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Relaxation properties in a diffusive model of k-mers with constrained movements on a
triangular lattice
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We study the relaxation process in a two-dimensional lattice gas model, based on the concept of geometrical
frustration. In this model the particles are k-mers that can both randomly translate and rotate on the planar
triangular lattice. In the absence of rotation, the diffusion of hard-core particles in crossed single-file systems
is investigated. We monitor, for different densities, several quantities: mean-square displacement, the self-part
of the van Hove correlation function, and the self-intermediate scattering function. We observe a considerable
slowing of diffusion on a long-time scale when suppressing the rotational motion of k-mers; our system is
subdiffusive at intermediate times between the initial transient and the long-time diffusive regime. We show that
the self-part of the van Hove correlation function exhibits, as a function of particle displacement, a stretched
exponential decay at intermediate times. The self-intermediate scattering function (SISF), displaying slower than
exponential relaxation, suggests the existence of heterogeneous dynamics. For each value of density, the SISF
is well described by the Kohlrausch-Williams-Watts law; the characteristic timescale τ (qn) is found to decrease
with the wave vector qn according to a simple power law. Furthermore, the slowing of the dynamics with density
ρ0 is consistent with the scaling law 1/τ (qn; ρ0) ∝ (ρc − ρ0)κ , with the same exponent κ = 3.34 ± 0.12 for all
wave vectors qn. The density ρc is approximately equal to the closest packing limit, θCPL � 1, for dimers on the
two-dimensional triangular lattice. The self-diffusion coefficient Ds scales with the same power-law exponent
and critical density.
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I. INTRODUCTION

In recent years, systems exhibiting anomalous subdiffusive
behavior have attracted growing attention in various fields of
physics and related sciences. The signature of subdiffusion
is that the mean-square displacement of the diffusing species
grows sublinearly with time. There are many examples of
physical systems that exhibit such anomalous transport; they
involve complex systems, disordered systems, semiconduc-
tors, polymers, glasses, turbulent plasma, and many others
[1]. Subdiffusion has been detected experimentally in several
systems, such as porous materials [2], glass-forming systems
[3,4], and biological media [5,6].

The prediction of transport properties from microstructure
of porous media remains a focus of research in physics and
engineering. Commonly, microporous materials contain pores
of the size of the diffusing molecules. Tight confinement of
molecules results in a very different behavior of molecules
as compared to free gas. Zschiegner et al. [7] used the
model pores with fractal structure to study the diffusion of
particles colliding with the pore walls. One of the interesting
results was the presence of anomalous diffusion in the linear
two-dimensional (2D) channels if angular reflection is inho-
mogeneous. Very recently, anomalous transport has been found
in the molecular dynamics simulations for mixtures of mobile
and immobile spherical particles [8–10]. This picture can be
understood as a cartoon of the dynamics of fluids confined
in disordered porous matrices. Finally, a theoretical study has
recently been carried out for the slow dynamics of a tagged
particle moving in a fluid absorbed in a disordered porous
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solid within the framework of the mode-coupling theory [11].
Using simple models with pure hard-core interactions, it was
shown that the diffusion-localization transition is characterized
by the emergence of various dynamical anomalies, and in
particular, by the appearance of a subdiffusive behavior of
the mean-square displacement.

Diffusion of particles, which occurs in channels so narrow
that the particles are unable to pass each other, is usually
referred to as single-file diffusion (SFD) [12]. This physical
situation is encountered in many systems, such as ion transport
in biological membranes [13], and molecules channeling in
zeolites [12]. The absence of particle exchange leads to the
well-known prediction that the mean-square displacements in
infinite, single-file systems increase with the square root of
time [14]. As soon as the nanochannels interpenetrate each
other, they give rise to the formation of channel networks.
In mutually intersecting channel arrays, molecular diffusion
in different directions may be correlated between each other.
Important examples of materials, which might exhibit such a
behavior, are zeolites of MFI structure type like ZSM-5 [15].
Mutually intersecting arrays of single-file systems can serve
as a model system for the zeolite catalysis by directing the
reactant and product molecules along different intracrystalline
channels [16].

In this paper we introduce a 2D lattice gas model that
has both translational and rotational degrees of freedom. Our
model is based on the diffusional dynamics of k-mers on
a planar triangular lattice, similar to the diffusive model of
dimers on a square lattice proposed by Fusco et al. [17,18].
In the following, we sketch the main features of our model,
along the lines of Ref. [19]. The system is initialized by
the random sequential adsorption (RSA) model [20]. In
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two dimensions, RSA is a typical model for irreversible
and sequential deposition of macromolecules at solid-liquid
interfaces [21,22]. The kinetic properties of a deposition
process are described by the time evolution of the coverage
ρ(t), which is the fraction of the substrate area covered by the
adsorbed particles. In this process k-mers are adsorbed, one at a
time, at randomly chosen sites of a triangular lattice, subject to
constraints imposed by interaction with previously deposited
k-mers. At a chosen value of the coverage, the deposition
is turned off and diffusion of k-mers is initiated. The only
interactions between the particles are the geometrical ones,
i.e., we allow only the single-k-mer moves that do not cause
double occupation at any site at any time. At each Monte
Carlo step, the moves of a randomly chosen k-mer can be
either translation along its axis or rotation when the k-mer
changes its orientation. In the absence of rotation, a k-mer
can move only along one of the three crystal axes. In this
case, we investigate the diffusion of hard core particles in
crossed single-file systems. Our model is designed as a model
for cooperative dynamics rather than for a concrete physical
system. A characteristic feature of such cooperativity is that the
movements of individual particles are correlated, even at long
time periods, because the displacement of a given particle over
a long distance necessitates the motion of many other particles
in the same direction. Our main goal is to show that there are
occasions where a simple geometrical restriction to diffusion
and flow can give rise to “anomalous” behavior.

