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Mean-field approximation of two coupled populations of excitable units
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The analysis on stability and bifurcations in the macroscopic dynamics exhibited by the system of two coupled
large populations composed of N stochastic excitable units each is performed by studying an approximate system,
obtained by replacing each population with the corresponding mean-field model. In the exact system, one has
the units within an ensemble communicating via the time-delayed linear couplings, whereas the interensemble
terms involve the nonlinear time-delayed interaction mediated by the appropriate global variables. The aim is to
demonstrate that the bifurcations affecting the stability of the stationary state of the original system, governed by
a set of 4N stochastic delay-differential equations for the microscopic dynamics, can accurately be reproduced
by a flow containing just four deterministic delay-differential equations which describe the evolution of the
mean-field based variables. In particular, the considered issues include determining the parameter domains where
the stationary state is stable, the scenarios for the onset, and the time-delay induced suppression of the collective
mode, as well as the parameter domains admitting bistability between the equilibrium and the oscillatory state.
We show how analytically tractable bifurcations occurring in the approximate model can be used to identify the
characteristic mechanisms by which the stationary state is destabilized under different system configurations,
like those with symmetrical or asymmetrical interpopulation couplings.
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The onset and mutual adjustment of collective rhythms
are regarded as the dynamical paradigm for the macroscopic
phenomena in a wide range of biological and inorganic
systems. Such a framework has already proven indispensable
for understanding the normal and pathological patterns of
brain activity [1,2], coordination of cellular clocks governing
circadian rhythms [3], the mechanisms regulating heartbeat
[4] or lying behind certain forms of social behavior [5],
entrainment of electrochemical oscillators [6], as well as the
dynamics of Josephson junction circuits [7] and the arrays of
coupled lasers [8]. The emergence of macroscopic rhythms in
ensembles of oscillating units is mediated by synchronization-
based self-organization [9]. The latter is often influenced or
facilitated by noise on one hand [10,11], while, on the other
hand, the interaction over the appropriate communication
channels is typically susceptible to transmission delays or
there may be a time lag due to the system components’
latency in response to input variations [12]. A pervasive idea
in nonlinear dynamics is to treat an assembly exhibiting a
collective mode as a macroscopic oscillator [13], which could
in turn be subjected to an external drive or be exposed to a
single or multiple collective rhythms from other populations.
In this context, an important issue is to consider the relationship
between the ensemble’s global variable and the external
forcing or the relationship between the corresponding global
variables.

In terms of the dynamical complexity of the observed
behavior and the methods available for the analytical study,
one has to make a distinction between the cases where the
populations are built of self-sustained (autonomous) oscillators
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or the excitable units. In the former instance, it is possible to ob-
tain a more compact description of the interacting ensembles’
dynamics by applying the phase reduction techniques [14–16].
Given that the phase cannot be attributed to the system residing
at the equilibrium, excitable populations are not amenable
to such methods. Nonetheless, on the level of elementary
behavior associated with the macroscopic variables, popula-
tions consisting of excitable or self-oscillating units undergo
qualitatively similar forms of dynamics. In particular, the
ensuing collective modes may synchronize [17,18], become
phase locked, or get suppressed by the action of the coupling
delay (delay-induced amplitude death) [19]. Beyond such
simple cases, there are more complex forms of collective
behavior tied exclusively to populations of interacting oscil-
lators. A few prominent examples include the self-organized
quasiperiodicity [13] and the partially synchronous chimaera
states [20,21], which have been found to emerge in systems
of identical phase oscillators under the action of the external
forcing or by coupling to another population, respectively.
The former regime is characterized by the frequency of the
collective mode being distinct from that of the single elements,
while the other involves a broken symmetry between the
dynamics of two interacting populations.

In this study, the focus lies with the two delay-coupled
populations of identical excitable units modeled by the
Fitzhugh-Nagumo elements. The behavior of the latter is
representative for type II excitability [22], which, in contrast
to type I, lacks a sharp threshold in the sense that the amplitude
of the response depends continuously on the size of the applied
stimulus. Though the considered framework is quite general,
the basic motivation admittedly draws from the observations
on neuronal assemblies, with the adopted model of local
activity typically invoked in such a context. The analysis of
the underlying system dynamics may be approached from two
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different angles. For one, a numerical study can be carried out
to look for the states of the increasing dynamical complexity.
Instead, we take on a strategy that consists in examining how
well the behavior of the exact system is matched by that
of the coupled mean-field (MF) systems, having derived the
MF model as an approximation for the activity of a single
ensemble. The concept aims to fully exploit the analogy
between the assemblies and the macroscopic oscillators, such
that the original set of equations for the microscopic dynamics
is reduced to a flow which describes the evolution of the global
variables, incorporating the cross-population interaction in a
natural way. An important ingredient for the setup is that both
the intra- and the cross-population coupling terms include the
transmission delays. Note that the layout with two populations
may constitute a paradigm, or rather serve as a nucleus for
the “network of networks” [17,21,23], which can be realized
as a hierarchy of multiple networks, or it could be thought of
as an idealization for a single network with a strong modular
structure and a large number of elements in each community
(subnetwork). Both configurations are common in biological
systems [17], ranging from the cellular level to the distributed
anatomical areas of the brain and also encompassing the
populations of cells responsible for the rhythmic activity
in heart, kidney, pancreas, to name but a few. As for the
comparison with the MF model, the attempts at providing
a reduced description instead of using the complete set of
equations for each and every population constituent have a
particularly long history within neuroscience [24–28]. Apart
for the gains on the modeling side, they have initially been
instigated by the finding that the EEG and MEG recordings
may be linked to an average behavior, viz. the massively
summed action potentials emitted within the strongly coupled
but remote cortical areas [28,29]. Though the given approach
inevitably includes simplifying assumptions that eventually
constrain the repertoire of possible system behaviors just to
periodic motion, some of the realism may readily be sacrificed
for a more parsimonious representation if the emergence of
the collective mode and the related dynamics are reproduced
with sufficient fidelity.

So far, the MF models have proven at least partially
successful when handling the isolated population dynamics
[30,31] but have rarely considered the scenarios with combined
presence of noise and coupling delay [26,32,33]. Nonetheless,
the rigorous results on interacting ensembles, especially those
made up of excitable units, are still lacking. Hence, the key
set of issues addressed in this study amounts to identifying
the conditions for the stability of the stationary state, the onset
of the collective mode, bistability between the equilibrium
and the oscillation state, as well as the time-delay induced
suppression of the collective mode. One notes that the
applied term collective mode here implies the existence of
a limit cycle for the total system of interacting populations.
Though the intention is not, or rather cannot be, to account
for any experimental observation of such phenomena, some
elementary comparison can still be drawn. For instance, the
notion that the emergence and the synchronization properties
of collective rhythms arising in the macroscopic neural
populations are critically influenced by the coupling strength
and the interaction delay [29] has its clear analog in the results
we arrive at. Consistent with the stated objectives, the study of
the approximate system is concerned with the local bifurcation

analysis, carried out analytically and corroborated by the
numerical means, to determine (i) the parameter domains
of stability of the steady states, (ii) the scenarios for the
emergence or the suppression of the collective mode, and (iii)
the parameter domains admitting the bistability between the
equilibrium and the oscillatory state.

