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Dynamical quantum typicality: Simple method for investigating transport
properties applied to the Holstein model
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We investigate the transport properties of the Holstein model using the numerically exact quantum typicality
(QT) approach. Roughly speaking, QT exploits the fact that even a single, randomly chosen pure state can
effectively represent the full statistical ensemble in a high-dimensional Hilbert space. This allows us to compute
frequency-dependent mobilities, representative of the thermodynamic limit, that are well converged with respect
to all numerical parameters. Our results are compared against other numerically exact methods, and used to
analyze the contribution of vertex corrections to frequency-dependent mobility. The promising accuracy and
efficiency of the QT approach suggest its applicability to a broader class of Hamiltonians.
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I. INTRODUCTION

The study of charge carrier transport in electron-phonon
systems is fundamental for the advancement of both the theo-
retical understanding and practical applications, as it directly
impacts the performance of electronic devices [1,2]. Quanti-
ties such as the frequency dependent mobility μ(ω) and the
time-dependent diffusion constant D(t ) encode crucial infor-
mation about transport behavior [3,4]. In the weak-coupling
limit, these are successfully calculated using the semiclassical
Boltzmann transport equation [5,6]. However, for stronger
couplings it is necessary to go beyond the Boltzmann ap-
proach [7,8]. In principle, a pathway toward an exact, and
thus fully quantum, solution was laid out by Kubo in 1957 [9]
who related μ(ω) and D(t ) to the current-current correlation
function Cj j (t ) [10,11]. Yet, Kubo’s approach itself does not
provide a concrete recipe for calculating Cj j (t ), which is why
in practice other numerically exact or approximate methods
are needed for this purpose.

Over the years, numerous approximate methods have been
developed, each with a specific purpose and varying de-
grees of success [12–15]. Some focus exclusively on the
lowest-order Feynman diagram, i.e., the bubble term [7,16–
20]—sometimes even with extremely high precision—but
they neglect everything else, often without justification. Oth-
ers approximately take into account the vertex corrections
as well [21,22], but face certain limitations: for example,
momentum average approximation [23] works only in the
zero-temperature case; while the analytic unitary transforma-
tion [24] has diverging DC mobility, requiring the ad hoc
introduction of some scattering time τ . Even if a highly
accurate approximate method emerged, one would need to
demonstrate its accuracy by benchmarking it against exact
results, which highlights the persistent need for numerically
exact methods.

While several numerically exact methods have been de-
veloped [25–36], they often face significant challenges, such
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as high computational cost due to the exponential growth of
the Hilbert space with system size, or numerical instabilities
like the sign problem in the quantum Monte Carlo (QMC)
approach. This is why frequency-dependent mobility results
that are both representative of the thermodynamic limit and
well converged with respect to other numerical parameters
are seldom encountered in the literature. The hierarchical
equations of motion (HEOM) method [37–40], capable of
achieving this across a wide range of parameter regimes, has
only recently been introduced. However, it also has numerical
challenges, particularly in the case of strong electron-phonon
couplings, where it cannot converge. In addition, it is concep-
tually hard (or impossible) to generalize HEOM to arbitrary
electron-phonon Hamiltonians; so far, it has only been ap-
plied to Holstein [37,38] and Peierls [39,40] models, i.e.,
systems with harmonic phonons and linear electron-phonon
interaction.

In this work, we apply the dynamical quantum typicality
(QT) method [41–49] to calculate transport properties in the
Holstein model [50]. Within this approach, roughly speaking,
the thermal expectation value from the expression for the
current-current correlation function is represented using the
expectation value with respect to a randomly chosen pure
state, while the time evolution of Cj j (t ) is handled using the
Runge-Kutta scheme [51,52]. Given that QT is numerically
exact in systems with a large (effective) Hilbert space dimen-
sion, which we demonstrate is typically the case in this paper,
our work makes three key contributions to the existing litera-
ture: (i) We provide the frequency-dependent mobility results
close to the thermodynamic limit, well converged with respect
to all numerical parameters, even in the strong coupling limit.
Additionally, these results are used to examine the contribu-
tion of vertex corrections to the frequency-dependent mobility
(including DC mobility) in the case of strong couplings, which
is the only regime not completely covered in Ref. [38]. (ii)
We present the first comparison of HEOM results for optical
conductivity and the current-current correlation function (for
both short- and long-time dynamics) with another numeri-
cally exact method (QT), providing a more comprehensive
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understanding of the accuracy and performance of both meth-
ods. Previously, HEOM was only independently verified
against QMC for short-time dynamics due to the QMC sign
problem [37,38]. (iii) Since QT is applicable to more general
Hamiltonians, our study provides a crucial first step in evaluat-
ing its performance in electron-phonon systems—specifically,
its numerical stability and convergence with respect to various
parameters—on a well-studied system. This paves the way for
applying QT to less explored systems, such as those with non-
linear electron-phonon couplings and anharmonic phonons,
which have recently attracted renewed interest [53–59].

The remainder of this paper is organized as follows: Sec-
tion II A introduces the Holstein Hamiltonian. The key results
from the Kubo’s linear response theory are briefly summa-
rized in Sec. II B. Section II C reviews quantum typicality and
its generalization, the stochastic trace approximation, while
their practical implementation for our problem is provided
in Sec. II D. The dynamical mean-field theory, needed for
the analysis of vertex corrections, is outlined in Sec. II E. In
Sec. III, we present and analyze the main QT numerical re-
sults, providing a detailed comparison with HEOM and QMC.
Here, we also study the vertex corrections in the strong cou-
pling regime. Discussion and concluding remarks are given
in Sec. IV. Additional numerical results are included in the
Supplemental Material (SM) [60].

II. THEORETICAL CONSIDERATIONS

A. Model

We examine the one-dimensional Holstein model, on a
lattice with N sites, with periodic boundary conditions. The
corresponding Hamiltonian is given by

H = − t0
∑

i

(c†
i ci+1 + c†

i+1ci ) − g
∑

i

c†
i ci(a

†
i + ai )

+ ω0

∑
i

a†
i ai, (1)

where c†
i and ci (a†

i and ai) are electron (phonon) creation
and annihilation operators, t0 is the hopping parameter, g is
the coupling constant, and ω0 is the dispersionless phonon
frequency, while it is customary to also introduce the dimen-
sionless strength of the electron-phonon interaction as λ =
g2/(2ω0t0). Throughout this paper, we set the Planck constant
h̄, the Boltzmann constant kB, and t0 to 1. Furthermore, we
assume that there is only a single electron in the conduction
band. This is a standard assumption, as this model should
qualitatively describe weakly doped semiconductors.

The corresponding Hilbert space is infinite dimensional
due to the possibly infinite number of phononic excitations.
Nevertheless, as shown in Sec. A of the SM [60], it is justified
to truncate the Hilbert space by limiting the total number
of phonons in a system to be less than or equal to some
(possibly large but) finite number M. The dimension of the
corresponding Hilbert space is then given by

d = N

(
N + M

N

)
. (2)

B. Frequency-dependent mobility and the current-current
correlation function

The central quantity of this work is frequency dependent
mobility μ(ω), which is just the optical conductivity nor-
malized to the concentration of charge carriers. According
to Kubo linear response theory [9,10], μ(ω) is related to the
current-current correlation function Cj j (t ) as follows:

μ(ω) = 2 tanh
(

βω

2

)
ω

∫ ∞

0
cos(ωt ) Re Cj j (t ) dt, (3)

Cj j (t ) = 〈 j(t ) j〉 = Tr[e−βH eiHt je−iHt j]

Tr[e−βH ]
. (4)

Here, β = 1/T is the inverse temperature, while 〈. . . 〉 =
Tr[e−βH . . . ]/Tr[e−βH ] represents the thermal expectation
value. The symbol j represents the current operator, which
for the Holstein model reads as [10,37]

j = it0
∑

r

(c†
r+1cr − c†

r cr+1), (5)

while j(t ) = eiHt je−iHt represents the current operator in the
Heisenberg picture.