One of the aims of this paper is to employ a densely packed
lattice model for capturing the physical mechanism underlying
the non-Gaussianity of glassy dynamics [23]. First, we focus
on the non-Fickian character of single particle displacements.
We show that the mean-squared displacements exhibit a
subdiffusive behavior at intermediate times between the initial
transient and the long-time diffusive regime. To detect the
presence of dynamical heterogeneities, we investigate the
time dependence of the self-part of the van Hove correlation
function, which represents the probability distribution of the
particle displacements. Generally a system is considered as
dynamically heterogeneous if dynamically distinguishable
populations of particles with different mobilities (e.g., “fast”
or “slow” particles) can be isolated by a computer simulation
or experiment. We show that the van Hove correlation function
[Eq. (3)] at intermediate times deviates from a Gaussian
distribution expected for a Fickian diffusion. Its deviations
from the Gaussian behavior are usually ascribed to the
presence of particles that are substantially faster or slower
than the average [24,25]. The focal point of our discussion
is the intermediate scattering function, which is a measure
of the time decorrelation of the positional wave vectors. We
evaluate the relaxation times by studying the time decay of the
self-part of the intermediate scattering function [Eq. (6)]. In
particular, we analyze the relaxation time dependence both on
the wave vector (length scale) and on the density of the system.
Most of our attention is focused on the diffusion of dimers,
although we present some results for other k-mers (k > 2)
for comparison. We concentrate here on the influence of the
length of the k-mers on the temporal behavior of MSD and
SISF.

In Sec. II we introduce our model and give some details
of our simulations. We present the simulation results and

discussions in Sec. III. Finally, Sec. IV contains additional
comments and final remarks.

II. MODEL AND DETAILS OF THE SIMULATIONS

The stochastic process that we investigate in this paper
consists of the random diffusion of k-mers on a triangular
lattice with fixed density. The adsorbing objects are k-mers
covering k = 2, 3, and 4 sites. The initial state of the system
is prepared through the RSA of k-mers in two dimensions. For
this purpose we perform the Monte Carlo procedure of filling
the triangular lattice by inserting the k-mers randomly up to
the chosen coverage fraction ρ0. We start with an initially
empty triangular lattice. At each Monte Carlo step a lattice
site is selected at random. If the selected site is unoccupied,
one of the six possible orientations is chosen at random, and
deposition of the object is tried in that direction. We fix both
the direction and the beginning of the k-mer at the selected site
and search whether k consecutive sites in chosen direction are
unoccupied. If so, we occupy these k sites and place the k-mer.
If the attempt fails, a new site is selected, and so on. Once a
k-mer is placed it affects the geometry of all later placements,
so the dominant effect in RSA is the blocking of the available
lattice area. After long enough time a jamming limit ρ

(k)
jam is

reached when there is no more possibility for a deposition
event. However, the deposition process is stopped when the
coverage fraction reaches the chosen value ρ0 < ρ

(k)
jam. In this

way we are able to prepare the system in disordered initial
state with a statistically reproducible density ρ0.

Then, for each initially prepared configuration, we switch
the deposition events off and initiate a random diffusive
dynamics in our model. In this way we are able to follow
the dynamics of the system in an equilibrium regime. At
this stage, apart from the hard core interaction there are no
other interactions between the particles. We allow only the
single-k-mer moves that do not cause a double occupation at
any site at any time. There are two kinds of moves that we
could allow: moves in which a k-mer simply translates along
its axis, which we call a glide, or moves in which a k-mer
changes its orientation, which we call a rotation.

In our algorithm, a diffusion event is tried only if there
is a beginning of a deposited k-mer at the randomly selected
site, otherwise the attempt is rejected. Then we pick one of
the two possible directions along the k-mer axis at random,
with equal probability, and try to move the selected k-mer
by one lattice spacing in that direction. The k-mer is moved
if it does not overlap with any of the deposited k-mers. If
the attempted move is not possible, the k-mer stays at its
original position. Therefore, if only glide moves are allowed
in the model, k-mers oriented along any of the three axis
bisecting the triangular lattice are considered separately, and
their orientations are kept fixed without allowing rotations.
The subdiffusion appears naturally as a consequence of these
constrained movements and is not an additional ingredient of
the model. We shall return to this point later in connection with
the interplay between the kinetic constraints and diffusional
dynamics.

If both rotations and glides of k-mers are allowed, a single
k-mer can move in any of the six possible directions, so that
particle simply performs a random walk on the triangular
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lattice. In our model the glide and rotation attempts are
statistically independent, and they perform sequentially with
corresponding probabilities. At each Monte Carlo step a
glide is attempted with probability Pgl = 1 and rotation with
probability Prot. Algorithm for a glide move of a randomly
chosen k-mer was already described in details in the paragraph
above. Each glide attempt is followed by a rotation attempt
with probability Prot. The rotation process starts by choosing
a lattice site at random. If this selected site is unoccupied, the
rotation step fails and the process continues by choosing a new
site for the glide attempt. On the other hand, if a beginning of
a deposited k-mer is at the selected site, one of the six possible
orientations is chosen at random, and rotation of the k-mer
is tried with probability Prot in that direction. The object is
rotated if it does not overlap with any of the deposited objects.
On the contrary, the attempt is rejected.

The Monte Carlo simulations are performed on the trian-
gular lattice of size L × L = 602 with a periodic boundary
condition. For convenience we have assumed that the lattice
spacing is one. The time is counted by the number of glide
attempts and scaled by the total number of lattice sites.
We covered densities ρ0 between 0.10 and ρ

(2)
jam = 0.9139 ±

0.0004 [26,27], which corresponds to 180 dimers at the lowest
density ρ0 = 0.10 and 1638 dimers at the highest density,
ρ0 = 0.91. The data are averaged over 20 independent runs
for each of the investigated densities.

III. RESULTS

In this section we present and discuss the results of our
simulations. The first subsection deals with the mean-square
displacement of the particles, and the next subsections with
the density-density autocorrelation functions.