The paper is organized as follows. In Sec. I, the details
of the exact model of interacting populations are laid out in
parallel with the derivation of its MF counterpart. Section II
is focused on the local bifurcation analysis of the approximate
model, providing for the analytical results. In Sec. III, we
demonstrate that the approximation based on two coupled MF
systems is able to accurately predict the behavior of the exact
system in terms of the stability of the equilibrium, as well
as the onset and the suppression of the collective mode. It
is also pointed out how different system configurations affect
the scenarios for the emergence of the oscillatory state and
influence the parameter domains supporting its coexistence
with the equilibrium. The results are briefly summarized and
discussed in the concluding section.

I. BACKGROUND ON THE EXACT MODEL
AND DERIVATION OF ITS MF COUNTERPART

A. Details of the exact model

Each population comprises a collection of N identical
Fitzhugh-Nagumo elements [22,34], whose dynamics is given
by

εdxi,1 = (
xi,1 − x3

i,1

/
3 − yi,1 + I1

)
dt + gin,1

N

×
N∑

j=1

[xj,1(t − τin,1) − xi,1(t)]dt + gc,1

× arctan[X2(t − τc,1) + b2]dt,

dyi,1 = (xi,1 + b1)dt +
√

2D1dWi,1

εdxi,2 = (
xi,2 − x3

i,2

/
3 − yi,2 + I2

)
dt + gin,2

N

×
N∑

j=1

[xj,2(t − τin,2) − xi,2(t)]dt + gc,2

× arctan[X1(t − τc,2) + b1]dt,

dyi,2 = (xi,2 + b2)dt +
√

2D2dWi,2, (1)

where the subscripts k = 1,2 specify the population, indices
i = 1, . . . N denote a particular unit within the population,
and Xk = (1/N)

∑N
i=1 xi,k stand for the macroscopic variables

that typify the global population behavior. The small parameter
ε = 0.01 imposes a wide separation between the characteristic
time scales for the evolution of xi,k and yi,k . In the context of
neuronal activity the set of fast variables embodies the mem-
brane potentials, whereas the slow-variable set is supposed
to account for the gross kinetics of the potassium ion-gating
channels. In the absence of an external stimulation I1 =
I2 = 0 applies. The impact of a noisy background activity is
reflected by the

√
2DdWi terms, which represent the stochastic

increments of the independent Wiener processes specified
by the noise amplitude D, expectation values 〈dWi〉 = 0,
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and the correlations that satisfy 〈dWidWj 〉 = δij dt for each
population.

Due to the system configuration, the local dynamics
involves two types of interactions, each characterized by the
coupling strength and the delay. The respective parameters
associated with the intraensemble terms are gin,k and τin,k ,
and those related to the cross-population terms are gc,k and
τc,k . Within the populations, the elements communicate via
the simple linear (diffusive) couplings, such that τin may
account for the transmission delays due to finite rate of
signal propagation or the latency in unit responses. Given the
objectives stated in the Introduction, it is not unjustified to
make use of some simplifying assumptions, like the all-to-all
pattern of interconnections and the uniformity of coupling
strengths inside the ensembles, which are the abstractions
often invoked in the relevant literature [35]. As for the
cross-population interactions, at the current stage no particular
model is considered to be preferred over the others. However,
we make use of an analogy to neural systems by noting how a
variety of models display a common feature. In particular,
the evoked postsynaptic potentials can be expressed in a
symbolical form, h = s ⊗ m, where m refers to an average
density of presynaptic input arriving from the transmitter
population and s presents the thresholdlike response of the
neurons of the receiving population [29]. Adhering to this
concept, the output of the transmitter population is integrated
by the macroscopic variables Xk = (1/N )

∑N
i=1 xi,k , which

reflect the global behavior in a sense that the better the
synchronization among the constituent elements, the larger
the amplitudes of Xk . In terms of the nonlinear threshold
function, there is a degree of arbitrariness, so the arctan
form applied here is as good a choice as any. Unlike the
interactions within the populations, which are characterized
by the specific strengths per link, the interpopulation terms
involve the cumulative strengths, consistent with the idea of
viewing each population as a single macroscopic oscillator.
The bidirectional couplings between the ensembles, being
either symmetrical or asymmetrical, may be important from
the aspect of neuroscience, given that the brain connectivity
patterns are known to exhibit a large portion of reciprocal
interactions [28]. Note that the parameters bk , assumed to be
uniform within each population, appear in (1) in two different
contexts, one related to the single unit dynamics and the other
associated with the cross-population coupling. On the former,
bk plays the key role in modifying the unit’s excitability. Given
an isolated unit in the noiseless case, it is known that the
condition |bk| = 1 determines the Hopf bifurcation threshold,
above which the system possesses a unique equilibrium,
whereas below it one finds a limit cycle [36]. Setting bk

slightly above 1, the population elements are poised close
to the Hopf threshold. This gives rise to excitable behavior,
meaning that an adequate stimulation, be it by the noise or
the interaction terms, may evoke large transients in the phase
space before the orbit converges back to the rest state. Here we
keep the discussion general by allowing for b1 �= b2, whereas
the results in Sec. III are provided for b1 = b2 = 1.05. The role
of bk in the cross-population coupling terms is explained as
follows. First, note that the x coordinate of equilibrium of each
element within a population is given by xi,k = −bk , as implied
by the equations for yi,k . Consequently, for the equilibrium

of the system of global variables holds Xk,EQ = −bk . The
argument of the interpopulation coupling then is defined in
the form Xk − Xk,EQ = Xk + bk , so the impact of the global
state Xk is felt stronger if it lies further away from the
equilibrium.

B. Background and the formulation of the MF approximation

Deriving the MF approximation, we aspire for a highly
reduced set of nonlinear deterministic delay differential equa-
tions (DDE) instead of the original system (1) composed of a
large set of nonlinear stochastic delay differential equations.
Though a simplified representation, the MF model should
still be able to reproduce with sufficient accuracy the latter’s
behavior regarding the stability of the steady states, the sce-
narios for the onset of the collective mode, and its suppression
under the action of the cross-population coupling delay. The
MF treatment draws on the all-to-all type of connectivity
among neurons within each population, incorporating the
thermodynamic limit N → ∞ in a natural way [27]. In
order to build a MF model, two different approaches are
available with which to proceed: One may either consider
the time dependence of a hierarchy of probability densities
according to the Fokker-Planck formalism or focus on the
evolution of cumulants, whereby the full density of states
is factorized into a series of marginal densities. The latter
alternative is preferred, as it allows for a number of convenient
approximations to be introduced in a controlled fashion [27].
Note how one is bound to make some approximations for the
nonlinearity of the original system, given that the cumulants
of the particular order are usually linked to those of the
higher order, which apparently renders the underlying series
unclosed. The way to resolve this issue consists in truncating
the series by a form of a closure hypothesis. Such a hypothesis
typically integrates the cumulant approach with the Gaussian
approximation [37,38], recalling that the Gaussian distribution
has vanishing cumulants above the second order.

