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Mean-field dynamics of a random neural network with noise
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We consider a network of randomly coupled rate-based neurons influenced by external and internal noise. We
derive a second-order stochastic mean-field model for the network dynamics and use it to analyze the stability
and bifurcations in the thermodynamic limit, as well as to study the fluctuations due to the finite-size effect. It
is demonstrated that the two types of noise have substantially different impact on the network dynamics. While
both sources of noise give rise to stochastic fluctuations in the case of the finite-size network, only the external
noise affects the stationary activity levels of the network in the thermodynamic limit. We compare the theoretical
predictions with the direct simulation results and show that they agree for large enough network sizes and for
parameter domains sufficiently away from bifurcations.
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I. INTRODUCTION

The different stages of information processing in large
neural systems comprise multiple characteristic spatial and
temporal scales. While the in-vivo recordings of single neurons
indicate considerable subthreshold fluctuations and highly
variable spike trains [1–3], the macroscopic measurements
have revealed reliable and structured activity in many cortical
areas [4]. Accounting for these two results is an outstanding
theoretical issue, which requires one to develop analytically
tractable models capable of capturing the functional organi-
zation and integration of single unit dynamics at different
levels of complexity. This is typically resolved by invoking
the mean-field approach to describe the coarse-grained activity
and interactions of neural populations. Given the often used
assumption on population homogeneity, the approach is from
the biological view most appropriate for intermediate-scale
(mesoscopic) assemblies, such as cortical columns [5,6]. The
latter assemblies incorporate on one hand a sufficiently large
number of neurons for the averaging effects to occur, but on
the other hand, are small enough to support the homogeneity
assumption.

The mean-field approach has so far been implemented
to network structures as well as spatially extended neural
systems, with the pertaining models classified as activity-
based or voltage-based depending on the type of the state
variable [6,7]. The seminal works of Wilson and Cowan [8,9],
as well as Amari [10], employed the heuristic continuum
limit, providing the description of the temporal coarse-
grained dynamics in neural fields. Though deterministic in
nature, such models recovered a number of highly relevant
dynamical regimes including multistability [8–10], large-scale
oscillations [4,11,12], stationary pulses or bumps [10,13,14],
traveling fronts and pulses [15–17], and spiral waves [18], as
well as spatially localized oscillations [19,20]. Nevertheless,
given the aim to reconcile observations of highly variable
local neuron activity and the substantially reliable activity
patterns at the macroscopic scale, the key point emerging in
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recent research on mean-field models has been to account for
the higher-order statistics [21–24]. Conceptually, the goal has
become to demonstrate how the fluctuations and correlations
from the single unit level translate to and are manifested at the
assembly level.

In general, the physical background of variability of single
units may be related either to noise or the balanced recurrent
excitatory and inhibitory inputs [25–27]. Our interest lies with
the former scenario. In neural systems, noise may derive from
a number of extrinsic and/or intrinsic sources [28–32]. The
external noise is mainly due to random inputs arriving from
a large number of afferent neurons (synaptic noise), whereas
the internal noise is primarily linked to random opening of
a finite number of ion channels (ion-channel noise). In the
present paper, we consider a network of randomly connected
units, where the local dynamics follows a rate model and is
affected both by the internal and the external noise. Using
the Gaussian closure hypothesis [33–35], we will derive the
stochastic mean-field model characterizing the macroscopic
network activity in terms of the mean rate and the associated
variance.

The issue of how noise from the single unit level translates
to noise at the macroscopic scale is highly nontrivial. So
far, the stochastic mean-field models have been constructed
either via the top-down or the bottom-up approaches. In the
top-down approach, the details of the local neuron dynamics
are neglected, which typically leads to phenomenological
stochastic neural field models. These are based either on
Langevin version of the deterministic equations, having
introduced some form of spatiotemporal white noise [36,37],
or on treating the neural field equations as the thermodynamic
limit of the underlying master equation [7,22,38]. In the
latter case, extensions of the deterministic mean-field model
have been obtained by perturbation techniques, such as the
system-size expansion [21,39], or via the field-theory methods,
viz. the path integral formalism [40,41]. The bottom-up
construction of stochastic mean-field models has primarily
concerned networks of integrate-and-fire neurons with two
types of interaction topology, the global coupling scheme [42],
or the sparse connectivity [43,44]. Within the framework of
population density method [43–47], such networks have been
shown to display the asynchronous state despite the fact that
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the local firing conforms to Poissonian process. Under such
conditions, the collective dynamics has been described by an
effective mean-field rate equation with a characteristic gain
function. Nevertheless, the point that the asynchronous state
is stable only in the thermodynamic limit has indicated that
the finite-size effects [48–50] may yield qualitatively novel
phenomena and contribute as an additional source of intrinsic
noise at the network level.