A. Mean-square displacement

Dynamical behavior of our lattice model at large length
scales is studied via the mean-square displacement (MSD) of
a particle, 〈�r2(t)〉. It is defined as

〈�r2(t)〉 = 1

N

〈
N∑

i=1

|�ri(t) − �ri(0)|2
〉

, (1)

where �ri(t) is the position of the ith particle at time t , and
N is the number of k-mers, i.e., N = ρ0L

2/k. The angular
brackets 〈·〉 here and in the following denote an average over
the simulation ensemble in which the coverage fraction ρ0

of the system is fixed. Anomalous diffusion is characterized
by the occurrence of a MSD of the form

〈�r2(t)〉 = Kαtα, (2)

where the exponent α classifies the different types of diffusion:
subdiffusion for 0 < α < 1, normal diffusion for α = 1, and
superdiffusion for 1 < α � 2; for α = 2 the process is called
ballistic [1,28]. In the following, we shall deal with the
subdiffusive domain 0 < α < 1.

We first consider the dynamical properties of dimers (k = 2)
when only glide moves are allowed (i.e., Prot = 0). In this case,
our model can serve as an example of mutually intersecting
arrays of single-file systems. In Fig. 1 we plot the MSD as
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FIG. 1. (Color online) Double logarithmic plot of the temporal
evolution of the MSD for dimers at various densities ρ0. The
solid lines represent the MSD vs time t for densities ρ0 =
0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.45, 0.55, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, from top to bottom (left-hand axis). The dashed
line is plotted against the right-hand axis and gives the temporal
evolution of the MSD divided by t , for density ρ0 = 0.65. The
horizontal arrow at 4Ds = 2.9 × 10−3 represents the average value
of 〈�r2(t)〉/t , for large t . Additionally, the slanted straight line is
shown, indicating the late-time diffusive behavior, 〈�r2(t)〉 = 4Dst ,
in the case of ρ0 = 0.65. The values of exponent α [Eq. (2)] reported
in Table I are obtained from the slopes of the MSD vs t curves in the
time region between the thin vertical lines.

a function of time for several different densities, in the range
ρ0 = 0.10–0.90. Also included in Fig. 1 (dashed line) is the
temporal evolution of the MSD divided by t , 〈�r2(t)〉/t , for
density ρ0 = 0.65. In that case, normal diffusion yields a line
of slope 0, and subdiffusion yields a line of negative slope.
Additionally, a thin straight line with the unit slope is shown,
indicating the late-time diffusive behavior and the linear fit
to dimer displacement, 〈�r2(t)〉 ∝ t . For high densities our
results indicate that three distinct regimes of the MSD can be
distinguished. At short times dimers do not feel the presence
of the neighbors, and they move freely. After a few time steps
corresponding to the initial transient, we observe that the
system is subdiffusive. Region of anomalous diffusion extends
over several decades of time, before eventually entering the
diffusing regime. As seen from Fig. 1, the region of anomalous
diffusion increases with ρ0. For densities ρ0 � 0.75 a sublinear
time dependence extends until the limit of our simulations
(t = 106). However, for lower densities we observe that the
MSD reaches a linear time behavior (diffusive regime) within
the length of the simulation. For certain time regions, it is
possible to fit the MSD data with a power law (2). Values of the
fitting parameter α are determined from the slopes of 〈�r2(t)〉
versus t curves in the range t ∈ [102,103] (see Fig. 1). The
corresponding values of parameter α, obtained for different
densities ρ0, are reported in Table I with an uncertainty of
calculation δα � 0.005. The exponent α is less than one for all
the coverages considered and decreases with the density ρ0. As
expected, in the limiting case of very low densities, the value
of exponent α tends to one; the subdiffusion at intermediate

031109-3
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TABLE I. Values of the parameter α [Eq. (2)] for dimers obtained
from the fit to the power law (2) of the MSD in the range t ∈
[102,103] for various densities ρ0.

ρ0 α

0.100 0.956
0.150 0.921
0.200 0.867
0.250 0.861
0.300 0.833
0.350 0.817
0.450 0.795
0.550 0.775
0.650 0.722
0.700 0.699
0.750 0.639
0.800 0.627
0.850 0.525
0.900 0.444
0.905 0.410
0.910 0.425

times becomes weaker with decreasing density, and finally it
turns into normal diffusion.

In order to examine the subdiffusive behavior more closely,
we have taken a look at the trajectory of a single particle in
the course of a simulation run. Figure 2 shows the distance
�r(t) of a tagged dimer from the starting position at t = 0 for
two values of density ρ0 = 0.65 and 0.90. Upon analyzing the
dimers trajectories, we find that a dimer spends most of its time
confined in a well-defined area, oscillating with an amplitude
typically of the order of a few lattice constants. Sometimes a
dimer escapes during rare and brief events. This corresponds
to the well-known cage effect observed in supercooled liquids
[29–31], dense colloidal systems [3,32], and granular fluids
[33–35]. At short times, particles are temporarily trapped in
cages formed by their neighbors, and as a consequence, the
collisions within the cage result in a time dependence of the
MSD that is slower than the one in the regime of normal
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FIG. 2. (Color online) Typical time evolution of the displacement
�r(t) of a single dimer at ρ0 = 0.90 (blue, bottom curve) and ρ0 =
0.65 (red, upper curve).
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FIG. 3. (Color online) Temporal evolution of the MSD under the
single-file condition for dimers at densities ρ0 = 0.65, 0.80, 0.90,
from top to bottom. The dashed line with slope 1 illustrates the
normal diffusion, and the dashed line with slope 1/2 describes the
SFD.

diffusion. At long times, particles diffuse from cage to cage,
and their movement is then less and less influenced by the
effect of trapping, so that the exponent α in Eq. (2) increases
(α → 1). In the present case escaping from the cage is achieved
by cooperative motions between neighboring particles, as in
the case of dense liquids or colloids.