Confined to a single population, the Gaussian approxi-
mation involves two elementary prepositions: first, that the
instantaneous distributions of local variables P (xi) and P (yi)
are Gaussian and, second, that the ensemble averages at any
given moment coincide with the expectation values of the ap-
propriate distributions in a sense (1/N )

∑N
i=1 xi ≈ E[P (xi)],

(1/N )
∑N

i=1 yi ≈ E[P (yi)] [37,38]. If the two stated condi-
tions are met, all the cumulants above the second order are
supposed to vanish. Let us briefly comment on the constraints
imposed on the system parameters by these conditions. On
the first point, the Gaussian distribution of local variables is
maintained if the noise amplitude obeys D 
 1. Nonetheless,
the strong law of large numbers [39] implies that the second
condition concerning the ensemble averages is fulfilled exactly
in the thermodynamic limit N → ∞ if the involved stochastic
processes are independent (gin 
 1). However, the numerical
results presented later indicate that the MF approximation
remains valid if the two latter conditions are relaxed, viz.
when there is non-negligible interaction in the finite-size
systems, provided that the requirement for not too large a
noise amplitude is satisfied.

In the following, we outline the key steps in the derivation
of the MF model for the activity of an interacting assembly.
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To begin with, note that the cross-population coupling terms
involve only the average dynamics of the respective transmitter
populations. This means that the focus should first lie with the
internal dynamics of the ensembles, treating them temporarily
as if they were independent, while subsequently including the
interpopulation interaction. Therefore, we confine further pre-
sentation to a single population, whose dynamics is extracted
from (1) by setting gc,1 or gc,2 to zero

εdxi = (
xi − x3

i

/
3 − yi

)
dt + gin

N

N∑
j=1

[xj (t − τin) − xi(t)]dt,

(2)
dyi = (xi + b)dt +

√
2DdWi.

Given that the distributions of the stochastic local variables
are assumed to take on the Gaussian form, one can fully
characterize them by the set of the first- and second-order
moments, which includes the mean values, the variances, and
the covariance. The mean values applied here

mx(t) = 〈xi(t)〉 = lim
N→∞

(1/N )
N∑

i=1

xi(t)

(3)

my(t) = 〈yi(t)〉 = lim
N→∞

(1/N )
N∑

i=1

yi(t)

should strictly speaking be distinguished from the global
variables X and Y considered earlier for the large but still
finite-size populations. The angled brackets are generally used
to denote averaging over the units making up the ensemble,
whereas mx and my are reserved solely for the averages
of the local variables. Before introducing the second-order
moments, it is convenient to define the deviations from
the mean nxi

(t) = 〈xi(t)〉 − xi(t) and nyi
(t) = 〈yi(t)〉 − yi(t),

which obey the Gaussian distributions and are independent
between the single elements. Then the appropriate variances
read

sx(t) = 〈
n2

xi
(t)

〉 = 〈(〈xi(t)〉 − xi(t))
2〉

(4)
sy(t) = 〈

n2
yi

(t)
〉 = 〈(〈yi(t)〉 − yi(t))

2〉,
whereas the covariance is given by

u(t) = 〈nxi
(t)nyi

(t)〉 = 〈(〈xi(t)〉 − xi(t))(〈yi(t)〉 − yi(t))〉.
(5)

The evolution of the distributions’ means mx and my is
obtained by performing the ensemble averages over the system
(2), while the expressions for the dynamics of sx,sy and
u follow from explicitly taking the time derivatives of the
definitions (4) and (5). Note that the latter calculation also
involves the derivatives of the compound functions of the
stochastic variables such as d〈x2

i 〉/dt and d〈y2
i 〉/dt , where

one is required to apply the Ito’s chain rule. As for the
higher-order averages, like 〈x2

i 〉 and 〈x3
i 〉, it is necessary

to tie them to the first- and second-order moments. In the
simplest cases, this is accomplished by using the definitions
(4) and (5), while in most instances one arrives at the
required relations by setting the higher-order cumulants [40] to

zero, e.g., 〈x3
i 〉c = 〈x3

i 〉 − 3〈x2
i 〉〈xi〉 + 2〈xi〉3 = 0, 〈x2

i yi〉c =
〈x2

i yi〉 − 〈x2
i 〉〈yi〉 − 2〈xi〉〈xiyi〉 + 2〈xi〉2〈yi〉 = 0, and similar

for 〈x3
i yi〉c = 0 and 〈x4

i 〉c = 0. The ensuing auxiliary formulas
for the higher-order averages then read

〈
x2

i

〉 = sx + m2
x〈

x3
i

〉 = m3
x + 3mxsx〈

x4
i

〉 = m4
x + 6m2

xsx + 3s2
x

(6)
〈xiyi〉 = u + mxmy〈
x2

i yi

〉 = mysx + mym
2
x + 2mxu〈

x3
i yi

〉 = 3sxu + 3m2
xu + mym

3
x + 3mxmysx.

After a series of steps which are too lengthy to convey in
full detail the closed system of equations for the first- and
second-order moments finally becomes

ε
dmx(t)

dt
= mx(t) − mx(t)3/3 − sx(t)mx(t) − my(t)

+ gin[mx(t − τin) − mx(t)]
dmy(t)

dt
= mx(t) + b

ε

2

dsx(t)

dt
= sx(t)

[
1 − m2

x(t) − sx(t) − gin
] − u(t) (7)

1

2

dsy(t)

dt
= u(t) + D

du(t)

dt
= u(t)

ε

[
1 − m2

x(t) − sx(t) − gin
] − 1

ε
sy(t) + sx(t).

Note that (7) comprises a set of deterministic delay equations,
where the impact of noise is absorbed into its amplitude D.
Recalling the Introduction, one of the objectives has been to
carry out the bifurcation analysis on the MF model analytically.
However, the system (7) is still sufficiently complex to defy
such a treatment. To ensure that the bifurcation analysis is
analytically tractable, we consider an additional approximation
which concerns the relatively fast relaxation of the second-
order moments. Given that the characteristic time scales, at
least for sx and u, are dominated by the small parameter ε,
one may substitute their full dynamics by the stationary values
reached when ṡx = 0, ṡy = 0, and u̇ = 0 are satisfied. Though
a crude approximation, it is not an uncommon one [27,38].
In the language of neuroscience, the net result it yields is
comparable to translating the initial MF model into an effective
neural-mass model [29], the former (latter) associated with the
system of five (two) equations. Nevertheless, whether this is
justified strongly depends on the main objectives of the study,
which here concern the stability of the stationary state and the
onset of the collective mode and its suppression in an amplitude
deathlike phenomenon [11]. As it stands, the described
modification to the MF model should not substantially affect
the latter set of issues, since the information supplied by the
second-order variables, like that on small fluctuations around
the collective synchronous state, appears redundant in such a
context. This is corroborated later on by the results indicating
an agreement between the behaviors of the exact and the MF
approximation.
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To complete the MF approximation for the dynamics of
the two interacting populations, one should take into account
the interensemble interactions initially left aside, arriving
at the following set of four equations:

