
Phase response curves for models of earthquake fault dynamics
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We systematically study effects of external perturbations on models describing earthquake fault

dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system,

including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made

up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are repre-

sentative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by

determining the phase response curves of first and second order. For a mono-block fault, we con-

sider the impact of a single and two successive pulse perturbations, further demonstrating how the

profile of phase response curves depends on the fault parameters. For a homogeneous two-block

fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas

for heterogeneous faults, we analyze how the response of the system depends on whether the stimu-

lus is applied to the block having a shorter or a longer oscillation period. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953471]

Earthquakes are conceptually considered as frictional

instabilities occurring on preexisting tectonic faults. The

fault dynamics is often represented by the class of spring-

slider block models incorporating different forms of con-

stitutive friction laws. Such models can qualitatively

account for the relevant regimes of fault dynamics, includ-

ing the aseismic creep motion or the stick-slip motion,

which is a signature for earthquakes. The research involv-

ing these models has so far mainly aspired to gain insight

into the scaling laws and the occurrence of characteristic

events, as well as to elucidate the relation between small

and large earthquakes. Here, we adopt a considerably dif-

ferent approach. Our intention is not to characterize the

statistical properties of the underlying time series or to

assess the earthquake hazard, but rather to analyze a rep-

resentative class of fault models from the perspective of

nonlinear dynamics theory. Being strongly nonlinear sys-

tems, the considered models of earthquake faults are

expected to display a number of intricate features, includ-

ing high sensitivity to external perturbation, whereby the

response may qualitatively depend on different system pa-

rameters, as well as the fault complexity. In the present

paper, the theory of phase response curves is applied for

the first time to systematically examine the sensitivity of

fault dynamics in the stick-slip regime to external

perturbation. We consider the cases of a simple mono-

block and paradigmatic two-block complex faults.

Perturbations made up of single or two consecutive pulses

are found to affect the fault dynamics in a nontrivial fash-

ion, being able to advance or delay the earthquake cycle

or even give rise to long-term effects.

I. INTRODUCTION

By a basic phenomenological description, earthquakes

are regarded as large-scale recurring mechanical failure

events,1 characterized by seismic cycles composed of a com-

parably long quasi-static stage of tectonic stress build-up and

an abrupt dynamical rupture stage, associated with a rapid

release of the accumulated strain. Earthquakes occur as dy-

namical instabilities on preexisting crustal faults and are

caused by the motion of tectonic plates, which is fundamen-

tally influenced by the elastic properties of the crust and the

frictional features of the fault.2,3 In dynamical terms, the

complexity in earthquake-related behavior derives from the

coaction of intrinsic nonlinearity, dominated by friction, and

the external driving. Typically, the physical background

behind inter-plate earthquakes involves a fault segment, rep-

resented by a mass block or an assembly of blocks, which

loaded by one tectonic plate and under the frictionala)Electronic mail: franovic@ipb.ac.rs
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resistance of the other plate exhibits a stick-slip behavior,1,2

the type of motion paradigmatic for earthquake dynam-

ics.2,4,5 In different physical models, the friction terms attain

quite a complex form and are expressed by appropriate

“constitutive laws.”2,3,6

Apart from scale-invariant statistical features, reflected in

several well-known empirical scaling laws, some earthquakes

exhibit characteristic features, manifested as “characteristic

earthquakes” with well-defined time or energy scales.2,3,7 In

the former case, the fault fails in a pseudo-periodic time se-

ries, such that its dynamics is reminiscent of a relaxation os-

cillator. The pertaining oscillations may naturally be sensitive

to external perturbations, which can be derived from different

kinds of additional forcing whose duration and magnitude are

small compared to the tectonic load. In general, if the pertur-

bation is sufficiently small, it does not influence the amplitude

of oscillations, but it may considerably affect the phase. In

conceptual terms, and especially from the seismological point

of view, it becomes relevant to determine whether and how

the phase of stick-slip oscillations, and thereby the character-

istic event itself, is retarded or advanced by such

perturbations.

In the present paper, we consider the sensitivity to exter-

nal perturbation of the models of a simple mono-block fault

and a paradigmatic two-block complex fault, which display

relaxation oscillations with the signature stick-slip property.

The models are formulated within the Burridge-Knopoff

framework of coupled spring-block systems8–11 and incorpo-

rate the Dieterich-Ruina rate- and state-dependent friction

law.12–14 The qualitative analysis will be focused on deter-

mining the first- and second-order phase response curves

(phase resetting curves, PRCs) for these models,15–19 which

to our knowledge is the first time that such an approach is

applied in the context of earthquake fault dynamics, despite

the fact that the formalism related to phase description of

nonlinear oscillators has already been invoked.2,20–23 So far,

the PRCs have often been used as a tool to study the sys-

tem’s response to stimuli, as well as the units’ ability to syn-

chronize in the fields of neuroscience24–27 and the general

theory of coupled phase oscillators.28–31

The main corpus of issues we address here includes (i)

the sensitivity of a simple monoblock fault to external pertur-

bation, (ii) the influence of system parameters on the profile

of PRCs, (iii) the effect of two-pulse perturbations and the

deviation from the superposition principle due to multidi-

mensionality of the model, as well as (iv) the responses of

compound faults, either homogeneous or heterogeneous, to

external perturbation. Apart from considering the first-order

PRCs, our interest will also lie with the second-order PRCs

because their nontrivial behavior may indicate a potential

long-term effect of external perturbation on the duration of

an earthquake cycle. The research agenda has a systematic

character precisely given the fact that this type of analysis

has not been carried out before for models of fault dynamics.