While Re Cj j (t ) contains all information about μ(ω),
it is sometimes [13,38] more convenient to analyze an
equivalent quantity: the time dependent diffusion constant
D(t ), which describes the growth rate D(t ) = 1

2
d
dt (�x(t ))

2

of the charge carrier quantum-mechanical spread, �x(t ) =√
〈(x(t ) − x(0))2〉. The diffusion constant is mathematically

related to Re Cj j (t ) via the following expression:

D(t ) =
∫ t

0
dt ′ Re Cj j (t

′). (6)

From Eqs. (3) and (6), it directly follows that μ(ω = 0)
= D(t → ∞)/T . This is the famous Einstein relation, which
shows that for the DC mobility μ(ω = 0) to be finite, the
time-dependent diffusion constant must saturate to a constant
value at large times.

Before explaining how we calculate Cj j (t ) in practice, let
us first emphasize that μ(ω) satisfies the so-called optical
sum rule, which in the case of the Holstein model in the
thermodynamic limit (N → ∞) reads as follows:∫ ∞

0
dω μ(ω) = −π

2
〈Hel〉 = −π

2

Tr[e−βH Hel]

Tr[e−βH ]
. (7)

Here, 〈Hel〉 is the thermal expectation value of the electronic
part of the Hamiltonian, which is given by the first term of
Eq. (1). On a finite lattice N , Eq. (7) is violated, which is why
the relative error

δ =
∣∣ ∫ ∞

0 dω μ(ω) + π
2 〈Hel〉

∣∣
−π

2 〈Hel〉 (8)

indicates the presence of finite-size effects [29,37].

C. Calculating traces using stochastic trace estimation
and quantum typicality methods

As the Hilbert space in our system is typically large,
we need an efficient way to calculate the traces in Eqs. (4)
and (7). This can be achieved using the so-called stochastic
trace estimation [61–67]. In short, using mutually independent
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complex random variables cn, with zero mean and arbitrary
variance E [|c|2], the trace of arbitrary operator X can be
obtained as follows [42]:

TrX =
∑
n,m

δn,m〈n|X |m〉 =
∑
n,m

E [c∗
ncm]

E [|c|2]
〈n|X |m〉

= 1

E [|c|2]
E

[(∑
n

c∗
n〈n|

)
X

(∑
m

cm|m〉
)]

= E [〈ψ |X |ψ〉]
E [|c|2]

. (9)

Here, |n〉 are (arbitrary) basis vectors, the symbol E [. . . ]
denotes an expectation value with respect to the random
numbers cn, while |ψ〉 = ∑

n cn|n〉 can be interpreted as a
randomly chosen vector from the Hilbert space. While various
probability distributions for the random coefficients cn are
commonly used in the literature [33,42], this work will use
the Gaussian distribution.

Setting X = e−βH A in Eq. (9), and using the cyclic prop-
erty of the trace Tr[e−βH A] = Tr[e−βH/2Ae−βH/2], we see that
the expectation value of an arbitrary quantity A in the canoni-
cal ensemble can be expressed as

〈A〉 = E [〈ψ |e−βH/2Ae−βH/2|ψ〉]
E [〈ψ |e−βH |ψ〉] = E [〈ψβ |A|ψβ〉]

E [〈ψβ |ψβ〉] , (10)

where |ψβ〉 = e−βH/2|ψ〉. If expectation values E [.] in
Eq. (10) are approximated by using only R random vectors
|ψ〉, the relative error scales as O(1/

√
R deff ), where deff =

Tr[e−β(H−E0 )] is the effective dimension of the Hilbert space,
and E0 is the ground state energy; see Ref. [68] and Sec. B
from the SM [60]. Consequently, in cases where the effective
Hilbert space is large, as it typically is in this work, a single
random vector suffices for Eq. (10). This approach is known
as (dynamical) quantum typicality (QT) [41,42].

D. Quantum typicality approach for computing current-current
correlation functions

Let us now demonstrate how QT, which we summarized
in the previous subsection, can be applied for the calculation
of the current-current correlation function Cj j (t ) = 〈 j(t ) j〉.
Starting from Eq. (10), with only a single random vector |ψ〉,
and setting A = j(t ) j = eiHt je−iHt j, we see that Cj j (t ) can be
expressed as

Cj j (t ) ≈ 〈ψβ (t )| j|φβ (t )〉
〈ψβ (t )|ψβ (t )〉 , (11)

where we introduced

|ψβ (t )〉 = e−iHt e−βH/2|ψ〉, (12)

|φβ (t )〉 = e−iHt je−βH/2|ψ〉. (13)

To deal with e−iHt (e−βH is handled analogously), we break
the total evolution into small time steps dt,

|ψ (t )〉 = e−iHt |ψ〉 = e−iHdt e−iHdt . . . e−iHdt︸ ︷︷ ︸
Nt times, such that Nt dt=t

|ψ〉, (14)

and then expand each e−iHdt in the Taylor series up to some
order nRK (in this paper we usually choose nRK = 4):

|ψ (dt )〉 ≡ e−iHdt |ψ〉 ≈
nRK∑
l=0

(−iHdt )l

l!
|ψ〉. (15)

In practice, Eq. (15) is implemented by introducing

| fs〉 =
nRK −s∑

l=0

s!

(s + l )!
(−iHdt )l |ψ〉, (16)

which satisfy the following recurrence relations:

| fs−1〉 = |ψ〉 + (−iHdt )

s
| fs〉, (17)

with a property that | fnRK 〉 = |ψ〉 and | f0〉 = |ψ (dt )〉. There-
fore, the expression in Eq. (15) can be evaluated as follows:
one starts with | fnRK 〉 = |ψ〉 and applies Eq. (17) to iter-
atively calculate | fs〉 for s = nRK − 1, nRK − 2, . . . , 0, until
|ψ (dt )〉 = | f0〉 is obtained. This approach is commonly re-
ferred to as the Runge-Kutta method [41,51,52]. It has the
property that for the time propagation of |ψ〉, it requires
storing only two d-dimensional vectors—one for |ψ (t )〉 and
the other as an auxiliary vector. Although Eqs. (11)–(13)
involve the propagation of two vectors (|ψ〉 and |φ〉), the
auxiliary vector can be shared between them, so only three
d-dimensional vectors are needed in total. It is worth noting
that the Runge-Kutta scheme does not necessarily preserve the
normalization of the wave function |ψ (dt )〉, which is why we
manually adjust |ψ (dt )〉 at each time step by multiplying it
with a real constant, ensuring that 〈ψ |ψ〉 = 〈ψ (t )|ψ (t )〉.