ε
dmx,1(t)

dt
= mx,1(t) − mx,1(t)3

3
− mx,1(t)

2
(1 − gin,1

−mx,1(t)2 +
√

[gin,1 − 1 + mx,1(t)2]2 + 4D1)

−my,1(t) + gin,1[mx,1(t − τin,1) − mx,1(t)]

+ gc,1 arctan[mx,2(t − τc,1) + b2]
dmy,1(t)

dt
= mx,1(t) + b1

ε
dmx,2(t)

dt
= mx,2(t) − mx,2(t)3

3
− mx,1(t)

2
{1 − gin,2

−mx,2(t)2 +
√

[gin,2 − 1 + mx,2(t)2]2 + 4D2}
−my,2(t) + gin,2[mx,2(t − τin,2) − mx,2(t)]

+ gc,2 arctan[mx,1(t − τc,2) + b1]
dmy,2(t)

dt
= mx,2(t) + b2. (8)

Note that for D1 = D2 = 0, the obtained system strongly
resembles the case of two interacting Fitzhugh-Nagumo
elements subjected to the delayed feedback. Another point
is that the isolated populations (gc,1 = gc,2 = 0) can be shown
to exhibit the excitable-like dynamics under the variation of
D and τ . By this is meant that, apart from the small amplitude
oscillations about the equilibrium, there may also be large
excursions of the global potential, reflecting the crucial feature
of the exact system. In our previous paper, it has already
been demonstrated that the MF model of a single assembly is
able to accurately predict the qualitative behavior of the exact
system [32]. This refers to a sequence of local bifurcations
under variation of D, τin and gin, which can be used to highlight
the parameter domains giving rise to oscillatory states or those
that lead to the amplitude death [33]. In addition, the MF
model of an isolated ensemble has also been found to reflect
the global bifurcation imminent to the onset of clustering in
the exact system [41].

Before proceeding to the main results, several brief remarks
on the applied numerical integration schemes are in order. The
time series for both the exact and the approximate models
are obtained by implementing the Euler method with the fixed
time step �t = 0.005 in the former and �t = 0.01 in the latter
case, having verified that no changes occur for the smaller
�t . Also, on either occasion, we have adopted the standard
and physically plausible initial functions, based on the as-
sumption of the units evolving independently within the time
interval t ∈ [−τmin,0], where τmin = min{τin,1,τin,2,τc,1,τc,2}.
This effectively amounts to integrating the systems (1)
and (8) by disregarding any interaction for t ∈ [−τmin,0],
with the initial conditions in each instance taken in the
vicinity of the fixed point. The results for the exact model
refer to populations made up of N = 200 elements but
have been verified to persist if the larger assemblies are
considered.

II. ANALYTICAL RESULTS OF THE LOCAL
BIFURCATION ANALYSIS OF THE

APPROXIMATE SYSTEM

In the two following sections, we first provide the details
of the local bifurcation analysis performed on the approximate
system and then examine whether and how well these results
match the behavior of the exact system, whereby the latter
dynamics is represented by the typical sample paths obtained
from numerical integration of (1) for the sufficiently large
N with D1,D2 �= 0. On the first part, the analysis covers the
stability of the attractor states for the total system of coupled
populations, such that both of them are either found lying
in the equilibrium or exhibiting oscillations. The main focus
is on the stability of the fixed point and its destabilization
under variation of the cross-population coupling strengths and
delays. Apart for the onset of the oscillatory state, it is also
considered how the coherent rhythms may become suppressed,
this primarily attributed to the action of the interensemble
time lags. As a final matter, we demonstrate the existence of
the parameter domains admitting the bistable regime, where
the stationary and the oscillatory state coexist. Altogether, an
inference confirmed later is that the MF approximation can
capture the behavior of the exact system much better if the
collective dynamics is such that the deterministic component,
controlled by the coupling strength and time delay, prevails
over the stochastic component. The points enumerated above
exhaust the corpus of problems that may approximately
be treated by the local bifurcation theory, in the sense of
explaining the qualitative changes arising in the system’s
asymptotic dynamics due to parameter variation. Outside
the scope remain the more complex phenomena occurring
for larger D-s and τ -s, which could cause the behavior of
single units within the populations to become substantially
stratified. Such issues would fall under the notion of stochastic
bifurcations [39], meaning that one should consider how
the parameter modification influences the changes of the
respective stationary distributions of the local variables.

Since we discuss the scenarios with symmetrical and
asymmetrical cross-population couplings, as well as the setups
where the inherent ensemble dynamics is the same or distinct,
the analytical results of the local bifurcation analysis on
the system of interacting MF models are presented in most
general terms with respect to the system parameters. First, it is
established that the system (8) possesses a unique equilibrium
given by

mx,k = −bk;

my,k = bk

2

[
1 + b2

k

3
+ gin,k −

√(
gin,k − 1 + b2

k

)2 + 4Dk

]
(9)

with k = 1,2. The local stability of (9) depends on the roots
of the characteristic equation of the system (8). To obtain the
latter, one linearizes (8) around the equilibrium, assuming that
the deviations are of the form δmx,k(t) = Ake

λt , δmy,k(t) =
Bke

λt , and δmx,k(t − τin,k) = Ake
λ(t−τin,k ). This results in a set

of algebraic equations for the coefficients Ak and Bk , which
has a nontrivial solution only if

�1(λ)�2(λ) − λ2gc,1gc,2e
−λ(τc,1+τc,2) = 0 (10)
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is fulfilled, where �k(λ) = −λFk + ελ2 − gin,kλe−λτin,k + 1
with Fk = Fk(gin,k,bk,Dk). The condition (10) poses the
desired characteristic equation, wherby being transcendental
reflects the presence of (multiple) time delays in (8). Though
(10) has an infinite number of roots, it is well known how there
may be only a finite number of exceptional roots equal to zero
or with a zero real part [42,43]. One recalls that, tangent to
the subspace spanned by the associated eigenvectors, lies the
center manifold [44,45], where the qualitative features of the
system’s dynamics, such as the local stability, are contingent
on the nonlinear terms.