In addition we compare the results found in the case of
mutually intersecting single-file systems with those obtained
for the single-file diffusion. For this purpose we prepare the
appropriate initial random state of the lattice by inserting
dimers in only one direction up to the chosen coverage fraction
ρ0. Furthermore, we forbid rotations of dimers (only glide
moves are allowed), so that dimers diffuse along straight
lines. The results for MSD as a function of time for several
different densities are shown in Fig. 3. As can be seen, for
all densities the initial fast grow of the MSD is followed by
the pronounced ∝t1/2 “long-time” region gradually changing
to ∝t asymptotic behavior. Comparison of Fig. 3 with Fig. 1
reveals that the mutual correlation in the movement of dimers
due to the crossing of the arrays of lines (“channels”) can
strongly alter the single-file diffusion process. Indeed, in
the case of mutually intersecting single-file systems, some
lattice points in the channel along one specific direction can
be occupied by particles moving along the other directions.
As a consequence, the single filing constraint is relaxed in
such a system, so that particle diffusivity may be enhanced in
comparison with systems where the mutual particle exchange
between the channels is excluded.

The simulations described above were augmented by
additional simulations that were carried out to explore the
dependence of the diffusive dynamics on the number of
segments of k-mers. In Fig. 4 we compare the temporal
evolution of the MSD at various densities for the two linear
segments (k-mers) covering k = 3 and 4 lattice sites. As
expected, the self-diffusion coefficient Ds is higher for the
shorter objects at the same density. The MSD of 3-mers
exceeds the MSD of the larger objects (k = 4) at intermediate
and large times. This is a consequence of the fact that unlike
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FIG. 4. (Color online) Shown here is the double logarithmic
plot of the temporal evolution of the MSD for k = 3 (solid lines)
and k = 4 (dashed lines) at various densities ρ0. The solid and
dashed lines represent the MSD vs time t for densities ρ0 =
0.45, 0.55, 0.65, 0.70, 0.75, 0.80, from top to bottom. The values
of exponent α [Eq. (2)] reported in Table II are obtained from the
slopes of the MSD vs t curves in the time region between the thin
vertical lines.

for the long k-mers, more possible places for displacement
are allowed for short k-mers diffusing in the crossed single-file
systems. Moreover, from Fig. 4 it is evident that the region of
anomalous diffusion increases with the length of k-mers. The
values of exponent α Eq. (2) for k = 3, 4 obtained from the
slopes of the MSD versus t curves in the range t ∈ [102,103]
are reported in Table II. Comparing the results from Tables I
and II we can see that the exponent α decreases with the length
of the k-mer for all the densities considered. Due to the fact that
the dynamics of an object moving on a lattice is dictated by the
geometric exclusion effects, the subdiffusion at intermediate
times becomes stronger with increasing the objects’ size for
the same density.

We have also considered another series of numerical
experiments where both rotations (Prot > 0) and glides of
dimers are allowed simultaneously. In the main panel of Fig. 5
the MSD is shown in the case of density ρ0 = 0.90 and for
different rotation probabilities Prot. At high values of Prot,
short initial transient goes over immediately into a diffusive
behavior, i.e., 〈�r2(t)〉 = 4Dst . For low rotation probabilities
these two regimes are separated by a time regime where
the motion of dimers seems to be partially frozen so that

TABLE II. Values of the parameter α [Eq. (2)] for k = 3, 4
obtained from the fit to the power law (2) of the MSD in the range
t ∈ [102,103] for various densities ρ0.

ρ0 α(k = 3) α(k = 4)

0.45 0.756 0.675
0.55 0.685 0.564
0.65 0.591 0.480
0.70 0.565 0.394
0.75 0.489 0.351
0.80 0.391 0.275

10-1

100

101

102

103

104

100 101 102 103 104 105 106

<
(Δ

r)
2 >

t

10-4

10-3

10-4 10-3 10-2 10-1 100

D
s

Prot

FIG. 5. (Color online) Shown here is the double logarith-
mic plot of the temporal evolution of the MSD for dimers
in the case of ρ0 = 0.90 and for various rotation probabilities
Prot. The solid lines represent the MSD vs time t for prob-
abilities Prot = 1.0, 0.3, 0.1, 0.05, 0.02, 0.01, 5 × 10−3, 10−3, 5 ×
10−4, 10−4, 5 × 10−5, 0, from top to bottom. The dashed straight
line is shown, indicating the late-time diffusive behavior, 〈�r2(t)〉 =
4Dst . Inset: the self-diffusion coefficient Ds for dimers as a function
of the rotation probability Prot. The solid straight line is the power-law
fit, Ds ∝ P 0.42

rot .

the slope of MSD is less than one. Accordingly, the system
becomes subdiffusive, i.e., 〈�r2(t)〉 ∝ tα with α < 1, over
an intermediate time window that becomes broader as Prot

decreases. It is observed that the self-diffusion coefficient
Ds for ρ0 = 0.90 increases with the rotation probability Prot

as shown in the inset of Fig. 5. Furthermore, for the fixed
value of Prot, the dimer self-diffusion coefficient Ds decreases
algebraically with the dimer density ρ0. We omit a further
discussion of these quantities as they have been presented at
length elsewhere for similar models [36–38].

B. Van Hove space-time self-correlation function

We now turn our attention to a closer analysis of the motion
of k-mers in the case of mutually intersecting single-file
systems. We have calculated the self-part of the van Hove
correlation function from the particle trajectories obtained in
the simulations. Assuming an isotropic behavior, this function
is given by

Gs(r,t) = 1

N

〈
N∑

i=1

δ(r − |�ri(t) − �ri(0)|)
〉

, (3)

where δ(·) is the δ function, N is the number of particles, and
�ri is the position vector of the ith particle. The function Gs(r,t)
measures the probability that a given particle has undergone a
displacement r in a time interval of duration t . If the motion
of particles is diffusive, then the self-part of the van Hove
correlation function is Gaussian, Gs(r,t) ∝ exp[−r2/(4Dst)],
where Ds is the self-diffusion coefficient [39]. In the following,
attention will be restricted to the case in which the rotation
of k-mers is explicitly forbidden; only the glide moves are
allowed.
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FIG. 6. (Color online) Self-part of the van Hove correlation function Gs(r,t) of dimers for different densities: ρ0 = 0.55 (a), ρ0 = 0.80(b),
and ρ0 = 0.90(c). The curves in each graph correspond to various times ranging from t = 20 to 104 as indicated in the legend. The symbols are
the actual data and the lines are just a guide for the eye. In (d) the data correspond to four different densities ρ0 (see legend) and time t = 6000.
The dashed lines are the Gaussian fitting functions, Gs(r,t) = [α(t)/π ] exp[−α(t)r2], and the solid lines are the stretched exponential fits (4).
Distances on the horizontal axis are measured in lattice spacing units.