This approach, combining stochastic trace estimation (with
a single random vector) and the Runge-Kutta scheme, will be
referred to as the quantum typicality (QT) for brevity. QT
can also analogously be used to compute static quantities
such as 〈Hel〉. In fact, Cj j (t ) and 〈Hel〉 can both be calcu-
lated simultaneously using QT, by sharing the same random
vector |ψ〉.

E. Dynamical mean field theory

QT can provide numerically exact results for μ(ω), but
to assess the importance of vertex corrections, we also need
results from the bubble approximation. These can be directly
obtained using the single-particle Green’s (or spectral) func-
tions. In the case of the Holstein model, the dynamical mean
field theory (DMFT) provides a highly accurate way to calcu-
late these quantities [17].

DMFT is a nonperturbative method [69] designed to tackle
problems with local interaction, such as the Hubbard or Hol-
stein models [70], by relating them to the impurity problem
with a self-consistency relation. In general, it is exact in the
case when the crystal lattice is infinite dimensional, while
it is otherwise approximate, as it assumes a momentum-
independent self-energy. However, the special case of the
Holstein model brings two important simplifications: (i)
DMFT is extremely accurate for arbitrary dimensionality of
lattice, even for 1D [17]. (ii) the impurity problem has an
analytic solution, in the form of continuous fraction expan-
sion [70]. In addition, DMFT can be applied directly in the
thermodynamic limit N → ∞. As a consequence, DMFT is
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here perfectly suitable for the numerically efficient and accu-
rate calculation of μ(ω) within the bubble approximation. For
more details, see Refs. [17,38].

III. RESULTS AND ANALYSIS

Here, we calculate the transport properties within QT,
across various parameter regimes, and compare the results
with the predictions from other numerically exact methods:
HEOM and QMC. We note that the HEOM data were taken
from Refs. [37,38,71], and the QMC data from Ref. [38],
while the methodological frameworks underlying these ap-
proaches are detailed in Refs. [37] and [34], respectively. In
addition, we also perform the DMFT calculations, but only
for a strong electron-phonon coupling, as this is the only
regime where vertex corrections were not previously analyzed
in Ref. [38]. Before presenting the main results in Sec. III B,
we first discuss potential sources of inaccuracies within QT
in Sec. III A, which can arise in practice despite QT being in
principle exact.

A. Convergence analysis of QT with respect to various
numerical parameters

To obtain accurate QT results representative of the ther-
modynamic limit, the following conditions must be satisfied:
(i) results must fully converge with respect to the number
of phonons M in the Hilbert space; we have demonstrated
how this is checked in practice in Sec. A of the SM [60].
(ii) Results must fully converge with respect to the number
of lattice sites N . While this is often established by check-
ing that the optical sum rule is satisfied to a high degree of
accuracy [32] [the quantity δ, given by Eq. (8), is displayed
for each of the Figs. 1–5], such a test is, strictly speaking,
only a necessary condition for the result to be representative
of the thermodynamic limit. Instead, it is much better to
simply calculate the transport properties for various N , and
directly inspect whether the results actually converged; this
was done in Sec. C of the SM [60]. (iii) A sufficiently small
time step dt must be used in the Runge-Kutta method; for
all the regimes we examined, we checked that dt = 0.01 is
sufficiently small. An example of such analysis can be seen in
Fig. S7 of the SM [60]. (iv) The fact that reliable results can
be obtained using only a single random vector in stochastic
trace approximation; this was checked both in Sec. B of the
SM [60], and in Sec. III B of the main text as well. Namely,
in all Figs. 1–5 (usually in insets) we show two QT results,
for two different lattice sites NQT

larger and NQT
smaller. Since these

two results use different random vectors |ψ〉, their agreement
would demonstrate both that finite-size effects are small and
that using a single random vector in the stochastic trace ap-
proximation is sufficient.

Although all of the above conditions were satisfied for
the regimes presented in Figs. 1–5, we note that there are
some regimes where satisfying these conditions could require
impractically large computational resources. For example, in
the weak coupling regime, electron-phonon scattering is also
weak, meaning the electron must travel long distances to lose
memory of its initial state; this is even more pronounced at
low temperatures. Consequently, a large number of lattice

FIG. 1. Comparison of (a1)–(c1) Re Cj j (t ) and (a2)–(c2) μ(ω)
in the weak-intermediate coupling regime ω0 = 1, λ = 1/2 at T =
1, 2, 5. Insets of (a1)–(c1) show zoomed-in portions of the panels and
additional QT results on smaller lattices. Panels (a2)–(c2) display the
relative accuracy δ of the optical sum rule within QT, with insets
showing D(t ). In all panels, QMC results are presented with the
corresponding error bars.

sites N are required to obtain results representative of the
thermodynamic limit. For such large N , possibly involving
several dozen lattice sites, if we consider that there is only
a single phonon per lattice site M = N , the dimension of
the Hilbert space [as seen from Eq. (2)] is enormous as it
scales as d ∼ 4N√

N/π . This explains why QT, in its present
form, is not suitable for weak couplings and low temperatures,
and why we focus on intermediate and strong couplings at
moderate to high temperatures.

B. Numerical results

1. Weak-intermediate and intermediate couplings

The results for weak-intermediate coupling regime
λ = 1/2, moderate temperature T = 1, and phonon frequency
ω0 = 1 are presented in Figs. 1(a1) and 1(a2). In Fig. 1(a1) we
observe an excellent agreement between all methods. A small
discrepancy in the current-current correlation function Cj j (t )
between QT and HEOM is visible only for t ∼ 10. To analyze
this discrepancy, let us note once again that QT results here
(and also for all regimes presented in Figs. 1–5) satisfy all
convergence conditions from Sec. III A: we made sure that
the Runge-Kutta time step is sufficiently small; we checked
in Fig. S1 of the SM [60] that Re Cj j (t ) has fully converged
with respect to the number of phononic excitations M; the
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agreement of QT results for Nlarger and Nsmaller in the inset of
Fig. 1(a1) demonstrate both that the results are well converged
with respect to the number of lattice sites N (see also Fig. S5
from the SM [60]), as well as the fact that sufficiently accurate
results can be obtained using only a single random vector
in the stochastic trace approximation. This analysis, together
with the simplicity and transparency of the QT method, gives
us confidence that QT is indeed more accurate in this case.
In contrast to QT, the HEOM method, although very pow-
erful, involves more complex numerical settings and is less
straightforward, making it harder to determine whether small
numerical inaccuracies have been fully eliminated [37,38].
Despite all of this, we find that the agreement in frequency
dependent mobility μ(ω) is excellent; see Fig 1(a2).

As the temperature increases, the discrepancies between
QT and HEOM grow progressively more pronounced, becom-
ing evident even at intermediate timescales; see Figs. 1(b1)–
1(c1). At T = 5, a clear difference in Cj j (t ), between QT and
HEOM, can be seen in an inset, showing a closer view of
panel 1(c1). We again assert that QT is more accurate, as all
convergence conditions from Sec. III A are met, a point further
supported by QMC; see Fig. 1(c1). The reason we place such
confidence in the QMC results, allowing them to arbitrate
between QT and HEOM, is the presence of corresponding
error bars, which explicitly show the precision of the QMC
results. Present analysis, in combination with the discussion
associated with Fig. 5 of Ref. [37], indicates that HEOM
results are probably not fully converged with respect to the
so-called maximum hierarchy depth [37,38]. Nevertheless, the
mismatch between QT and HEOM is not very large.