Apart from considering the networks of spiking neurons,
the bottom-up approaches to stochastic mean-field models
have pursued the second line of research featuring local rate
dynamics [51–53]. This is consistent with the long standing
debate on the precise temporal codes vs rate codes as the
main principles of information encoding in neural systems
[54,55]. The importance of rate code has been confirmed
for a number of motor and sensory areas [56,57], whereby
the potential advantage of the population rate code may lie
in the lesser vulnerability to noise. For the class of models
built on the rate-based neurons, Hasegawa has introduced the
augmented moment approach [51,52,58] to analyze the mean-
field dynamics of globally coupled finite-size populations
where the units are subjected to additive and multiplicative
noise. While we also consider the rate-based neurons, our
model is distinct in that it accounts for the effects arising from
the random network topology. Also, the issue of how the effects
of noise acting on single units are manifested at the assembly
level is addressed in a more elaborate fashion, accounting for
the origin of multiplicative noise in the mean-field dynamics.

The paper is organized as follows. In Sec. II, we introduce
the rate model of local activity and apply the Gaussian closure
hypothesis to derive the stochastic mean-field equations for the
finite-size population of randomly connected units. Section III
concerns the stability analysis of the introduced mean-field
model in the thermodynamic limit, where noise intensities act
as additional system parameters. Apart from demonstrating the
emergence of macroscopic bistable behavior, it is also shown
how temporary changing of the level of noise may be used
to control the network state in a hysteresislike scenario. In
Sec. IV we discuss the finite-size effects and determine the
magnitude of fluctuations around the stationary states from
the thermodynamic limit. Section V provides a brief summary
of the results obtained.

II. DERIVATION OF THE MEAN-FIELD MODEL

We consider a network of N excitatory neurons. The local
activity is described in terms of firing rates ri,i ∈ [1,N ], whose
dynamics is given by

dri

dt
= −λri(t) + H(κui(t) + I +

√
2Bζi(t)) +

√
2Dξi(t).

(1)

In the last equation, λ denotes the relaxation characterizing
the inertness of units, H(u) is the gain function and κ = c/N

stands for the coupling coefficient, and I is the external current
which is taken to be constant. The above form of rate model
is considered paradigmatic [51,56], and a substantial amount
of theoretical work has been carried out to analytically obtain
the particular transfer functions for a range of spiking neuron
models [44,59,60].

FIG. 1. (Color online) Illustration of the network topology and
the typical network activity. (a) A sample configuration of an Erdös-
Rényi network for N = 40 and p = 0.1. (b) Typical time series ri(t)
of three arbitrary units (first three rows) are compared to the time
series of the mean rate R(t) (bottom row). Note that the fluctuations
of the mean rate are much smaller than those for the local variables.
The system parameters are N = 300, p = 0.2, c = 3, B = 0.002,
D = 0.0005, and I = 0.21.

Each unit is influenced by the external (synaptic) white
noise ξi(t) and the internal (ion-channel) white noise ζi(t),
whose respective intensities are B and D. The external
and internal noise sources are assumed to be independent,
whereas the random perturbations acting on different units are
uncorrelated. The input ui which the neuron i receives from
the rest of the network is specified by

ui(t) =
∑

j

aij rj (t), (2)

where aij ∈ {0,1} denote the elements of the adjacency matrix.
Throughout the paper, it is assumed that the interaction
topology is random, conforming to the Erdös-Rényi type of
network; see Fig. 1(a).

062813-2



MEAN-FIELD DYNAMICS OF A RANDOM NEURAL . . . PHYSICAL REVIEW E 92, 062813 (2015)

TABLE I. Summary of the introduced notation.