First, let us consider the dynamical properties of dimers for
different coverage fractions. In Fig. 6, we have plotted Gs(r,t)
for three densities: ρ0 = 0.55 (a), 0.80 (b), and 0.90 (c) at
different times ranging from t = 20 to t = 104. We can clearly
see that at low density [Fig. 6 (a)] Gs(r,t) decays in a regular
way; e.g., it is localized at short distances (typically r < 10)
for short times and tends to delocalize for large times. This
changes slightly for intermediate densities [Fig. 6 (b)]. Here
we see that for times in the range 20 � t � 103 the curves
show a weak tendency to cluster for 1 � r � 10. This effect is
much more pronounced at the highest density investigated
[Fig. 6 (c)], where it can be observed for times in the
range 20 � t � 104. This clustering is the signature that the
movement of the particles has drastically slowed at such
densities. We note that this slowing takes place for distances
of a few lattice constants; thus the particle still remains in the
cage formed by the particles that surrounded it at the zero time.

In Fig. 6 (d) we have plotted Gs(r,t) for four different
coverage fractions ranging from 0.55 to 0.90 at the fixed
time t = 6000. The single particle motion at timescales
corresponding to t = 6000 is subdiffusive for all the densities
considered (see Fig. 1). It can be easily seen that, especially

for large densities, there is a pronounced deviation of Gs(r,t)
from Gaussian distribution, shown as dashed lines. The small r
behavior, however, is not far from the Gaussian approximation,
corresponding to the motion of most of the particles around
their initial position. Additionally, a small fraction of the
particles find pathways to explore larger distances during the
observational time and contributing to the tail of Gs(r,t).

In Fig. 7 the spatial dependence of Gs(r,t) for various
k-mers is displayed for the fixed time t = 6000, and for
different values of density: ρ0 = 0.65, 0.80. With increasing
length of the k-mers, the width of Gs(r,t) decreases noticeably
for both densities. Additional simulations performed at various
times confirmed that the change in the shape of Gs(r,t) over
k becomes more pronounced as t increases, for all densities.
The observed differences in the dynamics of the larger and the
smaller particles diffusing in the crossed single-file systems
can be explained as follows. Since dimers are smaller than the
other k-mers, they are more mobile, as can also be recognized
from the fact that the diffusion coefficient for dimers is
larger than the one for the longer k-mers (see Figs. 1 and
4). Consequently, dimers are able to make some movements
(jumps) that the longer objects cannot do.
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FIG. 7. (Color online) Spatial dependence of the self-part of the
van Hove correlation function Gs(r,t) for k = 2 (circles), k = 3 (up
triangles), and k = 4 (down triangles). The symbols are the actual
data, and the lines are just a guide for the eye. The data correspond
to densities ρ0 = 0.65 (empty symbols) and 0.80 (full symbols) and
time t = 6000. Distances on the horizontal axis are measured in lattice
spacing units.

In order to provide the best analytical approximation for
the self-part of the van Hove correlation function Gs(r,t), we
examined a wide set of phenomenological fitting functions for
relaxation processes in many complex disordered systems [40].
Several attempts have been previously made to empirically
fit the non-Gaussian shape of Gs(r,t) with known functional
forms. In order to characterize the dynamical heterogeneity
in a model for permanent gels, Abete et al. [41] have tried
to fit their numerically determined Gs(r,t) with the sum of
two and more different Gaussian functions. Gao and Kilfoil
[42] have also recognized that near the colloid-gel transition
Gs(r,t) has a bimodal Gaussian form. Basing their analysis
on the experimentally measured Gs(r,t), Weeks et al. [43]
obtained that Gs(r,t) is probably better fitted with a stretched
exponential function. Recently it has been shown [25] that
Gs(r,t) for a broad class of materials close to glass and
jamming transition are better represented by a superposition of
a central Gaussian along with an exponential tail for the large
distances. However, the best agreement with our simulation
data was obtained by the stretched exponential function. The
fitting function we have used is of the form

Gs(r,t) = B(t) exp

{
−

[
r

λ(t)

]β(t)}
. (4)

The solid lines through the data in Fig. 6(d) are fits to Eq. (4).
In the case of dimers, the fitting parameters λ(t) and β(t)
are given in Fig. 8 and for four values of density, ρ0 =
0.55, 0.65, 0.80, 0.90. It is noteworthy that for all densities
ρ0, the parameter λ(t) seems to be a simple power law of time:

λ(t) = K tγ . (5)

The values of the exponent γ obtained for the densities below
ρ0 = 0.85 are in the range from 0.36 to 0.40; for ρ0 = 0.90,
we obtained the value of γ = 0.23. The parameter λ is also
sensitive to the variations of object size. The inset of Fig. 8(a)
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FIG. 8. (Color online) Main figure: The parameters λ(t) (a) and
β(t) (b), obtained by the stretched exponential fit [Eq. (4)] for the
case of dimers, as a function of time t . The symbols correspond to
densities ρ0 = 0.55, 0.65, 0.80, 0.90 as indicated in the legend. In
the main panel of (a) the solid lines are the power-law fits of Eq. (5).
Inset in (a): Parameter λ(t) of the stretched exponential fit [Eq. (4)] vs
time for the cases of k = 2, 3, 4. All results are for density ρ0 = 0.55.

compares the time evolution of the fitting parameter λ(t) for
three k-mers (k = 2, 3, 4) and for density ρ0 = 0.55. The size
dependence of the parameter λ(t) occurs already at early times.
As is expected, for cooperative diffusion with geometrical
constraints [19], parameter λ, i.e., the characteristic width
of the van Hove correlation function Gs(r,t), decreases with
increasing k.