As already mentioned, the pseudo-periodic recurrence

times have primarily been associated with large characteris-

tic earthquakes.23,32–36 By one scenario, the latter involve

breaking of the most part of or the entire seismogenic

zone,2,3,41,42 whereas by the other scenario they emerge due

to breaking of similar sections of complex faults.2,37 Well-

known examples are earthquakes in the Nankaido region

(Japan), the northern, the southern, and Parkfield sections of

the San Andreas Fault,38 and several regions in China.39,40

Apart from these large characteristic earthquakes, the

description of fault dynamics in terms of relaxation oscillator

models may further be justified for certain small repeating

earthquakes,43 as corroborated by the recent proxy data.44

One should note that many of the relevant models of fault

dynamics may yield periodic sequences of events or series

with a strong periodic component. For instance, such behav-

ior has been found for the one- and two-dimensional versions

of the Burridge-Knopoff model,10,11,45,46 as well as in case

of the Olami-Feder-Christensen model.47 It has also been

indicated that models of coupled relaxation oscillators dis-

playing the stick-slip dynamics may account for a phase-

locking mechanism behind earthquake clusters. The latter

conform to rupture patterns where the main events occur in

groups comprising nearby or distributed faults with similar

characteristic periods.20,21,48

The paper is organized as follows. In Sec. II, we intro-

duce the models of a simple fault and a two-block complex

fault, summarizing the results of bifurcation analysis and

explaining the physical background and possible regimes of

system behavior. Section III concerns the monoblock fault,

considering the scenarios where the fault is subjected to a

single or two successive excitations. In the latter case, we

demonstrate a nonlinear effect which occurs for systems

whose dimension is larger than 1 and consists in a deviation

from the superposition principle for two subsequent pertur-

bations. It is also discussed how sensitivity to perturbation

depends on the system parameters. Section IV provides our

results for the first- and second-order phase response curves

in cases of the homogeneous and the heterogeneous two-

block complex fault. For homogeneous fault, we analyze

how the system responds in case where each of the blocks is

perturbed, but the perturbations arrive with a certain phase

lag. For the heterogeneous fault, it is examined how the sys-

tem response changes depending on whether the block with

a shorter or longer oscillation period is perturbed. Section V

contains a brief summary of our results.

II. MODEL OF FAULT DYNAMICS

Within the family of spring-block models, the fault dy-

namics is represented by elastically interacting mass blocks

sliding over a rough surface, whereby each block is elasti-

cally coupled to a rigid loader plate that moves at a constant

velocity, see Fig. 1. In terms of seismological interpretation,

it is the interface between the slider blocks and the rough

surface that can be considered as an analogue for a one-

dimensional earthquake fault,49 and one is interested in

describing the sliders’ slip and the associated slip velocity

relative to the loader plate. The model comprising a single

block accounts for a simple fault, whereas models containing

multiple blocks refer to multi-segment (complex) faults. In

the present paper, we study the cases of a simple fault and

the paradigmatic two-block complex fault, made up of ho-

mogeneous or heterogeneous blocks. The block dynamics is
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provided by a version of the Burridge-Knopoff model sup-

plied by the Dieterich-Ruina rate- and state-dependent fric-

tion law.50–54 Note that the selection of friction law is an

important point for the models where friction enters as a

force term. The early friction laws included effects of slip-

weakening (reduction of friction strength during sliding) and

rate-weakening (reduction in frictional force which accom-

panies the increase in slip velocity),12 but the former could

not fully explain for the relationship between the static and

dynamic friction, while the experimental data have further

shown that friction could not be a function dependent only

on velocity.6 The Dieterich-Ruina law12–14 resolves these

issues by introducing an additional state variable, which may

be attributed a microscopic interpretation, associating it to

the average life time of asperity contacts at the interface

between the blocks and the rough surface.2

Without specifying the details of the derivation, which

can be found in Refs. 50 and 51, here we provide the final

non-dimensional form of equations for the dynamics of a sin-

gle block

dh
dt
¼ �v hþ 1þ �ð Þlnvð Þ

du

dt
¼ v� 1

dv

dt
¼ �c2 uþ 1=nð Þ hþ lnvð Þ

� �
:

(1)

In the above equation, h represents the state variable,

whereas u denotes the slip (relative to the driver plate) and v
is the associated slip velocity. The strong nonlinearity of (1)

is due to the friction term, which involves a logarithm de-

pendence on the velocity. The parameters n and c are the

non-dimensional spring constant and the non-dimensional

frequency, respectively. The spring stiffness qualitatively

accounts for the elastic properties of the medium where the

fault is embedded.2 The parameter � essentially measures the

sensitivity of the block’s velocity relaxation. This interpreta-

tion derives from the point that � may be expressed via two

additional stress parameters related to the velocity depend-

ence on the friction stress s. In particular, � is given by the

ratio � ¼ ðB� AÞ=A,50,51 where A presents the direct

velocity dependence A ¼ @s
@lnðvÞ, while A� B ¼ @sss

@lnðvssÞ is the

velocity dependence for the steady state,12,14 when the slider

moves at a constant velocity vss. In other words, � is deter-

mined by the ratio of stress dropped during the earthquake to

the stress increase that accompanies a sudden change in the

block velocity. Note that we consider only positive values of

B – A (� > 0), which from a micro-mechanical point of view

corresponds to the velocity-weakening effect.6 Compared to

real fault conditions, A and B describe material properties

that depend on pressure, temperature, and sliding velocity.2

These arguments suggest that � is the parameter most specific

to detailed dynamics of particular faults. In terms of a quali-

tative comparison to real earthquake faults, it has been estab-

lished that the relevant range of values for the parameters

�; n, and c is � 2 ð1; 3:5Þ; n � 0:5; c 2 ð103 � 1012Þ.13,50,55

System (1) has a stationary state ðh; u; vÞ ¼ ð0; 0; 1Þ
which corresponds to sliding at a uniform velocity equal to