λ Relaxation time of units
c Coupling strength
κ ≡ c/N Normalized coupling strength
I External current
D Intensity of internal noise
B Intensity of external noise
p Connection probability
α ≡ cp Connectivity parameter
n Mean number of connections per unit
R Mean (assembly-averaged) rate
S Rate variance

In the remaining part of this section, we derive the
mean-field model for the collective dynamics of the network
given by the system (1) and (2). Our approach is essentially
based on the well-known quasi-independence and Gaussian
approximations [35], and leads to the second-order mean-field
model of the macroscopic dynamics. In other words, we use
the moment approach with the Gaussian closure hypothesis.
The collective behavior is then described in terms of the mean
(assembly-averaged) rate and the associated variance,

R(t) = 〈ri〉 ≡ 1

N

∑
i

ri ,

(3)
S(t) = 〈[ri(t) − R(t)]2〉 = 〈ri(t)

2〉 − R(t)2.

One naturally expects that the fluctuations of the mean rate
will be comparably smaller than the fluctuations for the local
variables; see the sample series in Fig. 1(b). This point will be
confirmed during the derivation of the mean-field equations. In
order to make the reading easier, a summary of the most rele-
vant notation used throughout the paper is provided in Table I.

Before proceeding to the analytical part, let us explicitly
state the approximations relevant for the derivation of the
mean-field model. The first one concerns the requirement
that the random variables ri(t) at any moment t and for
sufficiently large N satisfy 〈ri〉 ≈ [ri(t)], where [·] denotes
the expectation over the different stochastic realizations.
The mathematical background of this approximation lies
in the strong law of large numbers, which states that the
sample average YN = N−1 ∑N

i=1 yi of N independently and
identically distributed random variables yi will almost surely
converge to the expectation [yi] for N → ∞. The form of
convergence for large, but finite N is specified by the central
limit theorem. In physical terms, the outputs of neurons ri

can be considered unbiased if the distribution of the number
of incoming connections (connectivity degrees) over the
population is sufficiently narrow.

The second approximation is in a sense implicit for the
validity of the first one, and consists in the requirement that
the correlation between the outputs of neurons is negligible:
[ri(t)rj (t)] = [ri(t)][rj (t)]. This is reasonably satisfied when
the units share a small fraction of common input from the
network [43,61]. Recall that we consider random Erdös-Rényi
networks where the probability of connection between two
neurons equals constant value p. For such networks, the
fraction of the shared input for two neurons is p, while

the coefficient of variation for the number of incoming
connections equals

√
(1 − p)/pN . Both values are small for

N 
 pN 
 1. Thus, in large sparsely connected random
networks the approximations for the mean-field approach
should be fulfilled. This provided, one can represent the output
of each neuron as

ri = R +
√

Sρi, (4)

where ρi are uncorrelated variables with zero mean and unit
intensity; cf. [62,63].

Proceeding to the derivation of the mean-field model, let
us for simplicity first introduce the notation xi = κui + I +√

2Bζi for the total input to the ith neuron. Using (4), the latter
can be written as

xi = X + kνiR + κ
√

S
∑

j

aijρj +
√

2Bζi, (5)

where ni = ∑
j aij denotes the number of incoming connec-

tions to the ith neuron, n = 〈ni〉 = pN is the mean number of
connections, νi = ni − n, and X = κnR + I . The deviations
νi are of the order of

√
pN , and the independence of the

variables ρi implies
∑

j aijρj ∼ √
n. Therefore, the second

and the third term in the righthand side of (5) are of the order
of 1/

√
N , i.e., are small. If the external noise B is weak as

well, the function H(xi) can be expanded into the Taylor series
around X:

H(xi) ≈ H(X) + H′(X)(xi − X) + 1

2
H′′(X)(xi − X)2

= H0 + κH1νiR + H2
(
κ2ν2

i R
2 + κ2Sni + 2B

)

+ (H1 + 2κH2νiR)

⎛
⎝κ

√
S

∑
j

aijρj +
√

2Bζi

⎞
⎠.

(6)

In the last expression, we have introduced the notation H0 =
H(X), H1 = H′(X), and H2 = 1

2H′′(X). Note that the products
of noisy terms are replaced by the respective means: ρiρj =
δij , ζiζj = δij , and ρiζj = 0.

Inserting (6) into (1), one arrives at the equation for the
local rates

dri

dt
= −λri + hi + γi

∑
j

aijρj + βiζi +
√

2Dξi, (7)

where hi = H0 + κH1Rνi + H2(κ2ν2
i R

2 + κ2Sni + 2B),
γi = (H1 + 2κH2νiR)κ

√
S, and βi = (H1 + 2κHνiR)

√
2B.