The general agreement between the QT and HEOM
current-current correlation functions translates to a very good
agreement between the frequency-dependent mobilities com-
puted by these approaches; see Figs. 1(a2)–1(c2). Although
this confirms that QT can actually provide accurate μ(ω), it
should be noted that the quantitative value of the DC mobility
[and μ(ω) for very small ω] has somewhat larger error. This
is evident from the analysis of D(t ), keeping in mind the
Einstein relation μ(ω = 0) = D(t → ∞)/T . As we see, a
distinct plateau (i.e., the saturation) of D(t ) does not always
emerge at the longest times over the interval for which we
propagate D(t ), especially at lower temperatures. Longer time
propagation, although numerically expensive, is possible, but
we note that the finite-size effects are more pronounced for
this feature. As discussed in Sec. C of the SM [60], it seems
that D(t ) saturates more quickly for larger lattices. Therefore,
HEOM results have an advantage for calculating DC mobil-
ities, as they are obtained on larger lattices and propagated
to longer times than QT. However, the already mentioned
small inaccuracies in the HEOM solution at intermediate
timescales can also affect the DC mobility result. For example,
by comparing the insets in Figs. 1(c1)–1(c2), we see that slight
differences in the DC mobilities predicted by HEOM and
QT are largely due to discrepancies in Re Cj j (t ) at t ∼ 2.5
and t ∼ 5.5. Despite these differences, the DC mobilities pre-
dicted by QT and HEOM remain in good agreement across all
the regimes we examined.

The results for λ = 1 are shown in Fig. 2. For T = 2, 5, we
see that similar conclusions can be drawn as in the λ = 1/2
case, reinforcing our confidence in QT being more reliable

FIG. 2. Comparison of (a1)–(c1) Re Cj j (t ) and (a2)–(c2) μ(ω)
in the intermediate coupling regime ω0 = 1, λ = 1 at T = 1, 2, 5.
Insets of (a1)–(c1) show zoomed-in portions of the panels and ad-
ditional QT results on smaller lattices. Panels (a2)–(c2) display the
relative accuracy δ of the optical sum rule within QT, with insets
showing D(t ). QMC results for NQMC = 7 are presented in all panels,
along with their corresponding error bars.

than HEOM at higher temperatures. However, a peculiarity
in the QT solution can be observed at T = 1: DC mobility
cannot be estimated reliably as the diffusion constant D(t )
does not exhibit any signs of saturation at long times; see the
inset of Fig. 2(a2). As discussed in Sec. C of the SM [60],
we expect this to be a consequence of the finite-size effects.
Nevertheless, μ(ω) for |ω| � 0.15 should be quite accurate.
Unfortunately, HEOM predictions for this particular regime
(T = 1) are not available.

2. Strong couplings

For λ = 2 and ω0 = 1, the renormalized electron mass (at
T = 0) is about ten times larger than band mass; see Fig. 1(b)
from Ref. [17] or Fig. 3 from Ref. [72]. This is why this is con-
sidered a strong coupling regime. The corresponding transport
properties, for two different temperatures, T = 1, 10, are ex-
amined in Fig. 3.

Such strong interactions, while requiring a large number of
phonons M, do not necessarily demand an extensive number
of lattice sites N to approximate the thermodynamic limit ef-
fectively. This is demonstrated in Fig. 3 by showing both that
the optical sum rule is satisfied to a high degree of accuracy,
and also by explicitly comparing QT results for two consecu-
tive lattice sizes. This makes it quite suitable for application of
QT method, having in mind how the Hilbert space dimension
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FIG. 3. Comparison of (a1)–(b1) Cj j (t ) and (a2)–(b2) μ(ω) in
the strong coupling regime ω0 = 1, λ = 2, at T = 1, 10. Insets of
(a1)–(b1) show D(t ), while δ (within QT) and δμvtx

dc , given by Eqs. (8)
and (18), are displayed in panels (a2)–(b2). QMC results are pre-
sented in all panels with the corresponding error bars.

scales with N and M [see Eq. (2)]. In contrast, HEOM method
cannot be applied here due to the fact that it cannot converge
with respect to the maximum hierarchy depth. Thus, the only
independent benchmark that we have is the QMC, and we
see that it is in excellent agreement with QT. Unfortunately,
QMC is reliable only for relatively short times, until the sign
problems start showing up. Nevertheless, QT should be accu-
rate even for longer times, as it satisfies all conditions from
Sec. III A. A further support for this statement can be seen
from certain qualitative features that the QT solution satisfies.
These include rather fast attenuation of Cj j (t ), as well as the
appearance of a bump at t = 2π/ω0 which is a characteristic
feature of such regimes [34,38].

In Fig. 3 we also show the DMFT predictions which, as we
already explained in Sec. II E and Ref. [38], are practically the
exact results without the vertex corrections. Thus, by compar-
ing them to the QT results we can inspect exactly how large
the vertex corrections actually are. As observed, the short-time
results for Cj j (t ) from both methods match perfectly, leading
to excellent agreement in the μ(ω) predictions at higher fre-
quencies, ω � 3. These predictions display a series of peaks at
integer multiples of ω0, with the difference being that DMFT
yields simple peaks, whereas QT produces peaks with more
intricate internal structure. As the temperature is increased, we
see that the discrepancy between QT and DMFT gets smaller,
which is in accordance with the analytic result [38] that
the vertex corrections are vanishing in the high-temperature
limit. Let us also note that a decent saturation of the QT
(and DMFT) diffusion constant is observed, meaning that DC
mobility can be estimated. This is especially true at higher
temperatures T > 1; see Sec. D of the SM [60]. Thus, we are
also able to measure the importance of vertex corrections for
DC mobility, which we quantify by introducing

δμvtx
dc = μ

QT
dc − μDMFT

dc

μ
QT
dc

, (18)

FIG. 4. Comparison of (a1)–(b1) Cj j (t ) and (a2)–(b2) μ(ω) for
ω0 = 1/3, λ = 1/2, at T = 1, 5. Inset of (b1) displays the zoomed-
in portion of the corresponding panel. In (a2)–(b2) we also show δ

(within QT), given by Eq. (8), as well as the time-dependent diffusion
constant D(t ) in the insets. Error bars for the QMC results are smaller
than the symbol size.

which is shown in Figs. 3 and S11 from the SM [60] for T =
1, 2, 5, 10. All of these results readily demonstrate that the
order of magnitude of the DC mobility is correctly predicted
by the bubble approximation, even for strong coupling regime.

3. Approaching adiabatic limit

Near the adiabatic limit (ω0 = 1/3), the results for
the weak-intermediate (λ = 1/2), intermediate (λ = 1), and
strong coupling regime (λ = 2) are presented in Figs. 4 and 5.

FIG. 5. Comparison of (a1)–(b1) Cj j (t ) and (a2)–(b2) μ(ω) for
ω0 = 1/3, T = 1, and λ = 1, 2. Inset of (a1)–(b1) display zoomed-
in portions of corresponding panels. In (a2)–(b2) we also show δ

(within QT), given by Eq. (8), as well as the time-dependent diffusion
constant D(t ) in the insets. QMC results for NQMC = 7 are presented
in all panels, along with their corresponding error bars.