Bifurcations of the stationary state take place for the param-
eter values where the roots of (10) cross the imaginary axis.
Given that Eq. (10) does not admit the possibility λ = 0, we
look for the pure imaginary roots of the form λ = ıω, adopting
ω to be real and positive. Substituting for λ in (10), one obtains

{−ıω[F1 − ıεω + gin,1(cos ωτin,1 − ı sin ωτin,1)] + 1}
×{−ıω[F2 − ıεω + gin,2(cos ωτin,2 − ı sin ωτin,2)] + 1}
+ω2gc,1gc,2{cos[ω(τc,1 + τc,2)] − ı sin[ω(τc,1 + τc,2)]} = 0

(11)

which, after equating both the real and the imaginary parts
with zero, provides for the implicit relations of ω and the
system parameters

−ω2P1P2 + Q1Q2 = −ω2gc,1gc,2 cos[ω(τc,1 + τc,2)]
(12)

ωP1Q2 + ωP2Q1 = ω2gc,1gc,2 sin[ω(τc,1 + τc,2)],

where

Pk = Fk + gin,k cos(ωτin,k)
(13)

Qk = εω2 + gin,kω sin(ωτin,k) − 1

applies for k = 1,2. Squaring and adding the relations (12),
one arrives at

(ω2P1P2 − Q1Q2)2 + ω2(P1Q2 + P2Q1)2 = ω4g2
c,1g

2
c,2,

(14)

which can be used to express the cross-population coupling
strengths in terms of ω, while keeping the values for the
subset of the intrinsic parameters gin,k , τin,k , bk , and Dk fixed.
Obtained in a similar fashion, the analogous result for the
critical cross-population coupling delays may be written in
the compact form

τc,1 + τc,2 = 1

ω
arctan

(
ωP1Q2 + ωP2Q1

ω2P1P2 − Q1Q2

)
. (15)

The last two equations combined define the curves in the
appropriate delay-strength parameter plane. Bear in mind
that Eq. (15) actually defines multiple branches of the Hopf
bifurcation curves, these given by τc,1 + τc,2 + jπ , where
j = 0,1,2 . . . . Naturally, the above relations further simplify
once the interensemble couplings are taken to be symmetrical
and/or the populations’ intrinsic parameters are assumed to
be identical. Note that the expressions such as these could
not be obtained if we were to retain the initial MF model (7)
containing the full dynamics of the second-order cumulants.
As for the type of bifurcations whose location is indicated by
(15), the very form of the solution adopted for the characteristic

equation is consistent with the Hopf bifurcations, though a rig-
orous proof would require one to verify whether the conditions
on nonhyperbolicity, transversality, and genericity are satisfied
[22,43,45]. Without entering into unnecessary details, it suf-
fices to say that the system (8) admits both the supercritical and
subcritical Hopf bifurcations, whereby the former (latter) re-
sult in the creation of a stable (unstable) limit cycle. In addition,
recall that either of these types can be direct or inverse [44],
depending on whether an unstable two-dimensional manifold
for the fixed point (8) appears or vanishes when crossing the
bifurcation curve, respectively, having the fixed point unfold on
the unstable or the stable side. The results derived analytically
are corroborated numerically by means of the DDE-biftool
[46], an adaptable package of MATLAB routines suitable for
handling the sets of DDE with constant delays.

III. QUALITATIVE COMPARISON BETWEEN
THE DYNAMICS OF THE EXACT

AND THE APPROXIMATE SYSTEM

For the systematic study, we first consider the layout with
two populations made up of independent excitable elements
(gin,1 = gin,2 = 0) subjected to a common, comparably small
noise (D1 = D2 = 0.0001), whereby the cross-population
coupling terms are taken to be symmetrical, so one may
introduce gc,1 = gc,2 = gc and τc,1 = τc,2 = τc. The param-
eters are such that for gc = 0, the populations exhibit the
asymptotically (stochastically) stable equilibrium in the MF
(exact) model. Though it appears marginal at first sight, the
described setup is still important, since the MF model is here
strongly indicated to match the behavior of the real system. In
a sense, this scenario is reminiscent of a null-hypothesis, given
that the stated parameters are fully compliant with the nominal
conditions for the validity of the MF approximation. One
would further expect to gain some insight into the phenomena
occurring for the more complex system configurations or
may at least obtain a reference point to isolate the effects
of certain parameters, such as gin or τin. In the remainder,
the bifurcation diagrams are accompanied by the close-up
views focused on the most relevant parameter domains, having
those referred to in the text indicated by the representative
symbols. Also, to distinguish between the different bifurcation
curves, each is denoted by two types of indices. The +/− sign
specifies whether the curves coincide with the direct or inverse
bifurcations, respectively, while the numerical index points to
the order in which the given branches are encountered as the
interpopulation coupling delay is increased.

From the bifurcation diagram in Fig. 1(a), a major point
concerns the prediction on the existence of the critical
strength g0 for the instantaneous couplings (τc = 0), where
the stationary state loses stability. Figure 1(b) presents a
zoom in of Fig. 1(a), focused on the parameter region where
equilibrium changes stability. In particular, for gc < g0, viz.
the open circle in Fig. 1(b), the equilibrium is stable, whereas
for gc > g0 (solid circle) there is only the oscillatory state.
The bifurcation scenario coincides with the direct supercritical
Hopf bifurcation, and the numerical simulations imply that the
unstable manifold for the equilibrium mx,1 = mx,2 = mx and
my,1 = my,2 = my around gc = g0 supports the oscillations
in-phase, this being an example of synchronization between
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FIG. 1. (Color online) First few branches of the Hopf bifurcation
curves τc(gc) for the MF based approximation of the system of
two symmetrically coupled (gc,1 = gc,2 = gc,τc,1 = τc,2 = τc) pop-
ulations, each made up of noninteracting units (gin,1 = gin,2 = 0).
Panel (b) shows the enlarged section of (a), where the equilibrium
changes stability. The equilibrium is destabilized via the supercritical
Hopf bifurcation, but the form of the collective mode is found to be
influenced by the interplay with the global fold-cycle bifurcation. All
units are subjected to noise of the amplitude D = 0.0001.

the units due to a common input. By the term oscillations
in-phase, it is meant that the MF approximation indicates a
solution with the exact synchronization between the global
variables, which is stochastically perturbed in the exact system.
What is described applies not only for τc = 0 but also holds
in any instance when the curve τ1,− is crossed in the direction
of increasing gc with τc kept fixed. However, note that there
is an additional subtlety to this transition derived from an
interplay with the fold-cycle bifurcation, a global event which
cannot be accounted for by the present type of analysis. Such
an interplay is reflected in the form of the collective mode
exhibited by the system. In this context, one may identify
four distinct domains of gc values, characterized by the stable
solutions of the system’s dynamics. The latter are illustrated
in Fig. 2 by the corresponding mx(t) series, demonstrating the
changes of the attractors with increasing gc as follows. For
the sufficiently small gc, the equilibrium is the unique stable
solution, see Fig. 2(a), such that any excitation eventually
dies out. Then, for gc ≈ 0.055, the system undergoes a global
fold-cycle bifurcation, which gives rise to an unstable and a
large stable limit cycle. This points to an interval gc < g0

where the stationary and the oscillatory state coexist, viz.
Fig. 2(b), with their attraction basins separated by the unstable
limit cycle. Above g0, the incipient limit cycle born via
the Hopf bifurcation emerges around the former position of the
equilibrium. The large limit cycle remains unaffected by the
local bifurcation, so there exists a narrow gc interval around
τ1,− corresponding to a bistable regime with a small and a large
amplitude limit cycle, viz. the solid diamond in Fig. 1(b). The
two distinct limit cycles are illustrated by the time series in
Fig. 2(c). Note that the described bistability may be difficult to
observe in the exact system due to sensitivity of the incipient