Taking the population average of the equation for microscopic
dynamics (7), we obtain the following for mean (macroscopic)
rate R:

dR

dt
= −λR + H (R) + 1

N

∑
i,j

γiaijρj

+ 1

N

∑
i

βiζi +
√

2D

N

∑
i

ξi , (8)

where H (R) = 〈hi〉 = H0 + H2(κ2M2R
2 + κ2Sn + 2B), and

M2 = 〈ν2
i 〉 = p(1 − p)N is the second central moment of the

connectivity degree distribution.
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Note that Eq. (8) effectively includes three noisy terms.
Apart from the external and the internal noise, there
is also the “network noise” due to variability in con-
nectivity degrees. To estimate the network noise, let us
first rewrite the corresponding term as 1

N

∑
i,j γiaijρj =∑

j ρj
1
N

∑
i γiaij = ∑

j ρj 〈γiaij 〉. Since γi and aij are not
correlated, 〈γiaij 〉 ≈ p〈γi〉 holds. Taking this into account,
the sum of noisy terms in (8) can be rewritten as ξR =
1
N

∑
i (cpH1

√
Sρi + βiζi + √

2Dξi), which is equivalent to
white noise with the intensity 2�/N , where

2� = H 2
1 c2p2S + 2BH 2

1 + 2D. (9)

In the last expression, the terms of the order of 1/N2 have been
neglected.

Now let us derive the equation for the variance S. Taking
the appropriate Itō derivatives, one obtains

dS

dt
=

〈
2ri

dri

dt
+ γ 2

i ni + β2
i + 2D

〉
− 2R

dR

dt
− 2�/N.

It can readily be shown that the noisy terms completely cancel
each other. Using the assumption that the outputs ρi are not
correlated to the connectivity νi , one arrives at the following
equation for the variance:

dS

dt
= 2D + 2BH 2

1 − 2λS + 1

N
8p(1 − p)BH 2

2 c2R2

− 1

N
p(1 − p)H 2

1 c2S. (10)

Taking into account (8), (9), and (10), the stochastic mean-
field model for the finite-size random network of rate-based
neurons reads

dR

dt
= −λR + H0 + 2H2B + c2H2

N
(p(1 − p)R2 + pS)

+
√

1

N

(
H 2

1 c2p2S + 2BH 2
1 + 2D

)
η, (11)

dS

dt
= 2D + 2BH 2

1 + 1

N
8p(1 − p)BH 2

2 c2R2

−
(

2λ + 1

N
p(1 − p)H 2

1 c2

)
S. (12)

Before proceeding with the stability and bifurcation anal-
ysis, a brief remark is required regarding the numerical
treatment of system (1), and the ensuing dynamics for the
assembly average. In particular, the transfer function involves
an argument with the stochastic term corresponding to external
noise, which cannot be resolved unless some approximation
is introduced. During the derivation of the mean-field model,
we have expanded the transfer function H (xi) to Taylor series
up to second order around the assembly-averaged input X,
having verified that each of the terms contributing the deviation
of the input xi , received by an arbitrary unit i, from X is
small. The expansion up to second order may effectively be
interpreted as Gaussian approximation for the distribution of
H (xi) over the assembly. When numerically integrating the
system, one cannot hold that such an approximation holds
a priori. It has to be explicitly verified that the distribution
of H (xi) is indeed Gaussian for the considered range of

neuronal and network parameters. To this end, before running
the simulations, we have calculated the distributions of the
function H (x + √

2Bζ ) for various x and evinced that their
skewness and excess kurtosis are small, consistent with the
Gaussian requirement. This allowed us to replace the term
H (x + √

2Bζ ) by a Gaussian process with the same mean and
variance.

III. ANALYSIS OF STABILITY AND BIFURCATIONS
IN THE THERMODYNAMIC LIMIT

In this section, we analyze the stability and bifurcations of
the mean-field model (11) and (12) in the thermodynamic limit
N → ∞. Under such conditions, the stochastic term in (11)
can be neglected, so that the network dynamics effectively
becomes deterministic. The influence of noise is reduced to
respective noise intensities B and D, which may be regarded
as additional system parameters. For simplicity, let us further
set λ = 1 and consider the activation functionH(x) of the form

H(x) =
⎧⎨
⎩

0, x � 0,

3x2 − 2x3, 0 < x < 1,

1, x � 1.

(13)

Consistent with the notation introduced above, cf. (6), one has
H0 = 3X2 − 2X3, while the first- and second-order derivatives
are H1 = 6X − 6X2, H2 = 6 − 12X for 0 < X < 1.