195140-6



DYNAMICAL QUANTUM TYPICALITY: SIMPLE METHOD … PHYSICAL REVIEW B 111, 195140 (2025)

The results are analogous to those we already obtained for
ω0 = 1: we see that the current-current correlation functions
(from all methods) are in excellent agreement for λ = 1/2,
T = 1, while at T = 5 slight discrepancies between QT and
HEOM solutions arise already at intermediate timescales.
These are a consequence of small inaccuracies of the HEOM
solution, as confirmed by the QMC results which are in per-
fect agreement with QT. An analogous conclusion can be
also drawn for intermediate couplings λ = 1 as well. For this
case, however, the accuracy of the QT results was verified by
carefully checking all the convergence conditions we listed
in Sec. III A. Despite the small differences in Cj j (t ), we find
that QT and HEOM predictions for μ(ω) agree quite well
[see Figs. 4(b2) and 5(a2)]. The results in the strong coupling
regime λ = 2 are available only within QT and QMC, and the
agreement is excellent, while HEOM results are unavailable
due to the fact that it fails to converge with respect to the
maximum hierarchy depth. Let us also note that both QT
results in Fig. 5 display a quite good long-time saturation of
the diffusion constant D(t ), enabling us to reliably extract the
value of DC mobility.

In Fig. 5 we also show the DMFT results that, by com-
paring them with QT predictions, are used to examine the
contribution of vertex corrections. As observed, the results
differ notably from the ω0 = 1 case. Here, the bubble approx-
imation shows a much larger qualitative deviation from the
exact solution, failing to capture its most prominent feature:
the displaced Drude peak around ω ≈ 2t0. This peak is a
consequence of temporal localization of the electron at small
timescales, which occurs due to the phonons, which act as a
source of dynamical disorder in the system [13,73]. Within
this picture, it is expected that as we increase the interaction
strength, the electron should be more localized (at short time
scales), implying that the displaced Drude peak should move
to larger frequencies. This is exactly what we see in Fig. 5: the
displaced peak for λ = 1 is centered around ω ≈ 1.95, while
for λ = 2.0 it shifts to ω ≈ 2.25. Regarding the vertex cor-
rections to DC mobility, let us note that although they are not
extremely large in Fig. 5 (δμvtx

dc ≈ − 0.5 for λ = 1.0, while
δμvtx

dc ≈ −1.0 for λ = 2.0), they will become much larger as
we approach the adiabatic limit ω0 → 0. This is a conse-
quence of the fact that μ(ω) in the exact solution will tend
to zero due to Anderson localization, while the DMFT result
will stay finite, as it neglects the nonlocal correlations [73].

IV. DISCUSSION AND CONCLUSIONS

In summary, we employed the stochastic trace estimation
with a single random vector, combined with the Runge-
Kutta method—collectively referred to as QT—to compute
the transport properties of the Holstein model. This approach
allowed us to converge the results with respect to all numerical
parameters, yielding highly accurate (i.e., numerically exact)
results representative of the thermodynamic limit. To accom-
plish this, it was important not to waste RAM memory by
storing too many unnecessary auxiliary states; our implemen-
tation required only three d-dimensional vectors, allowing us
to work in Hilbert spaces with large number of dimensions
d . For such large d , the computational cost per random vector
(from the stochastic trace approximation) is not cheap in terms

of CPU time. This was why, for the calculation to be feasible,
it is important that even a small number of (or in our case
even a single) random vector was sufficient to obtain accurate
results.

We note that computational efficiency could potentially be
improved by using the finite-temperature Lanczos method or
the kernel polynomial method (KPM), both of which also
rely on stochastic trace estimation. However, these approaches
would require storing hundreds of additional auxiliary states
in RAM [31,32], which we avoided. While KPM can also be
applied in a much more memory-efficient way, this comes
at the cost of a significantly increased computational effort,
which now scales quadratically with the expansion order [33].
This is why we decided to simply use QT.

The obtained QT results were compared with the predic-
tions from the HEOM method, which is also numerically
exact in principle, yielding a deeper insight into the accuracy
and effectiveness of both approaches. We found that QT can
handle much stronger electron-phonon couplings, which are
inaccessible to HEOM due to convergence issues with respect
to the maximum hierarchy depth. Moreover, in the interme-
diate coupling regime at elevated temperatures—where both
methods are applicable—QT yielded more accurate results
for the current-current correlation function at intermediate
timescales. This conclusion was drawn by carefully establish-
ing that all potential sources of error, within the numerically
exact QT framework, were eliminated.

Further unequivocal support for the previous statement was
provided by the numerically exact real-time QMC data, which
aligned perfectly with the QT results, while the corresponding
QMC error bars were significantly smaller than the discrep-
ancy between QT and HEOM. Although the QMC error was
(in some regimes) small enough to arbitrate between QT and
HEOM at intermediate timescales, we note that the QMC
error becomes much larger at longer times due to the infamous
sign problem, implying that QMC often cannot be used for
the calculation of frequency-dependent mobility μ(ω). Such
numerical instabilities are not present in QT, which can be
propagated to sufficiently long times for the calculation of
μ(ω). Therefore, QT effectively addresses many of the lim-
itations of QMC and HEOM. However, it should be noted that
QT does not replicate all of their advantages: in particular, it
cannot reach systems as large as QMC and HEOM, which is
crucial in weak coupling and low temperature regimes, where
a large number of lattice sites is necessary to obtain results
representative of the thermodynamic limit.

QT results were also used to examine the significance of
vertex corrections to the frequency-dependent mobility μ(ω)
for strong couplings, as this is the only regime where such
an analysis, due to the absence of strong coupling results,
had not already been performed in Ref. [38]. For ω0 = 1,
we found that the bubble approximation results were quali-
tatively quite similar to the exact results. While a difference
could be observed quantitatively, especially for smaller ω, the
bubble approximation managed to predict the correct order of
magnitude, even for the DC mobility. With increasing tem-
perature, we verified that the importance of vertex corrections
reduced, in accordance with the analytic results of Ref. [38].
The vertex corrections were also examined for ω0 = 1/3:
here, even qualitatively, the bubble approximation could not
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capture the correct behavior of μ(ω), missing a key feature—
the displaced Drude peak, associated with a temporal
localization of electrons at short timescales.

Although our treatment in this work focused on the Hol-
stein model, the same procedure can be readily applied to
more general systems. The only adjustment required would be
modifying how the Hamiltonian H and the current operator
j act on an arbitrary vector from the corresponding Hilbert
space. However, our algorithm involves numerous matrix-
vector multiplications, H |ψ〉 or j|ψ〉, making it crucial to
execute the procedure efficiently to maintain computational
feasibility. This imposes a practical limitation on a system
which we can examine, which are thus the ones where H and j
can be represented as sparse matrices. This remark, along with
our promising results in the case of the Holstein model, make
the QT method particularly well suited for studying systems
such as the Peierls model [14,74] or systems with nonlinear
electron-phonon couplings and anharmonic phonons [53–59].
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mulant expansion in the Holstein model: Spectral functions and
mobility, Phys. Rev. B 107, 125165 (2023).

[21] Y.-C. Cheng and R. J. Silbey, A unified theory for charge-
carrier transport in organic crystals, J. Chem. Phys. 128, 114713
(2008).

[22] J. H. Fetherolf, D. Golež, and T. C. Berkelbach, A unification
of the Holstein polaron and dynamic disorder pictures of charge
transport in organic crystals, Phys. Rev. X 10, 021062 (2020).