that of the loader plate, such that the block exhibits no slip

relative to the plate. For certain parameter values, the system

undergoes a direct supercritical Hopf bifurcation which gives

rise to an oscillatory solution. The corresponding bifurcation

curves nð�Þ obtained for fixed c and cð�Þ under fixed n are

shown in Figs. 2(a) and 2(b). Note that these curves are

determined analytically by considering the pure imaginary

roots of the characteristic equation k3 � k2ðc2

n � 1Þ �
kc2ð1� �

nÞ � c2 ¼ 0 for system (1). Immediately above the

bifurcation curves, system (1) displays harmonic oscillations,

cf. Fig. 2(c), which may be appropriate to describe pre-

seismic and post-seismic creep regimes.52 Nevertheless, the

regime of relaxation oscillations, which we are interested in,

can be found sufficiently away from criticality, see Fig. 2(d).

Such relaxation oscillations can be considered as dynamical

counterpart of the stick-slip behavior paradigmatic for earth-

quake motion. In the quasi-static stage of stress accumulation

(the “stick” stage), the block is effectively stuck on the rough

surface, so that the relative slip to the driver plate decreases

at a constant rate as the driver plate first catches up and then

even surpasses the block. Once the pulling force overcomes

the static friction withholding the block, one arrives at the

onset of the slip stage. At this point, the block’s velocity

increases sharply, such that the slider shoots forward again,

which gives rise to a new seismic cycle.

Apart from the monoblock fault, we also consider the

case of a two-component fault, where the dynamics of blocks

is given by

dhi

dt
¼ �vi hi þ 1þ �ið Þlnvið Þ

dui

dt
¼ vi � 1

dvi

dt
¼ c2

i

�
c ui � ujð Þ þ ui þ 1=nið Þ hi þ lnvið Þ

�
;

(2)

with i; j 2 f1; 2g; i 6¼ j. The interactions are characterized by

the coupling strength c. We intend to analyze the sensitivity

to perturbation of the homogeneous two block fault

(�1 ¼ �2; n1 ¼ n2; c1 ¼ c2), as well as the heterogeneous

complex fault. Consistent with the arguments regarding the

system parameters, heterogeneity will be confined to the

FIG. 1. Schematic representation of the spring-block model of earthquake

fault dynamics. The blocks interact via elastic springs, and each block is fur-

ther elastically coupled to the loader plate which moves at a constant veloc-

ity v0. The blocks slide over a rough surface, whereby the friction at their

interface is typically described by complex constitutive laws.
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case of two blocks with disparate �, �1 6¼ �2, which results in

distinct periods of the respective stick-slip oscillations. Both

for the homogeneous and the heterogeneous two-segment

faults, we take the coupling strength c sufficiently weak so

that the interaction does not perturb the respective oscillation

cycles of the blocks.

A remark is required regarding the numerical treatment

of models (1) and (2). In particular, the underlying systems

of ordinary differential equations (ODEs) are stiff, in a sense

that within the relevant parameter domain, an exceedingly

small iteration step is required to maintain the numerical sta-

bility of the typical explicit integration schemes, such as the

Runge-Kutta method. The stiffness feature derives from the

fact that the system involves characteristic time scales of sub-

stantially different order, and becomes stronger as c is

increased. Note that the step size is limited more severely by

the stability rather than the accuracy requirement of the inte-

gration methods. In order to resolve these issues, we have

implemented the solver based on the Rosenbrock method,

which is specifically adapted to stiff systems. Unless stated

otherwise, the parameter set used for the block dynamics

throughout the paper is ð�; n; cÞ ¼ ð1:45; 0:5; 1000Þ:

III. PRCs FOR THE MONOBLOCK FAULT

A. Theoretical background

Phase response curve is an inherent feature of an arbi-

trary oscillator, which reflects its sensitivity to a brief (pulse-

like) stimulus. PRC is given by the dependence of the phase

shift, induced by a perturbation, as a function of the oscilla-

tion phase at which the perturbation has occurred. The effect

of phase resetting due to pulse perturbation may formally be

treated as follows. We first consider a one-dimensional oscil-

lator, described only by a continuously increasing phase

variable / that evolves as _/ ¼ x. Then the system’s phase

just after a pulse stimulus of strength j arrived at the

moment tp can be written as18,26

/þðtpÞ ¼ /ðtpÞ þ jZð/; jÞ; (3)

where Zð/; jÞ stands for the PRC. In a more general case,

periodic oscillations are characterized by a limit-cycle attrac-

tor X0ðtÞ in an N-dimensional phase space. Nevertheless, the

notion of isochrones76,77 still allows one to consider a phase

space representation of the form (a;/), where a is an ðN � 1Þ
dimensional “amplitude,” and / is the regular phase variable

obeying _/ ¼ x.26 Without loss of generality, one may assume

that the “amplitude” vanishes on the limit cycle (a ¼ 0). In

this setup, if a kick is introduced at the moment tp, the reset of

the state (a;/) just after tp may be expressed as26

aþðtpÞ ¼ aðtpÞ þ jAðaðtpÞ;/ðtpÞ; jÞ ¼ jAð0;/ðtpÞ; jÞ

/þðtpÞ ¼ /ðtpÞ þ jUðaðtpÞ;/ðtpÞ; jÞ
¼ /ðtpÞ þ jZð/ðtpÞ; jÞ: (4)