The dynamics of variance S in the thermodynamic limit is
governed by the equation

dS

dt
= 2D + 2BH 2

1 − 2S. (14)

Following relaxation, the variance reaches the stationary value

S0 = D + BH 2
1 . (15)

Further note that the dynamics of the mean rate R, given by
(11), becomes

dR

dt
= −R + H0 + 2H2B, (16)

which is independent on the variance S. Taking into account
that X = αR + I , where α = cp, one can rewrite (16) as

dX

dt
= F (X) = −2αX3 + 3αX2 − (12αB + 1)X

+ 6αB + I. (17)

The analysis of (17) indicates that it always exhibits at least
one stable stationary state. For the parameter values given by

α = α0 = 2

3(1 − 8B)
, I = I0 = 1 − α0

2
, (18)

Eq. (17) undergoes pitchfork bifurcation where two stable
steady states are created separated by an unstable one. The
stable states correspond to two distinct values of the mean
firing rate which we further refer to as the “low” and the “high”
state. For strong enough coupling α > α0, the high (low) state
emerges via the saddle-node bifurcation, which occurs at the
parameter value

I = 1 − α

2
∓ 2

3
√

3

(
α

α0
− 1

)3/2

, (19)
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FIG. 2. (Color online) (a) Two-parameter bifurcation diagram of
the network in the thermodynamic limit. The lines show saddle-node
bifurcations in the I − α plane for three different values of B. (b)
One-parameter bifurcation diagram showing the dependence of the
mean rate R against the bias current I for B = 0, α = 0.6. (c) The
analogous bifurcation diagram as in (b) is displayed for α = 0.8. The
solid lines indicate the stable branches, whereas the dashed line refers
to the unstable branch.

where the minus sign corresponds to the high, and plus to
the low state. For I between these two values, the high and
the low states coexist, such that the network is in a bistable
regime. The two-dimensional bifurcation diagram in Fig. 2(a)
shows the curves (19) for different values of B. One can see
that the two curves form a “tongue” inside which the network
is bistable. Figures 2(b) and 2(c) display the one-dimensional
bifurcation diagrams for parameter values outside and within
the bistability tongue, respectively.

We note the interesting role played by the intensity of
external noise B. It is found to influence the position of the
bistability region, shifting it “upwards” toward the domain of
stronger couplings. This observation instigated an idea of the
potential network control mechanism via the noise intensity. In
order to illustrate this mechanism, we have analyzed in more
detail how the network dynamics depends on B. To this end,
one can solve the equation F (X) = 0 with respect to B and
obtain the following expression:

B = 1

24

((
3 − 2

α

)
− 4

(
X − 1

2

)2

+
2I−1

α
+ 1

X − 1
2

)
. (20)

For I > 1
2 (1 − α), the corresponding one-dimensional

bifurcation diagram is provided in Fig. 3(a). The depen-
dence X(B) is single valued for B > B0, where B0 =
1

24 ((3 − 2
α

) − 3( 2I−1
α

+ 1)
2/3

). For such B, only the high state
of the network exists. For B = B0, the saddle-node bifurcation
takes place, whereby the low state is born. The latter state
is found for B < B0. Since only positive values of B are
physically meaningful, the low state branch exist only for
B0 > 0, which is equivalent to the condition

α >
2

3
and

1

2
(1 − α) < I <

1

2
(1 − α) + (α − 2/3)3/2

α1/2
.

(21)

For α and I satisfying (21), the network is bistable for B <

B0 and exhibits only the high state for B > B0. Therefore, a
pulselike increase of B may switch the network from the low
to the high state via the hysteresis scenario.

This effect is illustrated in Fig. 3(b), which shows the
network dynamics before, during, and after the pulselike
change of the external noise B. Prior to strengthening, the
external noise level is B = 10−3, such that the network is
bistable and is settled in the low lying state. As soon as
the external noise intensity is temporarily increased to B =
5 × 10−3, the low state vanishes, and the network switches
to the high state. When B regains the initial value, Eq. (17)
admits a bistable regime again, but the network remains in the
high state. Thus the temporary increase of B has caused the
network to switch from the low state to the high state.

Note that, for I < 1
2 (1 − α), the inverse scenario is possible,

where the network can switch from the high state to the low
state by a pulselike increase of the external noise. An example
for such a scenario is illustrated in Figs. 3(c) and 3(d).