FIG. 2. (Color online) Time series mx(t) illustrating four char-
acteristic types of stable solutions exhibited by the setup analyzed
in Fig. 1 under increasing gc at τc = 0. Moving from (a) to (d),
gc assumes values gc = 0.05, gc = 0.07, gc = 0.083, and gc = 0.1,
respectively. (a) For gc << g0, the unique attractor of the system is
the fixed point. (b) In the intermediate region, the global fold-cycle
bifurcation gives rise to a large stable limit cycle, which coexists with
the stable equilibrium. The corresponding series are indicated by the
blue (dark gray) and orange (light gray) lines, respectively. (c) In a
relatively narrow interval around gc � g0, the large limit cycle born
via global bifurcation coexists with the incipient (small amplitude)
cycle from the Hopf bifurcation. The mx(t) series corresponding
to the former is shown by the blue (dark gray) line, and the latter
by the orange (light gray) one. (d) Following an inverse fold-cycle
bifurcation, where the incipient cycle annihilates with the unstable
one, the sole attractor of the system is the large limit cycle, first seen
in (b).

cycle to stochastic perturbation, as even the very small noise
amplitudes can be sufficient to force the ensuing orbits away
from its neighborhood. Nonetheless, it also turns out that the
incipient cycle cannot fully grow with the supercriticality
because it is enclosed by the unstable limit cycle created in
the global bifurcation. This implies that with increasing gc,
there is a point where the stable cycle of small amplitude and
the unstable limit cycle eventually collide and disappear in an
inverse fold-cycle bifurcation. Therefore, for gc � g0, all the
trajectories are drawn to the large limit cycle, derived from the
global bifurcation. The mx(t) series typical for this gc domain
is shown in Fig. 2(d).

To proceed with, we consider the effects of increasing
τc under fixed coupling strength gc > g0. Crossing the first
bifurcation curve from below τc > τ1,−, viz. the domain
indicated by an open triangle in Fig. 1(b), the equilibrium
is seen to regain stability via the inverse supercritical Hopf
bifurcation. Given the analogy of the underlying mechanisms,
this could have been interpreted as a genuine example of the
delay-induced amplitude death, if there were not for the large
limit cycle which is unaffected by the local bifurcation. Instead,
this stability domain is characterized by the coexistence
between the stationary and the oscillatory state. Nonetheless,
enhancing the delay above τ2,+ gives rise to a region of
instability, represented by the solid triangle in Fig. 1(b), where
one encounters only the two populations oscillating in phase.
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Such an outcome is due to a supercritical Hopf bifurcation,
which is reflected by the equilibrium gaining an unstable plane.
Note that the analysis cannot extend to larger delays, since the
underlying phenomena do not fall within the framework of
the current study. It should be emphasized that the oscillation
frequency of the MF model has been verified to match the one
of the exact system almost perfectly. This point applies for
two parameter domains highlighted by the solid circle and the
solid triangle in Fig. 1(b). Under τ1,−, the respective oscillation
period of the approximate model is T•,MF = 3.664 in arbitrary
units, whereas the associated average period for the exact
system is T•,EX = 3.668. Likewise, in the domain instantiated
by the solid triangle, T�,MF = 3.874 and T�,EX = 3.869. The
cited data indicate that the MF model is able to predict the
average frequency of macroscopic oscillations of the exact
system with remarkable accuracy. Regarding the comparison
between the real and the approximate systems, one should
also look back at the values of the critical strength g0. The
agreement here is weaker, whereby the MF model is found
to overestimate the value. This is not unexpected, given that
the local phenomena are mediated by the background global
bifurcation. Still, the tendency and rate by which g0 decreases
with enhancing D is reflected reasonably well by the MF
model.

The main results in this section concern the canonical setup
involving two identical populations of interacting excitable
neurons (gin,1 = gin,2 = 0.1), whereby the cross-population
couplings are taken to be symmetrical [18,21]. The intrinsic
ensemble parameters D = 0.0001,τin = 0.3 warrant that the
equilibrium is the only asymptotically (stochastically) stable
state for the approximate (exact) model. Inspecting the ap-
propriate bifurcation diagram in Fig. 3(a), one readily realizes
how, at variance with the previously discussed case, there is not
one but two scenarios for the destabilization of equilibrium.
Which of the scenarios actually applies is contingent on the
interpopulation coupling strength gc: If gc < g′

0, viz. Fig. 3(b),
the equilibrium goes unstable via the direct supercritical Hopf
bifurcation, while for gc > g′

0, the onset of the collective
mode rests with the direct subcritical Hopf bifurcation. In the
latter instance, where gc notably outweighs gin, an unstable
limit cycle collapses at the fixed point, making it unstable.
Away from criticality, in the domain marked by the solid
circle in Fig. 3(b), the system’s trajectory eventually gets
drawn to a distant limit cycle attractor. Again, both the
stable and the unstable limit cycle derive from the fold-cycle
bifurcation, whereas the numerical simulations confirm that
the unstable manifold of the equilibrium at (gc,τc) = (g′

0,0)
supports the symmetrical oscillatory state. Below the curve
τ1,−, which is barely distinguishable from the gc axis in
Fig. 3(b), one finds a narrow interval of coupling strengths
gc � g0 where the emanating branch of the unstable solutions
apparently folds back. As a corollary, the system of coupled
MF models is seen to exhibit a bistable regime, such that
the equilibrium and the collective mode coexist. However,
such bistability is difficult to observe in the dynamics of the
full system for the sensitivity of the equilibrium to stochastic
perturbation. Interestingly, the approximation for the critical
coupling strength g′

0 is significantly improved when compared
to the previous system configuration, this possibly due to the
influence of the interensemble interactions that were excluded

τ1,-
τ2,+

τ3,+
τ4,-

τ5,+
τ6,-
τ7,+

gg0’

FIG. 3. (Color online) Hopf bifurcation curves τc(gc) in case of
two identical, symmetrically coupled populations, each composed of
globally connected elements whose interactions are characterized by
τin = 0.3 and gin = 0.1. The two latter parameter values, together
with D = 0.0001, warrant that the isolated populations (single MF
systems) exhibit the stochastically (asymptotically) stable stationary
state. (b) A close-up view of (a), focused on the parameter region
where the stability of the equilibrium changes. Depending on gc, the
equilibrium is destabilized either by the supercritical or the subcritical
Hopf bifurcation. As in Fig. 1, the exhibited collective mode is found
to be a result of the interplay between the local bifurcations and the
global fold-cycle bifurcations.

earlier. Crossing into the domain τ1,− < τc < τ2,+ represented
by the open square in Fig. 3(b), the MF system undergoes an
inverse subcritical Hopf bifurcation, such that the fixed point
loses an unstable plane. Looking in a more general picture, this
region of parameter space is supposed to be bistable between
the equilibrium and the large limit cycle born via the global
bifurcation. In parallel, the unstable limit cycle from the Hopf
bifurcation should act like a threshold for switching between
the two solutions. However, the stochastic component in the
underlying dynamics prevents us from observing the bistable
regime in the exact system. Above τ2,+, the equilibrium loses
stability, giving way to the limit cycle as the sole attractor of
the system’s dynamics.