[23] G. L. Goodvin, A. S. Mishchenko, and M. Berciu, Optical Con-
ductivity of the Holstein polaron, Phys. Rev. Lett. 107, 076403
(2011).

[24] F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of charge
transport in organic crystals: Beyond Holstein’s small-polaron
model, Phys. Rev. B 79, 235206 (2009).

[25] W. Li, J. Ren, and Z. Shuai, Finite-temperature TD-DMRG for
the carrier mobility of organic semiconductors, J. Phys. Chem.
Lett. 11, 4930 (2020).

195140-8

https://doi.org/10.1039/c0cs00198h
https://doi.org/10.1103/PhysRev.140.A1649
https://doi.org/10.1016/0022-3697(63)90100-8
https://doi.org/10.1103/PhysRevResearch.1.033138
https://doi.org/10.1103/PhysRevLett.121.226603
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.1103/PhysRevB.83.081202
https://doi.org/10.1002/adfm.201502386
https://doi.org/10.1103/PhysRevLett.96.086601
https://doi.org/10.1063/5.0226001
https://doi.org/10.1103/PhysRevB.99.104304
https://doi.org/10.1103/PhysRevLett.129.096401
https://doi.org/10.1103/PhysRevLett.91.256403
https://doi.org/10.1103/PhysRevB.74.075101
https://doi.org/10.1103/PhysRevB.107.125165
https://doi.org/10.1063/1.2894840
https://doi.org/10.1103/PhysRevX.10.021062
https://doi.org/10.1103/PhysRevLett.107.076403
https://doi.org/10.1103/PhysRevB.79.235206
https://doi.org/10.1021/acs.jpclett.0c01072


DYNAMICAL QUANTUM TYPICALITY: SIMPLE METHOD … PHYSICAL REVIEW B 111, 195140 (2025)

[26] Y. Ge, W. Li, J. Ren, and Z. Shuai, Computational method for
evaluating the thermoelectric power factor for organic materi-
als modeled by the Holstein model: A time-dependent density
matrix renormalization group formalism, J. Chem. Theory
Comput. 18, 6437 (2022).
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investigating transport properties applied to the Holstein model

Petar Mitrić∗

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

In the main part of the paper, we used the (dynamical) quantum typicality (QT) method [1, 2] to calculate
the transport properties in the 1D Holstein model and we compared the obtained results with the predictions of
the hierarchical equations of motion (HEOM) method, quantum Monte Carlo (QMC), and dynamical mean-field
theory (DMFT). In particular, we presented the current-current correlation functions Cjj(t), alongside related
quantities such as optical conductivities µ(ω) and time-dependent diffusion constants D(t), in a wide range of
parameter regimes. In this Supplemental Material, we present some additional numerical results and discussions,
complementing those in the main text.

A. CONVERGENCE WITH RESPECT TO THE TOTAL NUMBER OF PHONONS M IN THE
HILBERT SPACE

Since the QT methodology is limited to finite-dimensional Hilbert spaces, we confined our study to systems with
N lattice sites and restricted the total number of phonons to some finite value M . Both N and M had to be
increased until the examined results no longer changed with further increases, ensuring convergence is achieved.
This procedure had to be performed for each parameter regime separately. In this Section, we demonstrate how
that convergence analysis looks like in practice for the total number of phonons M . Convergence analysis with
respect to the number of lattice sites N will be presented in Sec. C. Before doing all of this, let us first address one
theoretical question.

Within the QT method, why is it justified to truncate the total number of phonons to be less or equal to M , given
that the Hilbert space is inherently infinite-dimensional? In other words, why can the wave function |ψ⟩, used for
stochastic trace estimation, be represented as a finite-dimensional column vector in the coordinate representation,
even though QT requires |ψ⟩ to be constructed as a linear combination of an infinite number of basis vectors |i⟩,
with randomly chosen numbers cn as coefficients |ψ⟩ =

∑
n cn|n⟩; see Sec. II of the main text. The justification

lies in the fact that the relevant quantity in Eqs. (10) and (11) of the main text is not |ψ⟩ directly, but rather
|ψβ⟩ = e−βH/2|ψ⟩ and |ϕβ⟩ = je−βH/2|ψ⟩. Therefore, we see that the the contribution corresponding to basis

vectors with large number of phonons is suppressed by the Boltzmann factor e−βH/2.

Let us now return to the main question of how the convergence with respect to M is achieved in practice. A
straightforward procedure would consist of repeating the QT calculation for Cjj(t), using progressively larger values
of M , until convergence is reached. However, this is actually not necessary. As an alternative, we can go back to
Eq. (11) from the main text, and analyze the scalar products in the numerator and denominator: in each of those
scalar products, for each t, we can extract contributions corresponding to terms with total number of phonons less
or equal to different values of M = 0, 1, 2 . . . . In such a way, repeating calculation for various M is not needed,
since a single QT calculation is sufficient. Usually, we apply the described technique for somewhat smaller lattice
N , estimate the necessary number of phonons per site M/N , and then conclude that the total number of phonons
for any larger lattice then just needs to be scaled appropriately (M/N)Nlarger.

In Figs. S1, S2 and S3, we show how this analysis looks like for the regimes corresponding to top panels in
Figs. 1, 2 and 3 of the main text. For example, in Fig. S1 we see that the convergence of Cjj for all times t is
achieved for M ≈ 12. This calculation was performed on a lattice with N = 7 sites. Hence, for the lattice with
N = 11 sites, which we analyzed in the main text, one should use M ≈ 11 · (12/7) ≈ 18.86, which we rounded up
to M = 20. This is why M = 20 was used in the main text.

It is interesting to note that the required number of phonons for convergence, as shown in Figs. S1, S2, and S3,
appears to be smaller for larger times t. This trend is observed across all regimes analyzed in the main text. This
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is likely a consequence of the fact that the states with a large number of phonons correspond to higher energies,
causing their phase to change rapidly as a function of t, particularly at large times, after the time evolution operator
e−iHt is applied; see Eqs. (12) and (13) in the main text.

We note that while Figs. S1, S2, and S3 illustrate only the dependence of ReCjj(t) on M , a similar analysis was
also conducted independently for both the numerator and denominator of Eq. (11) from the main text. The reason
why we do this, especially for the denominator, is because we want to make sure that the truncated Hilbert space
can encompass all non negligible components of |ψβ⟩. This is important because the truncation of the Hilbert space
can introduce error not only when calculating the scalar products (see Eq. (11) of the main text), but also when
performing time evolution of wave functions (see Eqs. (12) and (13) of the main text).