Interestingly enough, the external noise has an effect not
only on the stationary states of the network, but is found
to influence its transient dynamics as well. The transient
dynamics is important when the external input changes and
the network has to track this change and adapt to its rate
accordingly. In this scenario, short response time of a network
is naturally considered as advantageous [64]. Our analysis
shows that under certain conditions, introduction of the
external noise may sufficiently reduce the response time. To
understand this, let us consider the situation when the input I

switches from some value I1 to the new value I2. For simplicity,
we assume that the other parameters are set so that the network
is always monostable. Then, the network will evolve from the
previous stationary state X1 to the new one X2. According to
(17), the rate � of the system convergence to X2 is determined
by the absolute value of the derivative F ′(X2):

� = −F ′(X2) = −6αX2
2 + 6αX2 + 12αB + 1. (22)

Thus strengthening of the external noise B increases the
rate � and speeds up the network response. This finding is
corroborated by numerical simulations illustrated in Fig. 4.
Here, two networks are considered: the first one without the
external noise (B = 0, blue curve), and the second one with
noise (B = 0.01, red curve). The values of the other parameters
are given in the caption to the figure. For both cases, the
input I changes its value at the moment t = 0 so that the
stationary value of X changes from X1 = 0.25 to X2 = 0.5.
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FIG. 3. (Color online) (a) One-parameter bifurcation diagram illustrating the dependence R(B) for α = 0.8, I = 0.11. The solid lines
indicate the stable branches of steady-state solutions, whereas the dashed line stands for the unstable branch. (b) The dynamics of the network
under temporary increase of external noise: B = 0.004 for t < 1000 and t > 1500, and B = 0.015 for t ∈ [1500; 2000]. The black thick line
refers to numerical results, whereas the thin solid lines indicate the theoretically obtained stable activity levels for the corresponding time
intervals. Panels (c) and (d) illustrate the switching scenario from the high state to the low state by the temporary increase of B. The network
parameters are α = 0.9, I = 0.02, whereas B values are B = 0.005 for t < 1000 and t > 1500 and B = 0.018 for t ∈ [1500; 2000]. The
presentation style is analogous to that from (a) and (b). The network size in simulations is N = 300.

The estimate (22) then gives � = 0.025 without noise and
� = 0.103 with noise, which implies a fourfold speedup of
the network response. Note that the numerical results show
satisfactory agreement with the theoretical predictions.

FIG. 4. (Color online) Dependence of the transient dynamics of
the network on B. The change of external input occurs at t = 0. The
response of the network for B = 0 is shown by the blue (light gray)
lines, and for B = 0.01 by the red (dark gray) lines. The remaining
network parameters are N = 400, α = 0.65, and D = 0.001. The
thick lines represent the numerical results, whereas the thin lines
denote the theoretical estimates.

IV. FINITE-SIZE EFFECTS

In this section we analyze the influence of the finite-size
effects in case where the network is large but finite, viz. N 
 1.
Then, the noise term in (11) can no longer be considered zero,
and can give rise to stochastic fluctuations of the mean rate
around the values obtained for the thermodynamical limit.

To study the magnitude of fluctuations, let us rewrite (11)
as follows:

dX

dt
= F (X) + 1

N
G(X,S) + 1√

N

√
2�(X,S)η. (23)

For large N , the variables X and S are close to the respective
values X0 and S0 from the thermodynamic limit, whereby X0

is defined by the condition F (X0) = 0, and S0 by (15). Since
the fluctuations x = X − X0 are small, one can linearize (23)
and obtain

dx

dt
= F ′(X0)x + 1

N
G(X0,S0) + 1√

N

√
2�(X0,S0)η. (24)

Since the state is stable in the thermodynamic limit, F ′(X0) <

0 applies. The steady state’s displacement due to the finite-size
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FIG. 5. (Color online) (a) One-parameter bifurcation diagram illustrating the dependence of the stationary mean rate R vs the bias current
I . Blue solid lines indicate the values observed after the transient, while red dashed lines show the theoretical predictions for the stable levels.
(b) and (c) The variance of the mean rate σ = √

[δX2]. The solid line denotes the numerical results, whereas the dashed line stands for the
approximate model. The parameter values are N = 400, p = 0.2, c = 4.2, and B = D = 0.002. The second row is intended to illustrate the
breakdown of theory at smaller network sizes. The presentation style is the same as in the upper row, but the size of the exact system is N = 70.
Panels (d), (e), and (f) show that the stationary mean rate, as well as the associated variance, substantially depart from what is predicted by the
approximate model.

effect equals

x0 = G(X0,S0)

−NF ′(X0)
= H2

(
μ(X0 − I )2 + α2p

(
D + BH 2

1

))
Np2(12αB + 1 − αH1)

.