As shown in Fig. 8(b), the values of the fitting parameter
β(t) [Eq. (4)] ranges between 1 and 2 for all densities ρ0.
As may be expected, however, and consistent with the MSD
behavior seen in Fig. 1, the parameter β reaches a value close
to 2 for large times and for sufficiently low densities. This
reflects the fact that the spatial dependence of Gs(r,t) exhibits
a clear trend to transform from the exponential behavior at
small times to the Gaussian form at long times. In the case
of mutually intersecting arrays of single-file systems, the
stretched exponential function (4) therefore allows one to
describe the self-part of the van Hove correlation function
Gs(r,t) at different times without changing the fitting formula.
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C. Intermediate scattering function

In this section we study the single-particle density fluc-
tuation dynamics of our model. Relevant information on the
relaxation dynamics over different length scales is embedded
in the self-intermediate scattering function (SISF) defined as

Fs(�q,t) = 1

N

〈
N∑

i=1

exp{i �q · [�ri(t) − �ri(0)]}
〉

, (6)

where, again, �ri(t) is the position of the ith particle in units
of the lattice constant. The wave vector �q can take the
discrete values �q = (2π/L)�n, where �n = (nx,ny) has integer
components nx and ny ranging from 0 to L/2 = 30.

Let us first consider the case of dimers when the rotation
moves can never occur (i.e., Prot = 0 and Pgl = 1). Fig-
ure 9 presents our numerical results for the self-intermediate
scattering function Fs(qn,t) at various densities ρ0 and
for various wave vectors. We choose �q = (qn,0), where
qn = (2π/L)n and n = 1, 2, 4, 6, 8, 10, 15, 20, 25, 30. At
low densities ρ0 < 0.60 [see, e.g., Fig. 9(a)] all the curves
decay to zero; i.e., the length of all the simulations allows

the fluctuations to become completely uncorrelated. As can be
seen, for all densities Fs(qn,t) decays more slowly the smaller
qn is. In the case of the highest density investigated, ρ0 = 0.90
[Fig. 9(c)]; due to the very slow dynamical relaxation, at small
values of the wave vector qn (n � 6), only a part of the Fs(qn,t)
can be observed.

We do not observe a plateau in the decrease of Fs(qn,t)
in contrast to what is often reported for colloids and glasses.
In dense colloids and supercooled liquids, Fs(qn,t) shows the
two-step relaxation behavior: (1) the fast β relaxation that
corresponds to the diffusion inside the cage, followed by (2)
the α relaxation corresponding to the time it takes for the
particle to diffuse out of the cage. Instead, in our model the
Fs(qn,t) curves stay close to unity for a time span that increases
with increasing density [see, e.g., Fig. 9(d)]. Similar behavior
has also been observed in the Kob-Andersen kinetic lattice
gas model, kinetically constrained spin models, and sheared
granular materials close to the jamming transition [36,44,45].
A simple explanation of the absence of a plateau can be
obtained via the following argument. When a particle in a
real fluid is temporarily caged by its surroundings, it can
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FIG. 9. (Color online) The time dependence of the SISF, Fs(qn,t), for dimers for different densities: ρ0 = 0.45(a), ρ0 =
0.75(b), and ρ0 = 0.90(c). The curves in graphs (a)–(c) correspond to the wave vectors �q = (qn,0), where qn = (2π/L)n and n =
30, 25, 20, 15, 10, 8, 6, 4, 2, 1 (from left to right). In (d) the solid curves correspond to the SISF, Fs(qn,t), of dimers for densities
ρ0 = 0.45, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90 (from left to right), and for the wave vector qn = π/5, (n = 6). The dashed curves are the
stretched exponential fits of Eq. (7), with the parameters τ and α given in Fig. 10. The horizontal dashed line indicates the 1/e value.
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nevertheless rattle in its cage, and hence the SISF decays on
a relatively short time scale to a plateau value. Only for much
larger times the particles are able to leave their cages, and
hence the SISF starts to decay to zero. In our model almost
all caged particles are immobile until their cages fall apart.
The absence of the rattling motion causes that the value of
the plateau is unity or very close to it. Thus the early-time β

regime would be very difficult or impossible to observe.
In Fig. 9(d) we show Fs(qn,t) for nearly all densities ρ0

investigated for one particular wave vector qn = π/5 (n = 6).
Analyzing the curves in Fig. 9(d) we find that the decreasing
of Fs(qn,t) is slower than exponential in time. In addition, the
curves for different values of density are very similar in form.
We have fitted the slow decay of Fs(qn,t) to the Kohlrausch-
Williams-Watts (KWW) or stretched exponential function

Fs(qn,t) = A exp

{
−

[
t

τ (qn)

]α(qn) }
, (7)

where α(qn) is the parameter measuring the deviation from
the single exponential form (0 < α � 1) and τ (qn) is the
relaxation time. Fits of this stretched exponential form to
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FIG. 10. (Color online) The parameters τ (qn) (a) and α(qn) (b),
obtained by the stretched exponential fits of Eq. (7) for the case of
dimers, as a function of the wave vector qn. The symbols correspond
to densities ρ0 = 0.45, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90 as
indicated in the legend. The solid lines in (a) are the power-law
fits of Eq. (8).

the simulation data are shown as dashed lines in Fig. 9(d).
Since the fitting parameter A is approximately equal to
unity for all wave vectors and densities, the wave-dependent
relaxation time τ (qn) can be defined as the time it takes for the
simulation curves of Fs(qn,t) to fall to the level of 1/e, i.e.,
Fs(qn,τ ) = 1/e.