The above equations take into account that the initial state

lies on the limit cycle (a ¼ 0), such that Uð0;/; jÞ ¼
Zð/; jÞ holds. In terms of application, PRCs were first intro-

duced in the study of oscillations in biological systems,

including cardiac cells, fireflies populations, and especially

neural networks.56–63 Within these fields, as well the general

theory of coupled phase oscillators, the method has facili-

tated an analysis of the units’ interaction properties, includ-

ing stability, synchronization, or clustering. The concept of

PRCs allows one to reduce complex models of oscillators to

simple phase models which still reflect important features of

the original oscillators, viz., the point that the effect of per-

turbation depends on the dynamical state of the oscillator. In

FIG. 2. Bifurcation diagrams and

characteristic regimes of motion for

the system (1). In (a) is shown the

Hopf bifurcation curve nð�Þ obtained

for fixed c¼ 1000. In (b) is presented

the Hopf bifurcation curve cð�Þ deter-

mined for fixed n ¼ 0:5. (c) and (d)

illustrate the dynamics associated

with the creep regime (harmonic

oscillations) and the stick-slip regime

(relaxation oscillations), respectively.

(c) is obtained for the parameter set

ð�; n; cÞ ¼ ð0:3; 0:5; 0:8Þ, whereas the

parameters in (d) are ð�; n; cÞ
¼ ð1:45; 0:5; 1000Þ.
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its representation as a phase oscillator, each oscillator pos-

sesses a characteristic PRC that can be computed numeri-

cally or measured experimentally.64–68

Let us now address the details relevant for obtaining the

PRCs in case of our models of earthquake fault dynamics. In

a general multidimensional system, the kick may be applied

to any of the system variables. Here, a perturbation is added

to the second equation of the system (1) or (2), which is the

most plausible choice, because it may be interpreted as a

small variation at the loading point. The corresponding equa-

tion then takes the form du
dt ¼ v� 1þ f ðtÞ, where f(t) is the

perturbation term. In real faults, such perturbations may

derive from various natural and artificial sources, including

rock break, pressure fluctuations, or crack vibration due to

the movement of magma and volcanic gases,69 sudden stress

drops,70,71 drilling and blasting in underground mining activ-

ities,72,73 as well as microearthquakes due to hydraulic frac-

turing or deep injection of waste fluids.74

In order to determine the PRCs, one does not have to

carry out an explicit phase reduction of the underlying sys-

tems, but may rather focus on the occurrence of characteris-

tic events. The latter are associated to large spikes of block’s

velocity and are representative of earthquakes within the

given models. Then, the PRCs may effectively be deter-

mined in complete analogy to the method typically used for

systems of spiking neurons. In particular, the impact of a per-

turbation is such that it locally changes the oscillation period

of a system from the default value T0 (period in the absence

of perturbation) to a different value T1, see Fig. 3. One may

use this to numerically determine the phase shift D/ by

measuring the relative change of the period17,18,26,67,75

D/ /ð Þ ¼ T0 � T1

T0

: (5)

The phase shift D/ plotted as a function of the phase / when a

perturbation has kicked in is precisely the PRC. If T1 < T0, the

stimulus advances the cycle and vice versa. The change of pe-

riod of the oscillation cycle where a perturbation has occurred

defines the first-order PRC. Perturbations may also affect the

duration of the next oscillation cycle T2, which corresponds to

the second-order PRC, where the phase shift is given by

D/ 2ð Þ /ð Þ ¼ T0 � T2

T0

: (6)

In the seismological context, the second-order PRC may be

interpreted as qualitatively accounting for a long-term effect

of an external perturbation to the pertaining fault dynamics,

bearing in mind that the interseismic periods typically com-

prise very long time scales.

By implementing the described method, we determine

the first- and second-order PRCs for different models of fault

dynamics. Apart from a single pulse perturbation, we also

consider scenarios where two subsequent pulses are intro-

duced within a given oscillation cycle. The details regarding

the validity of the superposition principle in this case will be

discussed in Sec. III C.

The form of the perturbation involves the standard a
function f ðtÞ ¼ C � ½ð�1=tf Þ � expð�ðt� tpÞ=tf Þ þ ð1=trÞ
� expð�ðt� tpÞ=trÞ�Hðt� tpÞ, whereby the Heaviside H
function is used for shifting along the time-axis. Naturally,

the rise and decline characteristic times tr and tf are selected

so that the perturbation maintains a narrow profile compared

to the oscillation period ðtr ¼ 0:15; tf ¼ 0:4Þ, whereas C
should be kept sufficiently small so that the perturbation

does not affect the amplitude of the underlying oscillations

(C¼ 5). A brief remark regarding the explicit form of pertur-

bation is in order. In view of actual fault dynamics, the per-

turbation form involving the step-like time dependence may

be more realistic.78–80 Nevertheless, within the PRC frame-

work, it is well established that the profile of PRCs is not

qualitatively affected by the particular form of perturbation.

In terms of application of the PRC theory, the only relevant

aspects concern the above conditions on the magnitude and

duration of perturbation.

Note that in all the considered instances, zero phase is

assigned to the maximum amplitude of the u variable, which

is in the seismological interpretation a natural choice,

because it corresponds to the occurrence of the characteristic

event (earthquake).