(25)

This deviation is of the order of 1/N , while the random
fluctuations of X due to noise are of the order of 1/

√
N .

This allows one to neglect the second term in (24) and obtain
the following expression for the variance of X over stochastic
realizations:

[x2] = 2�(X0,S0)

−2NF ′(X0)
=

(
D + BH 2

1

)(
2 + α2H 2

1

)
2N (12αB + 1 − αH1)

. (26)

The expressions (25) and (26) both contain F ′(X0) in the
denominator. When the value of F ′(X0) becomes small, the
two formulas lose validity since the linearization of (23) is
no longer adequate. Note that such a scenario corresponds to
the parameter domain near the saddle-node bifurcations of the
system in the thermodynamic limit.

In order to verify the validity and the accuracy of the
developed mean-field approach, we have performed direct
simulations of the network (1) and compared the results with
the predictions of the theory. We find that for B < 0.01,
D < 0.01, and N > 100 the theory holds quite well in most of
the cases: the mean rate of the network is typically predicted
with the accuracy no less than 5%. The theory’s validity
reduces for the values of R close to zero and unity since the
second derivative H2 has discontinuity at these points.

The comparison between the numerical and the theoretical
results is provided in Fig. 5. The intention is to first consider
a sufficiently large network N = 400, where the mean-field
treatment is expected to hold; see Fig. 5(a). In particular,
for each parameter value, the network is simulated for the
period T = 200 starting from 10 different randomly chosen
initial conditions. After the transient Ttr = 50, all the observed
mean rates R were saved and plotted versus the corresponding

parameter value. The theoretical prediction for the mean is
superimposed on this plot (see the dashed lines). To check the
predictions for the magnitude of the stochastic fluctuations,
we have further plotted together the observed variance and
the estimate (26); cf. Figs. 5(b) and 5(c). Since the network is
bistable in a certain parameter interval, the results are plotted
separately for the low and the high branches. As expected,
the theory becomes inadequate close to the points where the
branches vanish through the saddle-node bifurcations. In the
rest of the parameter interval the theoretical estimate is quite
precise.

The second row in Fig. 5 illustrates the breakdown of
theory for smaller system sizes. As an example, we consider
the case N = 70. Note that the upper branch of the mean
rates substantially deviates from the theoretical prediction.
One also finds that the magnitude of stochastic fluctuations
are much larger than what is anticipated by the approxi-
mate model, because the assumptions behind (26) no longer
hold.

Note that the influence of the system finite size on the value
of the variance S amounts only to its small change, which is
of the order 1/N . Namely, the stationary value of the variance
for large N equals

S = S0 + p(1 − p)c2

2N

(
B

(
8H 2R2 − H 2

1

) − DH 2
1

)
. (27)

V. SUMMARY AND DISCUSSION

In this paper, we have considered a network of rate-based
neurons with random connectivity and two types of noise. In
order to study the macroscopic dynamics of the network, we
have developed the second-order mean-field approach which
incorporates the Gaussian closure hypothesis. The dynamics
of the large, but finite network is described in terms of the
assembly averaged firing rate and the associated variance,
whose evolution is given by the system (11) and (12). The
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main approximations relevant to the derivation of the model
are that the outputs of the units are unbiased and uncorrelated.
The analysis shows that these assumptions are valid for large
networks with random sparse connectivity. In fact, such type of
connectivity renders correlation between the outputs of units
small, which is the point relevant for our derivation.

In the context of neuroscience, random networks are often
considered as the simplest model of connectivity of neural cir-
cuits [43,44,61,64,65]. On the other hand, most of the research
so far dedicated to mean-field approach for stochastic systems
has addressed the scenario of a fully connected network
[23,33,34,51–53]. However, recent experimental data provides
evidence that the organization of synaptic connections in brain
is nontrivial and differs drastically from both of the above
models [66–69]. The structure of neural networks appears to
be inhomogeneous, in a sense that most of the connections
are random and sparse, but some units are also organized into
densely connected clusters [70,71].