0 5 10 15 20
M

0.0

0.5

1.0

1.5

2.0

Re
C j

j

(a)

t=0.0
t=0.1
t=0.2

t=0.3
t=0.4
t=0.5

t=0.6
t=0.7

t=0.8
t=0.9

0 5 10 15 20
M

0.6

0.4

0.2

0.0

0.2

Re
C j

j

0 = 1, = 1
2 , T = 1

N = 7 (b)

t=2.0
t=5.0
t=10.0
t=15.0

t=20.0
t=30.0
t=40.0
t=45.0

FIG. S1. Analyzing the convergence of the real part of the current current correlation function ReCjj(t), with respect to
the number of phonons M taken in the Hilbert space for (a) small t (b) large t. The tick vertical dashed line represents our
estimation of the number of phonons one should take for the results to be considered converged for all times t. The results
are shown in the regime ω0 = 1, λ = 1/2, T = 1 on a lattice with N = 7 sites.
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FIG. S2. Analyzing the convergence of the real part of the current current correlation function ReCjj(t), with respect to
the number of phonons M taken in the Hilbert space for (a) small t (b) large t. The tick vertical dashed line represents our
estimation of the number of phonons one should take for the results to be considered converged for all times t. The results
are shown in the regime ω0 = 1, λ = 1, T = 1 on a lattice with N = 8 sites.
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FIG. S3. Analyzing the convergence of the real part of the current current correlation function ReCjj(t), with respect to
the number of phonons M taken in the Hilbert space for (a) small t (b) large t. The tick vertical dashed line represents our
estimation of the number of phonons one should take for the results to be considered converged for all times t. The results
are shown in the regime ω0 = 1, λ = 2, T = 1 on a lattice with N = 7 sites.

B. RELATIVE ERROR

In several references [3, 4] it is noted that the relative error one would obtain when using stochastic trace estimation
for calculating some quantity, given by Eq. (10) of the main text, scales as O(1/

√
Rdeff ). Here, R is the number of

random vectors used in the stochastic trace approximation, while deff is the effective dimension of the Hilbert space,

given by deff = Tr[e−β(H−E0)], where E0 is the ground state energy. It is clear that in the expression O(1/
√
Rdeff ),

the factor 1/
√
R follows directly from the central limit theorem. However, derivations of the factor 1/

√
deff that

are commonly found in the literature [3, 4] are either not mathematically rigorous, or it is not completely clear
that the assumptions used in the derivations are satisfied in the case of the current-current correlation function in
electron-phonon systems. Here we will numerically check whether the error in the QT approach really scales as
1/
√
deff , in the case of the following quantity

Cjj(t = 0) =
Tr[e−βHj2]

Tr[e−βH ]
=

Tr[e−βHj2]

Z
. (S1)

For the sake of convenience in our numerical analysis, we first focus on the regime expected to exhibit a relatively
large effective number of dimensions deff . As an example, we consider the case of a relatively strong interaction
λ = 2, a phonon frequency ω0 = 1, and a relatively high temperature T = 5. For this regime, we calculate Cjj(t = 0)
and the partition function Z for a lattice with N = 4 sites, using a sufficiently large number of phononsM to ensure
full convergence (essentially treating M → ∞). This calculation is then repeated many times to reliably compute
Z1 and generate a statistical distribution (histogram) of the obtained values of Cjj(t = 0). From this, we compute
the standard deviation of Cjj(t = 0), which serves as an estimate of the error in a single random iteration. In

addition, we also calculate the effective dimensionality of the Hilbert space, as deff = Tr[e−β(H−E0)] = eβE0 · Z,
where E0 is the ground state energy. This entire procedure is then repeated for different temperatures, ranging
from T = 5.0 to T = 0.1. The rationale behind this is that, at lower temperatures, fewer phononic excitations
are relevant, leading to a smaller effective dimension of the Hilbert space deff , enabling us to examine how the
standard deviation of Cjj(t = 0) scales as a function of deff . The main results are presented in Fig. S4(a), while in

1 Z is calculated using stochastic trace approximation, which is guaranteed to be accurate if we use sufficient number R of random
vectors, due to the error scaling 1/

√
R which we already noted is rigorous mathematical result.



4

0 1000 2000 3000 4000 5000 6000
deff

0.02
0.04
0.06
0.08
0.10
0.12
0.14

St
an

da
rd

 d
ev

ia
tio

n 
of

 C
jj(t

=
0)

T = 0.1

T = 0.2

T = 0.5
T = 0.8
T = 1.0
T = 1.5
T = 1.75
T = 2.0
T = 2.25
T = 2.5
T = 2.75

T = 3.0
T = 3.25
T = 3.5
T = 3.75

T = 4.0
T = 4.25

T = 4.5
T = 4.75

T = 5.0

(a) Numerical data
1
2d 1/2

eff

1.5 1.6 1.7 1.8 1.9
Different iterations of Cjj(t = 0)

0

2

4

6

8

De
ns

ity
 o

f o
bt

ai
ne

d 
re

su
ltsT = 1(b)

Obtained using
 10000 iterations

0 = 1, = 2, N = 4

FIG. S4. In the regime ω0 = 1, λ = 2, N = 4 we show (a) numerical results for the standard deviation of Cjj(t = 0)
(i.e., estimated error for Cjj(t = 0) when it is calculated using only single random vector in stochastic trace approximation)

as a function of the effective dimensionality of the Hilbert space deff . In addition we also plot the function 1
2
d
−1/2
eff . (b)

histogram that illustrates (for T = 1) how frequently different results for Cjj(t = 0) appear when calculation, using only a
single random vector, is repeated many times.

Fig. S4(b) we illustrate (on the example T = 1, ω0 = 1, λ = 2, N = 4) the statistics of different possible values of
Cjj(t = 0) obtained using stochastic trace approximation with only a single random vector. As shown in panel (a),

the numerical data clearly demonstrate that the error in the calculated quantity is indeed proportional to 1/
√
deff ,

as expected.

In table I we show the dimension and effective dimension of the Hilbert space for every regime we examined in the
main part of the text.

ω0 λ T N M d deff

1.0 0.5 1.0 11 20 931395465 1485.56

1.0 0.5 2.0 8 34 944241480 16312.7

1.0 0.5 5.0 6 70 1311713640 260151.0

1.0 1.0 1.0 10 21 443521650 1194.19

1.0 1.0 2.0 7 33 130504920 6941.57

1.0 1.0 5.0 6 70 1311713640 284888.0

1.0 2.0 1.0 10 23 925610400 1812.83

1.0 2.0 2.0 7 34 157373580 8960.15

1.0 2.0 5.0 6 70 1311713640 319347.0

1.0 2.0 10.0 5 125 1431218880 1233830.0

0.333 0.5 1.0 7 45 936491920 48403.9

0.333 0.5 5.0 5 130 1733501385 6636720.0

0.333 1.0 1.0 7 48 1420494075 77565.8

0.333 2.0 1.0 7 48 1420494075 92830.4

TABLE I. The dimension d and effective dimension deff of the Hilbert space for every regime we examined in the main part
of the text.
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C. CONVERGENCE WITH RESPECT TO THE NUMBER OF LATTICE SITES N

One of the ways to analyze whether the calculated frequency-dependent mobility µ(ω) has significant finite-size
effects is to check whether the optical sum rule is satisfied; see Eqs. (7) and (8) from the main part of the manuscript.
Although this approach offers valuable insight, strictly speaking, satisfying the optical sum rule is only a necessary
condition for the results to be representative of the thermodynamic limit. A more rigorous and direct approach is
to simply calculate the results for different lattice sizes N and continue increasing N until µ(ω) fully converges.
This is exactly what we will be doing here.

Before presenting the results, we note that for sufficiently small lattice sizes N , a single random vector in the
stochastic trace approximation is insufficient for obtaining accurate results; see Sec. B and Sec. IIC of the main
text. Therefore, while we typically use R = 1 random vector for the largest lattice sizes, a larger number of random
vectors R is employed for smaller lattices.