B. PRCs for a single pulse perturbation

In this subsection, we numerically determine the single-

pulse PRCs for a simple mono-block fault in the stick-slip re-

gime, and then consider how the PRC profiles are affected

by variation of the fault parameters.

The profiles of the first- and second-order PRCs are pro-

vided in Fig. 4. Note that in all the figures throughout the pa-

per, the phase values are expressed in units of p. An

important point regarding Fig. 4 is that the first-order PRC
shows a phase advancement only in a narrow phase interval,

centered at some small time distance after the earthquake.

(Recall that the earthquake event is assigned with / ¼ 0.)

FIG. 3. Illustration of the method used to determine the PRCs. The method

is based on measuring the perturbation induced changes in oscillation peri-

ods of cycles where the pulse perturbation arrived (first-order PRC) and the

next oscillation cycle (second-order PRC). T0 denotes the default oscillation

period, T1 is the duration of the oscillation cycle influenced by the pulse at

phase / ¼ tp=T0, whereas T2 is the duration of the subsequent cycle.
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Nevertheless, the external stimulus introduced at all the other

points of the oscillation cycle has a retardation effect, viz., it

delays the next characteristic event. The change of sensitiv-

ity to a perturbation is expectedly found close to the end of

the seismic cycle. In that phase domain, the delay effect is

weaker, but the perturbation still cannot advance the cycle.

We have verified that the characteristic profile of the PRC
does not change under variation of the perturbation ampli-

tude within the relevant range of values.

As one may have expected, the second order PRC corrob-

orates that the perturbation typically has a negligible impact

on the duration of the next seismic cycle. Nevertheless, an

interesting point concerns the existence of a long-term retar-

dation effect for / � 1:8p. Note that this pronounced delay

effect occurs precisely in the phase domain where the first-

order PRCs show a reduced retardation.

Let us now examine how robust are the obtained PRC
profiles against variation of the fault parameters. It has al-

ready been explained that the parameters n and c are less

specific to particular faults, so that the impact of their varia-

tion may be of less significance compared to the effect of

changing �, which is highly specific to particular faults. Still,

we note that the PRC profiles from Fig. 4 turn out to be

generic, i.e., they remain qualitatively unaffected by chang-

ing n or c for fixed �. The effects of varying � under fixed n
and c are demonstrated in Figs. 5(a) and 5(b). These figures

refer to phase shifts corresponding to first- and second-order

PRCs, respectively, whereby � attains values from the seis-

mologically relevant range � 2 ð1; 3Þ, while n and c are fixed

at values from Fig. 4. Naturally, the parameters of pulse per-

turbation are the same as in Fig. 4.

Concerning the first-order PRC, the effect of advancing

the seismic cycle by a perturbation introduced within a pre-

ferred time interval just after the earthquake is maintained

for most of the considered � values, but is downgraded with

increasing �. In fact, one also finds a critical � value above

which there is no phase advance, cf. Fig. 5(a). The other

interesting effect, which consists in a reduced phase delay if

the perturbation occurs close to the end of the seismic cycle,

appears unaffected by variation of �. Also, the delay effect

characteristic for the most of phase domain is less pro-

nounced with increasing �. Therefore, the profile of the first-

order PRC in general becomes more flat as � is enhanced. A

similar statement holds in case of the second-order PRC. In

fact, Fig. 5(b) clearly shows that the pronounced delay effect

for the perturbation occurring by the end of the oscillation

cycle is gradually lost with �.

C. Two-pulse PRCs for a monoblock fault

In this subsection, we consider the response of a mono-

block fault in the regime of stick-slip oscillations to two suc-

cessive pulse perturbations. The first pulse acts at the phase

/1 of the oscillation cycle, whereas the other pulse is applied

at a phase /2. Note that the perturbation parameters in both

instances are taken to be the same. The occurrence of multi-

ple perturbations during a single oscillation cycle may be

attributed to a number of different phenomena, both natural

and artificial. Apart from analyzing the pertaining first- and

second-order PRCs, we also make a remark on the validity

of the superposition principle, which assumes the linear sum-

mation of phase shifts that result from two successive small

perturbations.

FIG. 4. PRCs of the first (black circles) and second order (orange squares)

for a monoblock fault in the stick-slip regime. The system parameters are

ð�; n; cÞ ¼ ð1:45; 0:5; 1000Þ.

FIG. 5. (a) and (b), respectively, show the families of first- and second-order

PRCs D/ð/; �Þ for a monoblock fault under variation of �. The remaining

fault parameters are fixed at n ¼ 0:5; c ¼ 1000.
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The first-order PRC is illustrated in Fig. 6(a). Note that

the term PRC is preserved for simplicity, though the plot

actually shows the dependence of a phase reset in terms of

/1 and /2 � /1. The same terminology is applied when

describing the analogous three-dimensional plots in the

remaining part of the paper. Regarding Fig. 6(a), two points

on advancing the phase of the seismic cycle stand out. First,

if the initial pulse is applied in a narrow interval sufficiently

close to the last seismic event (/ ¼ 0), the fault’s phase is

substantially advanced, irrespective of the precise point

when the second perturbation occurs. Also note that the

advancing effect of two pulses is significantly stronger than

that of a single pulse, cf. Fig. 4. The second point refers to

the domain of /1 values away from the characteristic event.

There, the earlier arrival of the first perturbation typically

requires a late arrival of the second perturbation in order to

cause a substantial phase advancement. However, for suffi-

ciently large /1, the phase of seismic cycle is advanced only

within a narrow interval of preferred /2 values, such that the

second pulse arrives in a relatively close succession to the

first one. Outside of the ð/1;/2Þ domains mentioned above,

the impact of two successive pulse perturbations is such that

they delay the next characteristic event, viz., the perturba-

tions have a stabilizing effect on the fault.