We now focus on the qn dependence of both the relaxation
time τ (qn) [Fig. 10(a)] and the exponent α(qn) [Fig. 10(b)], for
various values of the density ρ0. It is noteworthy that for all
densities ρ0, the parameter τ (qn) seems to be a simple power
law of the wave vector:

τ (qn; ρ0) = R(ρ0) q−δ
n , (8)

with the same exponent δ = 2.70 ± 0.07 for all ρ0. On the
other hand, the stretching exponent α(qn) has the values
noticeably below one [Fig. 10(b)] and decreases progressively
below 0.5 for higher densities. The obtained values of α(qn),
different from unity, confirm the nonexponential relaxation of
Fs(qn,t), which can be attributed to the presence of dynamic
heterogeneities due to caging [24]. For small values of qn

the exponent α(qn) is rather weakly dependent on the density
ρ0. This provides the collapse of correlators onto a single
curve when the time is scaled as t/τ (qn). Figure 11 shows
the time-density superposition of the correlators Fs(qn,t) in
the case of dimers for all densities ρ0 investigated. For large
wave vectors qn (small length scale) the exponent α(qn)
depends on the density [see Fig. 10(b)]. Thus the time-density
superposition principle does not hold, likely because the short
time dynamical process can induce a significant relaxation on
the small length scales.

Finally, we consider the behavior of the relaxation time τ

as a function of the density ρ0. We have found that the slowing
of the dynamics with ρ0 is consistent with a scaling law

1

τ (qn; ρ0)
= S(qn) (ρc − ρ0)κ . (9)

We have performed a three-parameter fitting of our simulation
data for τ (qn; ρ0) to obtain the parameters κ, ρc, and S(qn). In
Fig. 12 the inverse relaxation time τ−1 is presented for the case
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FIG. 11. (Color online) The SISF, Fs(qn,t), at n = 6 (qn =
π/5) rescaled to t/τ (qn), for dimers at densities ρ0 =
0.45, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90. All the curves verify
the time-density superposition principle.
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FIG. 12. (Color online) The inverse relaxation time, 1/τ ,
extracted from the SISF of dimers, as a function of ρc −
ρ0, where ρc = 0.9958 ± 0.016. The symbols correspond to
the wave vectors �q = (qn,0), where qn = (2π/L)n and n =
30, 25, 20, 15, 10, 8, 6, 4, 2, 1 (from top to bottom). The solid lines
are the power-law fits of Eq. (9).

of dimers as a function of ρc − ρ0 for different wave vectors.
The final value of ρc = 0.9958 ± 0.016, used in Fig. 12, was
calculated as the average value for all wave vectors studied.
The linear trends in Fig. 12 show the power-law behavior as
given by Eq. (9) in the entire range of densities considered, with
the same exponent κ = 3.34 ± 0.12 for all wave vectors. This
functional dependence of relaxation has also been found in
many numerical lattice gas models [17,36,46]. It is important to
stress that the density ρc is approximately equal to the density
of closest packing of dimers on the 2D triangular lattice.
Indeed, when the deposited dimers are subject to diffusion,
the coverage fraction approaches the closest packing limit
θCPL � 1 [47–49], because the diffusion allows the formation
of gaps within which a fraction of deposition attempts can
succeed. This would suggest that there is no critical density
lower than the closest packing limit at which a structural arrest
of the system occurs.

An important prediction of the mode coupling theory is the
existence of power-law divergences for both the time scale τ

and the inverse of the self-diffusion coefficient Ds , with the
same exponent in both cases. We have calculated the diffusion
coefficient from the MSD at very long times. The values
obtained for Ds in the case of dimers are well fitted by a
power law Ds ∝ (ρc − ρ0)κ1 with ρc = 0.996 and κ1 = 3.33.
As shown in Fig. 13, our simulation results confirm a power law
for the self-diffusion coefficient Ds , with the same exponent
(within errors) as for the time scale.

Returning to the case of simulations where both rotations
and glides of dimers are allowed, we obtain that for high
rotation probabilities Prot � 1, Fs(qn,t) shows a simple ex-
ponential profile at all wave vectors. As Prot decreases, the
Fs(qn,t) curves become more and more stretched exponential.
These results are displayed in Fig. 14 for intermediate value of
qn = π/5 (n = 6) and for density ρ0 = 0.90. For all rotation
probabilities Prot the whole time interval of Fs(qn,t) can be
fitted by a stretched exponential function [Eq. (7)], where the
exponent α(qn) depends on the probability Prot. We extract the
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FIG. 13. The self-diffusion coefficient Ds of dimers, as a function
of ρc − ρ0, where ρc = 0.996. The straight line is the power-law
Ds ∝ (ρc − ρ0)κ1 with κ1 = 3.33.

time scales τ (qn) from the scattering function in the usual way,
Fs(qn,τ ) = 1/e. According to Fig. 15(a), τ (qn) decreases very
rapidly with increasing rotation probability Prot. In Fig. 15(b)
we show the exponent α(qn) as a function of the wave vector for
various rotation probabilities Prot. For sufficiently high values
of Prot and for small qn (i.e., large length scales) we obtain that
the relaxation time τ (qn) scales as q−2

n and α(qn) → 1. Hence,
at high Prot dimers perform a normal diffusive motion on large
length and time scales, and therefore Fs(qn,t) ∝ exp(−Dsq