Next we turn to the sequence of bifurcations obtained
for gc < g′

0, which is a physically more plausible range
since gc lies closer to gin. Below τ3,+, the stationary state
is stable for both the real and the approximate system,
with the appropriate parameter domain highlighted by the
open up-triangle in Fig. 3(b). Crossing τ3,+ from below, the
system undergoes the supercritical Hopf bifurcation, such
that the equilibrium becomes unstable, and the emerging
oscillations are symmetrical. An interesting point for the
transition between the domains marked by the open and solid
up-triangles in Fig. 3(b) is that for the moderate coupling
strength, under noise that is not too large the time lag turns
out to be a necessary ingredient should the equilibrium be
destabilized. For the more comprehensive view, one again has
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FIG. 4. The exact (left column) and the approximate system (right
column) are demonstrated to undergo the direct supercritical Hopf
bifurcation when crossing the curve τ1,+ from Fig. 3(b). (a) and (b)
show that below the curve (gc = 0.16,τc = 0.06), the fixed point is
stochastically stable for the exact, and asymptotically stable for the
approximate system, respectively. The onset of oscillations above
the curve (gc = 0.16,τc = 0.14) is illustrated for the exact system
in (c), and the approximate system in (d). The intrinsic population
parameters are set to D = 0.0001, gin = 0.1, and τin = 0.3.

to consider the effects of the interplay with the global fold-
cycle bifurcation, whereby a general remark is that everything
stated on the direct supercritical Hopf bifurcation regarding the
diagram in Fig. 1(b) can carry over to this case. In brief, apart
for the equilibrium, the system’s phase space below τ3,+ also
exhibits an unstable limit cycle enclosing the fixed point and
a large stable limit cycle. Above the latter curve, the incipient
limit cycle grows only until colliding with the unstable one,
both being annihilated in an inverse fold-cycle bifurcation.
Then, all the trajectories are eventually drawn to the large
limit cycle, left as the sole attractor. As for the predictions of
the approximate system, one stresses that there is an excellent
agreement between the oscillating waveforms, in particular
when comparing the anticipated frequency with the average
one for the real system, viz. T�,MF = 3.836 vs T�,EX = 3.833.
This is illustrated in Fig. 4, showing side-by-side the sequences
from the time series mx,i(t) and Xi(t) for i = 1,2 below (top
row) and above (bottom row) the curve τ3,+.

Further enhancing τc to step into the domain highlighted by
an open down-triangle in Fig. 3(b), one encounters the bistable
dynamics, such that the system, depending on the initial
conditions, may display either the stationary or the oscillatory
state. The area is bounded by τ4,− from below and τ5,+ from
above. The found bistability regime is the consequence of
the inverse subcritical Hopf bifurcation, where the emanating
unstable cycle effectively acts to stabilize the fixed point,
allowing for it to coexist with the collective mode, the latter
present due to the global bifurcation. The possibility of
observing bistability in the exact system is likely facilitated
by the unstable limit cycle, whose amplitude is sufficient
to separate more clearly between the attraction basins of
the oscillatory solution and the equilibrium in spite of the
stochastic perturbations induced by the relatively small, but
non-negligible, noise. The bistable regime is illustrated in

FIG. 5. Illustration of how the same bistable regime, character-
ized by coexistence between the stationary and the oscillatory state, is
exhibited both by the exact (left column) and the approximate system
(right column). The top row indicates the corresponding stochastically
and asymptotically stable fixed point, whereas the bottom row shows
the two populations oscillating in-phase. The coupling strength and
delay (gc,τc) = (0.14,0.22) lie within the domain highlighted by the
open down-triangle in Fig. 3(b). The values for the intrinsic parameter
subset are D = 0.0001, gin = 0.1, and τin = 0.3.

Fig. 5, which demonstrates the coexistence of the stationary
(top row) and oscillatory states (bottom row) for both the
exact model and the MF approximation. Note that the change
in oscillating frequency in the real system, associated with
crossing τ4,− from below, is well matched by the approximate
system. Stepping into the domain τ5,+ < τc < τ6,−, marked by
the solid down-triangle in Fig. 3(b), the key change consists in
the switch from the bistable to a monostable regime, the latter
characterized by the oscillatory state with the synchronization
in-phase. The switch occurs as the system undergoes the direct
supercritical Hopf bifurcation, which adds unstable directions,
altering the stability of the fixed point. The change from the
bistable to the monostable regime occurs in the same fashion
for the MF and the exact system. Setting τc above τ6,−, see
the domain represented by the open diamond in Fig. 3(b), one
finds the bistability regime reinstated. However, the transition
is accompanied by the modulation of the oscillating frequency,
the point well reflected by the approximate system, viz.
T�,EX = 4.097 against T�,MF = 4.119. In general, the increase
of coupling delay is biased toward reducing the oscillating
frequency.

Note that the qualitatively similar sequence of bifurcations
is verified to persist in a range of gin values, if D and
τin are set so to admit the stable stationary state as the
sole attractor for the isolated populations. Nonetheless, in
order for this framework to reflect accurately the behavior
of the exact system, one should not consider too large noise
amplitudes. The perturbation from larger D may be envisioned
as if leading to an effective broadening of the bifurcation
curves for the real system, which renders the entire sequence
smeared and the underlying qualitative changes difficult to
discern. The question of assessing what noise amplitude
is “too large” comes down to determining the D value
which causes the failure of the Gaussian approximation, the
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ground assumption for the validity of the mean-field model.
However, the actual value where this occurs depends on all the
members of the parameter set (gc,τc,gin,τin). The discussion
here is focused on the set (gc,τc,gin,τin) = (0.16,0.14,0.1,0.3)
associated with Fig. 4(c), but the suggested means of analysis
can be applied for an arbitrary set of values. In this context,
one may first compare the stationary probability density for
the global variables P (X,Y ) of the exact system with that
for the mean-field variables P (mx,my) of the approximate
model as D is increased. The two stationary distributions
can be approximated numerically by observing the respective
systems’ evolution for the sufficiently long time period. In
particular, the applied method consists in counting the number
of representative points that fall within each cell of a 110 ×
110 grid, obtained by partitioning the relevant ranges of
X and Y , as well as mx and my values into 110 bins
each. It may be shown that there is an excellent match
between the corresponding distributions for D = 0.0001, the
value considered in Fig. 4(c), whereas P (mx,my) begins to
appreciably depart from P (X,Y ) around D ≈ 0.0014. The
latter may serve as a rough estimate for the noise amplitude
where the mean-field approximation breaks down.