In case of the second-order PRC, see Fig. 6(b), one notes

a sizeable long-term effect if the first pulse arrives early

(small /1), and the second pulse is introduced sufficiently

late within the given cycle (large /2 � /1). It is interesting

that the long-term effect may lead either to fault destabiliza-

tion (advanced phase of oscillation) or fault stabilization

(delayed phase of oscillation), which depends sensitively on

the phase of the second pulse. Note that we interpret phase

advancement (retardation) of the seismic cycle as destabili-

zation (stabilization) of the fault because its next characteris-

tic event is precipitated (postponed) by the perturbation. The

presence of both types of behavior is quite distinct from the

case of a single pulse perturbation, cf. Fig. 4(b), where the

only pronounced effect consists in delaying the next oscilla-

tion cycle.

Let us now address the deviation from the superposition

principle, which is a nonlinear effect that generally occurs for

oscillators with more than one degree of freedom. If the super-

position principle were to hold, the phase shift caused by two

successive pulses would be given by the sum of the two corre-

sponding PRCs, as in case of one-dimensional oscillators.

Nevertheless, the actual total phase shift caused by the two

pulses in systems with dimension larger than 1 does not coin-

cide with the linear sum of two PRCs and may be derived

using the formalism from the beginning of this section. In par-

ticular, after the first pulse introduced at the moment tp, the

system is reset to the state given in (4). Just before the second

pulse, which arrives at the moment tp þ Dt, the system’s state

is /ðtp þ DtÞ ¼ /þðtpÞ þ xDt; aðtp þ DtÞ ¼ KDtðtpÞaþðtpÞ
¼ KDtðtpÞÞ ¼ jAð0;/ðtpÞ; jÞ, where KDt is the appropriate

evolution operator for the amplitude. Just after the second

pulse, the system’s phase is reset to /þðtp þ DtÞ ¼ /ðtp þ DÞ
þjUðaðtp þ DtÞ;/ðtp þ DtÞ; jÞ, such that the total phase shift

induced by the two successive pulses amounts to26

D/ ¼ jZð/ðtpÞ; jÞ þ jUðaðtp þ DtÞ;/ðtp þ DtÞ; jÞ: (7)

An important point is that (7) involves the reset function U
which depends on the system’s amplitude. The presence of

FIG. 6. (a) and (b), respectively, show the PRCs of first and second order

when a mono-block fault is subjected to two successive pulse perturbations.

The first perturbation is introduced at the phase /1, and the second one is

applied with the phase difference /2 � /1. (c) illustrates the dependence of

the deviation from the superposition principle D on /1 and /2 � /1. The

fault parameters are � ¼ 1:45; n ¼ 0:5; c ¼ 1000.
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such dependence has been demonstrated to be the reason

behind the deviation from the superposition principle for

oscillators with more than one degree of freedom. Comparing

(7) with the two-pulse PRC for a one-dimensional oscillator,

one may obtain an explicit expression for the deviation

from the superposition principle. In particular, the total phase

shift due to two successive pulses for a one-dimensional oscil-

lator is given by d/ ¼ jZð/ðtpÞ; jÞ þ jZð/ðtpÞ þ xDt
þjZð/ðtpÞ; jÞ; jÞ, such that the correction term D ¼
D/� d/ is equal to

D ¼ jUðKDtjAð0;/ðtpÞ; jÞ; aðtpÞ;/ðtpÞ
þ xDtþjZð/ðtpÞ; jÞ; jÞ � jZð/ðtpÞ
þ xDtþ jZð/ðtpÞ; jÞ; jÞ: (8)

We have numerically determined the correction term D
for the fault dynamics described in (1). The plot illustrated in

Fig. 6(c) indicates that the deviation from the superposition

principle is most pronounced in the ð/1;/2Þ domains which

admit the advance of phase of the oscillation cycle. In other

words, these are the parameter domains where the nonlinear

character of system (1) is manifested the most.

IV. PHASE RESPONSE OF COMPLEX FAULTS

This section concerns the behavior of complex faults,

which may in general consist of multiple segments with dif-

ferent elastic and frictional properties. The focus lies with

the paradigmatic case of a complex fault made up of two

blocks. We first analyze the sensitivity to a perturbation for

the homogeneous fault composed of identical blocks, and

then consider the heterogeneous fault, where the blocks are

characterized by distinct � values.

A. PRCs for the fault composed of two identical blocks

For the homogeneous complex fault, we analyze the sce-

nario where the perturbation on block 1 acts at phase /1 of

its oscillation cycle, whereas block 2 receives a kick with the

phase difference /2 � /1 > 0. The form of perturbation on

both blocks is assumed to be identical.