2
nt)

for small qn and large t .
Finally, we investigated the dependence of SISF, Fs(qn,t),

on the length of k-mers. In Fig. 16 we compare the decay
of Fs(qn,t) at density ρ0 = 0.55 for the two k-mers: k = 3
and k = 4. We see that for small wave vectors qn (long
wavelengths) correlator Fs(qn,t) decays more slowly for the
longer k-mer. However, the relaxation behavior of correla-
tors Fs(qn,t) that probe the system on the length scale of
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FIG. 14. (Color online) The time dependence of the SISF,
Fs(qn,t), for density ρ0 = 0.90, and for the wave vector qn = π/5,
(n = 6). The solid curves correspond to Fs(qn,t) for rotation prob-
abilities Prot = 1.0, 0.3, 0.1, 0.05, 0.02, 0.01, 5 × 10−3, 10−3, 5 ×
10−4, 10−4, 5 × 10−5, 0, from left to right. The horizontal dashed
line indicates the 1/e value.
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FIG. 15. (Color online) The parameters τ (qn) (a) and α(qn) (b),
obtained by the stretched exponential fits of Eq. (7) for
the case where both rotations and glides of dimers are al-
lowed. The symbols are the actual data and the lines are
just a guide for the eye. In (a) the lines represent the τ

vs qn dependence for probabilities Prot = 0, 5 × 10−5, 10−4, 5 ×
10−4, 10−3, 5 × 10−3, 0.01, 0.02, 0.05, 0.1, 0.3, 1.0, from top to
bottom. In (b) the symbols correspond to various probabilities
Prot � 10−4 as indicated in the legend. All the results are for density
ρ0 = 0.90.

typical interparticle distances, i.e., for large values of qn, is
independent of the length of k-mers for all times. For other
densities we get qualitatively the same results. A consequence
of these outcomes is that the relaxation time τ (qn) for small
wave vectors qn increases with the length of the k-mer (see
Fig. 17). We also found that the relaxation time τ (qn) can be
well fitted by a power-law behavior [Eq. (8)] for all the k-mers
investigated. When length of k-mer increases, this power-law
behavior is restricted to smaller and smaller qn. Furthermore,
the relaxation times τ (qn) for the largest values of qn have
very similar values for all k-mers (see Fig. 17), which is
in accord with the previously stated fact that the correlator
Fs(qn,t) becomes k-independent with increasing qn.

IV. CONCLUDING REMARKS

The model investigated in this work is a two-dimensional
lattice gas model, where the interactions originate from

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

F s
(q

n
,t)

t

ρ0 = 0.55

FIG. 16. (Color online) The time dependence of the SISF,
Fs(qn,t), at density ρ0 = 0.55 for k = 3 (dashed lines), and
k = 4 (solid lines). The solid (dashed) curves correspond
to wave vectors �q = (qn,0), where qn = (2π/L)n and n =
30, 24, 20, 16, 10, 8, 6, 4, 2, 1 (from left to right). The horizontal
dashed line indicates the 1/e value.

the excluded volume. As a consequence of the restrictions
on particle motion, the model has the physical features
associated with the cage effect in high-density liquids. We
have highlighted the occurrence of very complex dynamical
behavior as soon as a multitude of single-file systems are
composed into channel networks.

By studying the mean-square displacement of k-mers we
have found that the suppression of rotational motion results in a
subdiffusive dynamics at intermediate times between the initial
transient and the long-time diffusive regime. Subdiffusion
stems from the trapping of the particles within the cages. Our
results indicate that the mutual correlation in the movement
of k-mers due to the crossing of the arrays of lines can
strongly alter the single-file diffusion process. We have focused
our attention on the single particle trajectories and have
analyzed the self-part of the van Hove distribution function
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FIG. 17. (Color online) Wave-vector dependence of the relax-
ation times τ (qn) [Eq. (7)] at density ρ0 = 0.55 for various k-mers:
k = 2 (circles), k = 3 (up triangles), and k = 4 (down triangles).
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Gs(r,t) in detail. We have shown that there is a pronounced
deviation of Gs(r,t) from the Gaussian distribution, especially
at high densities. It was obtained that the stretched exponential
function (4) excellently describes the spatial decay of Gs(r,t)
at intermediate times. Since the stretching exponent β for all
densities ranges between 1 and 2, the spatial dependence of
Gs(r,t) interpolates between the initial exponential form and
the long-time Gaussian behavior.

Dynamical behavior of the self-intermediate scattering
function Fs(qn,t) has also been investigated. We have found
that the decay of Fs(qn,t) to zero occurs via the Kohlrausch-
Williams-Watts law (7) for all values of the wave vector qn and
for all densities ρ0. At all densities, the characteristic timescale
τ (qn) is found to decrease with the wave vector qn according
to a simple power law (8), τ (qn; ρ0) ∝ q−δ

n . The time-density
superposition principle (Fig. 11) seems to hold for Fs(qn,t) for
small values of qn and for all densities. However, it seems to
work well for large values of qn and high densities. Indeed,
for the large wave vectors qn and sufficiently high densities
ρ0 � 0.65, the exponent α(qn) [Eq. (7)] is weakly dependent
on the density ρ0 (Fig. 10). Finally, we have considered the
behavior of the relaxation time τ as a function of the density
ρ0. We have shown that for all wave vectors, relaxation times
τ (qn; ρ0) display a power-law divergence [Eq. (9)] at densities
around the closest packing limit θCPL � 1 for our model. The
time scale and the diffusion coefficient show qualitatively the
expected behavior as a function of density, since the inverse of

the self-diffusion coefficient Ds also seems to diverge with the
power law at the maximum density θCPL. This suggests that
there is no dynamical transition in this model; i.e., the structural
arrest of the model seems to happen only at the maximum
density θCPL. Due to the fact that the dynamics of an object
moving on a lattice is dictated by geometric exclusion effects,
the dynamical behavior of the system is severely slowed with
the increase of the length of the objects.

There are several possible ways of extending the results
presented here. It would be interesting to perform a similar
investigation with objects of various rotational symmetries on
a triangular lattice [26,27,50,51]. As an open possibility for the
future, we think that a lattice diffusive model presented in this
work can be generalized to mixtures of several kinds of objects.
This would allow us to study the role that the polydispersity,
size, and the symmetry properties of the particles play in the
relaxation process of structural glass formers and granular
materials.
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[16] A. Brzank, G. M. Schütz, P. Bräuer, and J. Kärger, Phys. Rev. E

69, 031102 (2004).

[17] C. Fusco, P. Gallo, A. Petri, and M. Rovere, Phys. Rev. E 65,
026127 (2002).

[18] C. Fusco, A. Fasolino, P. Gallo, A. Petri, and M. Rovere, Phys.
Rev. E 66, 031301 (2002).
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