1. ω0 = 1, λ = 1
2

By examining the results in Fig. S5, and by inspecting how various cutoffs in time (for Cjj(t)) influence the behavior
of µ(ω) (not shown), we see that µ(ω), for ω ≳ 0.1, converges already for N = 9. However, achieving full convergence
at µ(ω = 0) is significantly more challenging. This is reflected in the discrepancies between the diffusion constants
D(t) at large times for different N , as a consequence of the Einstein relation

µ(ω = 0) =
D(t→ ∞)

T
. (S2)

Numerical results for the diffusion constants D(t) are shown in Panel (c). It is clear that for N ≤ 10, a significantly
longer time propagation is needed to reach D(t→ ∞), i.e., to reach saturation of the diffusion constant. However,
for larger lattices, D(t) appears to saturate more quickly. Nevertheless, even for N = 11, D(t) is not fully saturated
at Panel (c). Therefore, we expect that the correct result for D(t→ ∞) (and thus µ(ω = 0)) is somewhat different
than shown in Fig. S5 (and thus closer to the HEOM result shown in Fig. 1((a2) of the main text). We note that
the HEOM result for D(t), used in the main text, was propagated up to much longer time t (and also for somewhat
larger lattice N = 13), so the saturation of D(t) is much better. It is thus expected that HEOM is, in this case,
more accurate than QT.
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FIG. S5. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1, λ = 1

2
, T = 1 for different number of lattice sites N .

The number of random vectors, used for the calculation of the results on lattices of various sizes, are RN=11 = 1, RN=10 = 10,
RN=9 = 10, RN=8 = 50, RN=7 = 120, RN=6 = 330.

Side Note: As we see from Fig. S5(b), as we increase the lattice size, the accuracy with which the optical sum
rule is satisfied (measured by how close the parameter δ is to zero; see Eq. (8) from the main text) increases. There
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is only one exception: δN=11 ≈ 0.28% which is slightly larger than δN=10 ≈ 0.1%. Regarding this, we would like to
point out two things: i) both of these cases (N = 10 and N = 11) satisfy the optical sum rule fairly well. ii) for
this regime, the effective dimension of the Hilbert space deff is not very large (see Table I), so there probably are
some slight incurabilities that arose because we used only a single random vector R = 1 for N = 11. On the other
hand, for N = 10 we used R = 10 random vectors.

Analogous conclusions can also be drawn for Fig. S6. In this case, however, a much better saturation (in the case
of QT method) of the diffusion constant D(t) is observed. In addition, we see that N = 5 and N = 6 results
practically coincide, so the finite-size effects are minimal. Some difference between HEOM and QT predictions for
D(t → ∞) is however observed, as shown in the inset of Fig. 1(c2) of the main text. This is a consequence of the
inaccuracy of the HEOM solution (see the inset of Fig. 1(c1) and the associated text) at intermediate timescales
t ≳ 2. Hence, we conclude that QT is more precise in this case.
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FIG. S6. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1, λ = 1

2
, T = 5 for different number of lattice sites N .

The number of random vectors, used for the calculation of the results on lattices of various sizes, are RN=6 = 1, RN=5 = 2,
RN=4 = 65.

2. ω0 = 1, λ = 1
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FIG. S7. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1, λ = 1, T = 1 for different number of lattice sites N .
For N = 7 we also show the results for two different time steps (dt = 0.01 and dt = 0.001; the results for all other lattice
sizes were obtained using dt = 0.01). The number of random vectors, used for the calculation of the results on lattices of
various sizes, are RN=10 = 1, RN=9 = 15, RN=8 = 30, RN=7 = 100, RN=7,dt=0.001 = 100.

For ω0 = 1, λ = 1 the conclusions are analogous to the ones we have already drawn for ω0 = 1, λ = 1
2 in Sec. C 1:

As seen from Fig. S7, although for ω ≳ 0.15 the thermodynamic limit is nearly reached for N ≥ 8, the diffusion
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constant D(t) does not sufficiently saturate within the shown time scale, preventing a reliable determination of
the DC mobility. Here, we have also explicitly demonstrated that the absence of saturation of D(t) is not a
consequence of the Runge-Kutta timestep: for N = 7 we have checked this using two different timesteps, dt = 0.01
and dt = 0.001. In addition, as always, we checked that the results have fully converged with respect to the total
number of phononic excitations (see Fig. S2). Having in mind the conclusions drawn in Sec. C 1, we can thus expect
that the absence of saturation of D(t) is probably due to the finite-size effects.

As before, for higher temperature, T = 5, a much better saturation of D(t) can be observed. In addition, results
for N = 6 and N = 5 are quantitatively quite similar, so we can expect that the calculated DC mobility (and the
whole µ(ω)) should be accurate.
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FIG. S8. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1, λ = 1, T = 5 for different number of lattice sites N .
The number of random vectors, used for the calculation of the results on lattices of various sizes, are RN=6 = 1, RN=5 = 2,
RN=4 = 70, RN=3 = 400.

3. ω0 = 1
3
, λ = 1

2
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FIG. S9. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1

3
, λ = 1

2
, T = 1 for different number of lattice sites N .

The number of random vectors, used for the calculation of the results on lattices of various sizes, are RN=7 = 1, RN=6 = 7,
RN=5 = 200.

To avoid redundancy, we will not discuss the results in this regime, as everything is analogous to the analysis we
conducted in Secs. C 1 and C2.
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FIG. S10. Results for (a) the real part of the current-current correlation function ReCjj(t) (b) frequency dependent mobility
µ(ω) (c) time dependent diffusion constant D(t), in the regime ω0 = 1

3
, λ = 1

2
, T = 5 for different number of lattice sites N .

The number of random vectors, used for the calculation of the results on lattices of various sizes, are RN=5 = 1, RN=4 = 5.

D. ADDITIONAL RESULTS IN THE STRONG COUPLING REGIME λ = 2

In the main part of the text, in Fig. 3, we presented and analyzed the current-current correlation function Cjj(t),
the optical conductivity µ(ω), and the time-dependent diffusion constant D(t) in the strong coupling regime λ = 2
for ω0 = 1 and T = 1, 10. These results were shown within QT, QMC and DMFT methods, while HEOM results
were missing due to the problems with convergence with respect to the so-called maximum hierarchy depth. Here,
we supplement those results by also adding the results for T = 2 and T = 5. As these results were already discussed
in the main text, we only show the results without additional comments.
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FIG. S11. Comparison of (a1)–(d1) the real part of the current-current correlation function Cjj(t) (a2)–(d2) frequency
dependent mobility µ(ω) (a3)–(d3) time dependent diffusion constant D(t). The results are calculated using QT, QMC
and DMFT, in the strong coupling regime ω0 = 1, λ = 2, for T = 1, 2, 5, 10. In Panels (a2)–(d2) we show the relative
accuracy δ with which the optical sum rule is satisfied within QT, in (a3)–(d3) we show the significance of vertex correction
for DC mobility δµvtx

dc , given by Eq. (18) from the main text, while the insets of (a1)–(d1) show the zoomed-in portions
of the corresponding panels. The total number of phonons and lattice sizes used are: (a1)–(a3) (MQT, NQT) = (23, 10);
(b1)–(b3) (MQT, NQT) = (34, 7); (c1)–(c3) (MQT, NQT) = (70, 6); (d1)–(d3) (MQT, NQT) = (125, 5). QMC results were
always obtained for NQMC = 10, and they are shown with their corresponding statistical error bars. DMFT results were
calculated directly in the thermodynamic limit NDMFT → ∞.
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