The first- and second-order PRCs for the appropriate ver-

sion of system (2) are illustrated in Fig. 7. The respective

phase shifts are denoted by D/ij, where the first index refers

to the particular block, and the second index points to the

first/second order of the phase response. It is interesting to

FIG. 7. The top (bottom) row shows the phase responses of the first (left column) and second order (right column) for block 1 (2) in dependence of /1 and

/2 � /1. The blocks are assumed to be identical, and are characterized by parameters � ¼ 1:45; n ¼ 0:5; c ¼ 1000. The interaction strength c¼ 0.1 lies well

below the critical bifurcation value and warrants that the periodic oscillations on the coupled blocks are not substantially different from those in the uncoupled

case.
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compare the first-order PRCs in Figs. 7(a) and 7(c), because

this indicates how the interaction affects the response of indi-

vidual blocks. In particular, the phase of both blocks is signifi-

cantly advanced if the first block is stimulated immediately

after the characteristic event. In this case, a perturbation of the

first block induces a strong destabilization effect on the dy-

namics of the second block, irrespective of when the second

block is perturbed. Just beyond the described region of /1 val-

ues, one encounters a narrow domain where the external stim-

uli delay the cycles of both blocks. Nevertheless, the most

interesting point concerns the differences between D/11 and

D/21 dependences. We find that D/21 shows a much larger

ð/1;/2Þ domain where the phase of the cycle is strongly

advanced compared to D/11. This point corroborates that the

dynamics of block 2 is substantially affected by the perturba-

tion of block 1 conveyed via the interaction term. In fact,

within the indicated ð/1;/2Þ domain, the destabilization

effect on block 2 is amplified by the coaction of two pulses,

reflected in an indirect influence of a perturbation applied to

the first block, and a direct impact of the subsequent pulse.

Note that the destabilization effect on block 2 is more pro-

nounced if the perturbation on block 1 arrives by the end of

its oscillation cycle.

As far as the second order PRCs are concerned, Figs.

7(b) and 7(d) both show quite large ð/1;/2Þ domains of sub-

stantial phase advancement and phase retardation. These

long-term effects are caused by the interaction between the

blocks. Note that for the same ð/1;/2Þ values, the long-term

effects on two blocks are of different nature. In particular,

stabilization (phase delay) of one block is accompanied by a

destabilization (phase advancement) of the other block.

B. PRCs for the two-block inhomogeneous fault

In this subsection, we examine the PRCs of an inhomoge-

neous fault made up of two blocks with disparate � values.

The latter are selected so that the respective oscillation peri-

ods of coupled units are quite distinct, T1 � 51 vs T2 � 77.

Two different cases are considered: in the first instance, the

perturbation is applied only to the block with the shorter oscil-

lation period (here block 1), whereas in the second instance,

the block with the longer oscillation period is stimulated (here

block 2). The simulations are carried out in such a way that at

the moment when the stimulus arrives to one block, the other

block always has the same phase.

The results for the first scenario (perturbation applied to

block 1 at phase /1) are illustrated in Fig. 8, whereby Figs.

8(a) and 8(b) refer to first- and second-order responses of

blocks 1 and 2, respectively. Note that Fig. 8(c) shows the

average responses DUi ¼ ðD/1;i þ D/2;iÞ=2 for the total sys-

tem (complex fault), where i 2 f1; 2g stands for the first- or

second-order response.

As to be expected, for block 1, the first- and second-

order PRCs are qualitatively similar to that of an uncoupled

block, cf. Fig. 4(a). As far as block 2 is concerned, note that

Fig. 8(b) shows the dependence D/2ð/1Þ, which is obtained

for a fixed value of the phase of the second block. In other

words, a perturbation is applied at different phases of the

cycle of block 1, whereas block 2 at the moment of pulse ar-

rival to block 1 always lies at a certain fixed phase /2. The

first-order response of block 2 implies that the interaction

may play an important role in destabilization of the fault. In

particular, a perturbation acting on the block with a shorter

oscillation period (block 1) is found to substantially advance

the phase of the block with the longer oscillation period

(block 2) for a broad interval of /1 values. Note that Fig.

8(c) implies that the average response of the two-block sys-

tem is dominated by the behavior of block 1 where the per-

turbation is actually applied.

Now let us consider the case of an inhomogeneous two-

block fault model where the block characterized by the lon-

ger oscillation period (block 2) is perturbed. In analogy to

the case above, a perturbation is applied at different phases

of the cycle of block 2, whereas block 1 at the moment of

pulse arrival to block 2 always has a fixed phase value /1.

The first-order responses of the blocks are shown in Fig.

9(a), whereas Fig. 9(b) refers to the second-order responses.

The average first- and second-order response of the complex

two-block fault is provided in Fig. 9(c).

At variance with the scenario considered in Fig. 8, the

first-order PRC for the kicked block now shows two phase

intervals which admit an advancement of the seismic cycle,

one closely after the characteristic event (/2 � 0:1p), and

the other located by the end of the seismic cycle (/2 � 1:5).

FIG. 8. Scenario where pulse perturbation is introduced to the block with shorter oscillation period. In (a) are shown the first- (blue circles) and second-order

PRCs (orange squares) for block 1, which is subjected to pulse perturbation. (b) illustrates the first- and second-order PRCs for block 2 which is influenced by

perturbation only via interaction with block 1. (c) provides an indication on the average phase response DUi; i 2 f1; 2g for the total system, viz., the complex

fault, whereby index i refers to the first- or second-order dependence. The block parameters kept fixed are n ¼ 0:5; c ¼ 1000, whereas � values on particular

blocks are �1 ¼ 1:4 and �2 ¼ 2.
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Nevertheless, an important qualitative finding on the first-

order response of block 1 is that for almost all /2, the pertur-

bation on block 2 advances the oscillation cycle on block 1.

The analogous effect of phase advance has already been seen

in Fig. 8(b), but not in such a broad domain of perturbation

phases. As far as the total system is concerned, the first-order

response is mostly influenced by the behavior of the block

explicitly affected by the perturbation, whereas the leading

delay effect in the second-order response derives from the

other block, cf. Fig. 9(c).