Such clusters have already been established to play an
important information-processing role in the cortex [72–75].
Within a broader research agenda, the results gained here
for the case of random networks, if incorporated together
with the previous work on fully connected networks, may
ultimately allow us to derive the mean-field model appropriate
for clustered networks.

In terms of research goals, most of the early studies applying
the mean-field approach have been focused on explaining the
mechanisms behind the spontaneous activity characterized by
irregular firing of neurons at low rates, typically found in
a living cortex or living hippocampus. Apart from gaining
insight into the genesis and the self-sustaining property of these
chaotic states, the aim has also been to explain why populations
of highly nonlinear units display linear responses to external
drive, reacting on time scales faster than the characteristic time
scale of a single unit. The emergence of relevant cooperative
states has been linked to several different ingredients, including
the features of the unit’ s threshold function, the network
connection topology, and the scaling of synaptic strengths.
In particular, for a fully connected network of rate-based units
with random asymmetrical couplings similar to spin glasses,
the onset of chaos has been associated to the gain parameter of
the threshold function [76]. For networks comprised of binary
neuronlike units, the most important finding has concerned
the existence of a chaotic balanced state, where variability is
achieved by the balance of excitatory and inhibitory inputs,
each being much larger than the unit’ s threshold [61,64].
Necessary conditions for maintaining such a regime include
random and sparse connectivity, as well as comparably strong
synapses. Under similar conditions the networks of integrate-
and-fire neurons have been found to support a bistable
regime between the spontaneous activity, uncorrelated with the
received stimuli, and the “working memory” states, strongly
correlated with the “learned” stimuli [77,78]. Further research
have revealed importance of the weight distribution in random
networks of integrate-and-fire neurons and its essential role
for the spike-based communication [65].

At variance with the above models, which typically do
not consider at all or provide only a limited account of the
effects of noise, the central issue of research in recent years
has become the point of how noise from the level of single units

is translated to and reflected in the macroscopic-scale behavior.
The present study aims to contribute to this line of research,
and our main results can be summarized as follows. In the
thermodynamic limit, the network dynamics is deterministic in
nature. We have determined the stationary levels of the network
activity, showing that for strong enough coupling [α > α0; see
Eq. (18)] the network exhibits bistable regime, characterized
by coexistence of the low and the high stable states. In terms
of how noise from microscopic dynamics effectively impacts
the collective behavior, our most important finding is that the
external and the internal noise play essentially different roles in
the mean-field dynamics. In particular, in the thermodynamic
limit, the internal noise does not influence the macroscopic
dynamics at all, while the external noise changes the position
and the number of stable levels. We have demonstrated that
this feature can be used to control the network dynamics via
external noise in a hysteresislike scenario, as illustrated in
Fig. 3. We have also shown that the external noise influences
the transient dynamics of a network, at certain instances being
able to speed up its response to the change of external drive.

The developed theory has also allowed us to consider the
finite-size effects on the network dynamics. The corresponding
approximate model for large but finite networks effectively
involves three sources of noisy behavior. Apart from the
internal and external noises, which manifest as the additive
and multiplicative noise at the macroscopic level, we identify
an additional term that derives from heterogeneity in the units’
connectivity degrees. We have found that the finite-size effects
are twofold and consist in (i) displacement of the stationary
levels and (ii) in giving rise to stochastic fluctuations of the
mean rate. Since the change of the stationary values of R and
S is of the order of 1/N , the most important are the stochastic
fluctuations which have the magnitude of the order of 1/

√
N .

It has also been explicitly demonstrated that the developed
approach provides a satisfactory estimate of the magnitude of
the fluctuations for the parameter domain sufficiently away
from the bifurcations.

We suspect that novel interesting effects may arise in
sufficient vicinity of the pitchfork bifurcation, where the
network possesses two stable activity levels that are relatively
close to each other. In this case, the derivatives F ′(X0) are
close to zero for both states, and the estimate provided by
Eq. (26) indicates large fluctuations of the mean rate. If one
approaches close enough to the bifurcation, the magnitude of
fluctuations may become of the order of the distance between
the levels, which is likely to induce stochastic “switching”
between the low and the high state. This phenomenon may
be associated to high variability of firing rates often observed
in neural networks and recently connected to clustering of
synaptic connections [71]. However, linearization of Eq. (23)
in this case is no longer adequate, such that the full nonlinear
equations (11) and (12) should be studied to capture the
potential phenomenon of stochastic switchings. This will be
one of the main goals for our future research.
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