normalized, fully antisymmetric wave functions for three electrons,42

classified by integers k ≥ 0; l ≥ 1, and the total angular momentum of the state is

M = (2k + 3l). The calculated ∆M are shown in the Table 1.

The matrix elements are illustrated by their rescaled values m
4 VM = (1/2 + λ) ·

∆M=2k+3l, in the cases when λ = −1 and λ = 0 in Fig. 2. What is remarkable is

that according to the Table 1, VM=5

VM=3
= 0.5, and VM=6

VM=3
= 0.7, and are quite close

to the ratios of the relevant matrix elements from the perturbation theory in the

second LL, ∼ 0.4, and ∼ 0.7, respectively, that favor the Pfaffian physics.43

Thus the CS description is able to capture the sign — a negative one of necessary

PPs when λ < −1/2, and their relative magnitude for relevant, those first three PPs

in the Pfaffian case. Therefore, we are encouraged to probe the PH Pfaffian case
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Table 1. Matrix elements in the LLL. Reprinted with permission from Ref. 19 © the American

Physical Society.

M 3 5 6 7 8 9

∆M 1/24 1/48 7/240 1/80 2/105
221/10080 1/(240

√
21)

1/(240
√

21) 1/120

∆M

∆M=3
1 0.5 0.7 0.3 ∼ 0.475

∼ 0.526 ∼ 0.022

∼ 0.022 0.2

Fig. 2. (Color online) Matrix elements of three body PPs in the LLL for λ = −1 (above) and λ = 0

(bottom). (We plotted two values, diagonal matrix elements in the two-dimensional subspace, in

the case when M = 9.) Reprinted with permission from Ref. 19 © the American Physical Society.

for certainly λ > 0. (We can identify the λ = 0 case with composite fermion Fermi

liquid case.) But we have to be aware that in the effective description by Hel
BCS,

the estimate that we can make for LL mixing parameter (in general the ratio of

characteristic interaction energy and cyclotron energy) is |λ+1/2|, and that for any

considerable λ & 1/2 for which PH Pfaffian correlations are relevant, we have to

include higher LL(s) (i.e. not only the base LL — the LLL in the CS description).

Thus in the PH Pfaffian case, we have to include (three-body) PPs for at least

one more LL. The calculated PPs (more precisely their rescaled (m/4)VM values)

for two LLs when λ = 1 are illustrated in Fig. 3. While calculating these PPs, we

had to include the natural cut-off lB in the field-theoretical description, to suppress

divergences in the second LL. We can conclude from Fig. 3 that in the case of PH

Pfaffian, there is an abrupt decrease in the positive values of three-body PPs at

M = 7 in the base (LLL) level and also at M = 5, when two of three electrons are in

the higher (second) LL. This can be compared with the usual (truncated) model for

Pfaffian with only non-zero, positive potential VM=3; there is no three fermion state
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Fig. 3. (Color online) Three-body PP matrix elements for λ = 1 (PH Pfaffian case) in the second
LL (top), for states with two particles in the second LL and one in the LLL (middle), and (all

three) in the LLL (bottom). Reprinted with permission from Ref. 19 © the American Physical

Society.

with M = 4, and the V5 PP that is connected with the characteristic three-body

angular momentum for Pfaffian in the LLL, M = 5, is zero.36 In the case of the

PH Pfaffian, the characteristic angular momentum is M = 7 in the LLL, and thus

the abrupt decrease(s) in the values of three-body PPs that we may associate with

the PH Pfaffian pairing correlations. The (almost) monotonic decrease of PPs when

all three particles are in the second LL suggests that the space of two LLs may be

necessary, but also sufficient for the realization of the PH Pfafian correlations. The

important question, which needs further investigation, is whether these correlations

are associated with a gapped state. The most recent suggestion for the realization

of PH Pfaffian is in Ref. 44.

5. Conclusions and Outlook

In this review, we have demonstrated that the CS field-theoretical approach can

be useful and informative in the description of Pfaffian and anti-Pfaffian states —

well-established candidate states for the explanation of gapped states at half-integer

filling factors in the FQHE. It can capture the pairing nature of these states, when

the basic gauge-field constraints are taken into account in a generalized Dirac ef-

fective description of the problem. The effective Dirac description originates from

the physics inside a base LL, which, when isolated (in the case of the Coulomb

problem) possesses PH symmetry. To stabilize Pfaffian or anti-Pfaffian, we have to

break this symmetry by a mass (of definite sign) term in the Dirac theory.
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The physics of an isolated base LL in the Dirac effective description suggests

a possible existence of a PH symmetric Pfaffian state.7 We find that this solution

is relevant only when a significant PH breaking (mass) is included in the Dirac

description. Considering a non-relativistic limit of the description we find that

interaction parameters that describe the influence from the higher (second) LL

must be non-perturbatively included in a model interaction for PH Pfaffian (beside

the ones from the base (lowest) LL). This may be helpful in the effort to stabilize

and detect PH Pfaffian correlations in numerical experiments.
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