V. SUMMARY

In this paper, we have used the framework of PRCs to

analyze effects of external perturbations in basic models of

earthquake fault dynamics. To our knowledge, such an anal-

ysis has not been applied earlier in this field, but has been

successfully implemented in the fields of neuroscience and

the general theory of systems of coupled phase oscillators.

The considered models qualitatively reproduce the stick-slip

behavior typical for earthquake motion. Nevertheless, the

very notion that the fault dynamics resembles to a relaxation

oscillator cannot hold in general, but may be considered as a

first approximation to behavior of faults which exhibit char-

acteristic earthquakes with a well-defined recurrence period

and low variability (the comparably small coefficient of vari-

ation for the timing of the events). Within the proposed con-

cept, external perturbations can influence the duration of the

seismic cycle where they have occurred, and may also result

in long-term effects, reflected in a change of the subsequent

oscillation period. These two points are qualitatively illus-

trated by the profiles of the obtained first and second-order

PRCs, respectively. The impact of perturbations can be inter-

preted as either stabilizing or destabilizing to fault dynamics,

in a sense that the external stimuli may either advance the

phase of the seismic cycle, thereby precipitating the next

characteristic event, or may delay the cycle, thus postponing

the next large event.

Our study has been concerned with the models of a sim-

ple mono-block fault, as well as paradigmatic examples of

complex faults involving two identical or distinct blocks. For

a mono-block fault, we have examined how the underlying

dynamics is affected by a single or two successive pulse

perturbations. In the former case, it is found that external

stimuli typically delay the phase of the given oscillation cycle.

The exception to this behavior is provided by the stimuli

arriving within a narrow interval just after the characteristic

event, which result in advancing the phase of the seismic

cycle. The second-order PRCs indicate an interesting delaying

long-term effect for pulses that arrive by the end of the given

cycle, which is likely associated with a strong logarithmic

nonlinearity of the underlying model. The obtained PRC pro-

files are shown to be relatively robust to variation of fault pa-

rameters. The fault dynamics under the influence of two

successive pulses is more complex and involves two different

mechanisms that may give rise to phase advancement. One

mechanism is dominated by the first pulse and is completely

analogous to what is found in case of a single perturbation,

but the other mechanism is qualitatively distinct and requires

that the pulses arrive with a specific phase difference.

For a homogeneous two-block fault, we have considered

the scenario where each block is affected by a single pulse

perturbation. This is realized by selecting a block which is

always perturbed before the other block. The first-order

PRCs indicate that the most likely outcome is fault destabili-

zation, viz., the advance of oscillation phase at both blocks.

Such a behavior is contributed by the interaction between the

blocks. The second-order PRCs reveal highly complex long-

term effects, which may be stabilizing or destabilizing to

fault dynamics, depending on the times of pulse arrivals. It is

interesting that the long-term effects on the blocks can be

asymmetric, in a sense that the cycle of one block is

advanced, whereas the cycle of the other block is delayed.

For a heterogeneous two-block fault, we have examined

scenarios where the block with a shorter or a longer oscilla-

tion period receives a single pulse perturbation. In both

instances, the simulations are carried out in such a way that

at the moment when the stimulus arrives to one block, the

other block always has the same phase. An interesting point

concerns the advance of phase displayed by the first-order

PRCs of the respective blocks that are not subjected to pulse

perturbation. It turns out that the effect of perturbation con-

veyed via interaction between the blocks is non-negligible,

and its impact on the block that has not received the pulse

perturbation is found to be typically destabilizing.

FIG. 9. Scenario where pulse perturbation acts on the block with longer oscillation period. The main frame and inset in (a) shows the first-order PRC for block

2 and block 1, respectively. In (b) are shown the second-order PRCs, whereby the blue circles (orange squares) are reserved for block 2 (block 1). The main

frame and the inset in (c) illustrate the average first- and second-order phase response for the complex fault, respectively. The block parameters are the same as

in Fig. 8.
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One should caution that the results obtained here cannot

be considered within the context of earthquake hazard

assessment, nor can immediately be tied to studies of the

earthquake triggering effect.52,70,81 In reference to the latter

point, an interesting issue would be to examine the sensitiv-

ity of faults to a stronger perturbation that may affect the am-

plitude of oscillations. An elaborate investigation of a

potential relation between responses of a fault to small per-

turbation, relevant to the PRC theory, and the sensitivity to

finite perturbations possibly associated to triggering effect

should be an important topic for a future study. Regarding

the possible application of the current results, one notes that

at variance with the case of a monoblock fault, the PRCs for

heterogeneous two-block fault exhibit phase advancement

for perturbation acting at the later stages of the cycle, cf.

Figs. 8(b) and 8(c), as well as Figs. 9(a) and 9(c). At both

instances, the advance of phase cycle is found for the block

with the longer oscillation period and for the total phase of

the compound fault, both in cases where the given block is

directly perturbed or when the perturbation is transferred via

interaction with the other block. It is reasonable to suggest

that the perturbation destabilizing the fault in such a fashion

gives rise to a clock advance effect which may be seen as a

paradigm for studying the appearance of aftershocks.82

It would be interesting to determine how generic are the

results obtained, i.e., whether the PRC profiles found here

can be corroborated for other models of earthquake fault dy-

namics involving different approximations, containing more

complex fault structure and featuring distinct friction laws.

In a broader perspective, one wonders whether it would be

possible to classify different models of fault dynamics in a

fashion similar to what has been done in other fields, e.g., for

the neuron models where class I excitability is dominated by

phase-advance dynamics, whereas class II excitability has

both the regimes of phase advance and delay.17,18
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