This conclusion is further supported by examining how
close the properties of the exact system are to satisfying the
Gaussian approximation when D is increased. Should the exact
system conform to this requirement, the distribution P (�x) for
the potentials of single neurons within each population �x =
(x1, . . . ,xN )T at any moment of time is supposed to remain
close to Gaussian. This means that its third- and fourth-order
semi-invariants should lie around zero, I3 = M3 ≈ 0 and I4 =
M4 − 3M2

2 ≈ 0. Here, Mk refers to the k-th moment of the
centered distribution. Then, monitoring the values of I3 for the
numerically determined P (�x) distributions in the sufficiently
long time period, one can obtain the appropriate histograms
and calculate the mean values 〈I3〉, characteristic for each
given noise value D. It is found that the histograms P (I3) are
expectedly centered around zero for small D, whereas their
profiles exhibit tails as D is increased. The latter point reflects
the discrepancy from the Gaussian approximation. Following
the tendency of increasing positive fluctuations from the mean
value, P (I3) eventually becomes a bimodal distribution for
large D. The noise value where the tails become visible
again turns out to be around D ≈ 0.0014, corroborating the
previously stated result on the breakdown of the mean-field
approximation. As a measure of how distinct the P (I3) distri-
butions at mentioned D values really are, one may compare
the mean values for the third-order semi-invariants 〈I3〉(D =
0.0001) = −0.0032 vs 〈I3〉(D = 0.0014) = −0.0245 or their
fourth-order counterparts 〈I4〉(D = 0.0001) = −0.0305 vs
〈I4〉(D = 0.0014) = 0.1471. Finally, the conclusions so far
can also be confirmed by determining the dependence of the
time-averaged skewness and kurtosis for the P (�x) distributions
in terms of noise. It can be demonstrated that such plots
exhibit a sharp increase at values around D ≈ 0.0014, again
indicating where the significant deviation from the Gaussian
approximation occurs for the given (gc,τc,gin,τin) parameter
set.

A question that naturally arises is whether and how is the
physical picture so far modified by taking the asymmetrical,
rather than the symmetrical cross-population coupling terms.

FIG. 6. (Color online) Results of the local bifurcation analysis
of the approximate system for the two cases of the asymmetrical
cross-population couplings, presented in the delay-strength parameter
plane. Panel (a) refers to the setup with the disparate coupling
strengths, holding gc,1 = 0.05 and letting gc,2 vary continuously.
(b) is obtained for the uneven time lags, with τc,1 = 0.6 fixed and τc,2

allowed to change. The intrinsic parameters D = 0.0001,τin = 0.3,

gin = 0.1 are identical for both populations and warrant that the
corresponding isolated system would exhibit the stationary state.

We have examined two different scenarios: by one, the
couplings in either direction retain a common time lag but
attain different strengths, whereas in the other, strengths are
the same, but the transmission delays are disparate. In the
former case, the coupling strength in one direction, say gc,1

is kept fixed, while gc,2 varies continuously. The bifurcation
diagram in the τc-gc,2 plane is plotted in Fig. 6(a), whereby the
intrinsic population parameters are identical to those stated
in the caption of Fig. 3. One may immediately raise the
issue of why is the bifurcation sequence profile much simpler
compared to that in Fig. 3(a). The possible reason lies in that,
for the cross-population couplings asymmetrical by strength,
the system’s behavior is predominantly influenced by the
global bifurcation phenomena dependent on gc,1 and gc,2.
Nonetheless, one cannot neglect some qualitative resemblance
between the dynamics of the MF and the exact system. For
instance, below τ1,+ in Fig. 6(a), the equilibrium is stable for
either system but participates in the bistable regime. Along
with the stationary state, one also finds an oscillatory state
where the two populations are locked with a constant phase
shift. This collective mode can only be attributed to the global
bifurcation events. Crossing τ1,+ from below results in the
creation of a limit cycle, leaving the equilibrium unstable.
Both the real and the approximate model exhibit a single
attractor supporting the phase-locked oscillations between the
two populations, whereby the underlying frequencies are well
matched, viz. T•,MF = 4.281 against T•,EX = 4.302. Notably,
the oscillation waveforms above τ1,+ are more complex than
those below and bear the initial signatures of the quasiperiodic
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behavior. It has to be stressed that the qualitative resemblance
between the dynamics of the exact and the approximate system
heavily depends on how close is gc,1 to gin. In Fig. 6(a),
gc,1 = 0.05 is comparably small to gin = 0.1. Should gc,1

approach gin or exceed it, the effects of the global bifurcation
phenomena become overwhelming, spoiling the predictions
made by MF-based approximation.

We also briefly touch on the setup where the cross-
population couplings exhibit the disparate time lags but attain
the same coupling strength. Again, all the internal population
parameters are equal to those linked to Fig. 3, whereas the
notation on the asymmetrical coupling parameters is analogous
to that used in the previous layout. The appropriate bifurcation
diagram in the τc,2-gc plane is displayed in Fig. 6(b). Compared
to Fig. 3(a), we learn how the main difference between this
case of asymmetrical couplings and the case with symmetrical
interaction lies in the domain of small delays. In particular,
the destabilization of equilibrium occurs solely via the super-
critical Hopf bifurcation, whereas the scenario involving the
subcritical Hopf bifurcation is absent. This picture seems to
be independent on the relation between the fixed time lag τc,1

and τin.
Though it is not within the scope of the current study,

one should still mention that the methods discussed can also
be implemented for the scenarios where the two populations
exhibit different types of kinetics, e.g., if one is made up
of excitable and the other of self-oscillating units. In this
scenario, one effectively examines the interaction between
the noise-induced and the noise-perturbed oscillations. The
corresponding bifurcation diagram is not too distinct from the
one in Fig. 6(b), except that the pattern of bifurcation curves
is less dense. The critical coupling strength analogous to g0 is
naturally smaller than the one for the interacting excitable
populations. Nevertheless, this setup is distinguished from
those considered earlier in that the unstable manifold of the
equilibrium supports the onset of the collective mode with
the phase-locked rather than the in-phase oscillations, such
that the firing of the ensemble with self-oscillating neurons
precipitates the firing of the ensemble containing the excitable
neurons.

IV. SUMMARY AND DISCUSSION

In the present paper, we have pursued the analysis of
the MF-based approximation intended to accurately reflect
the macroscopic behavior of two delay-coupled populations
of stochastic excitable units in terms of the stability of
the stationary state, the scenarios for the onset, and the
suppression of the collective mode, as well as the possibility
of admitting bistable regimes, where the equilibrium and the
oscillatory state are found to coexist. The described layout
deserves attention, since it can be interpreted as the minimal
model for the “network of networks,” the configuration often
brought into context of biological systems whose function
relies on generation and adjustment between the multiple
collective rhythms. The important ingredients of the exact
system we consider include two types of delayed interactions,
whereby those within the ensembles are assumed to be linear,
and the interensemble ones, mediated by the appropriate
global variables, are taken to be nonlinear. The corresponding

approximate system is built by coupling the two MF models,
derived to describe the activity of single populations. Such
a framework follows the general idea that any ensemble
of oscillating units exhibiting the collective mode can be
treated as the macroscopic oscillator. The MF model integrates
the cumulant approach with the Gaussian approximation,
whereby the latter holds exactly for an arbitrary system if three
conditions are satisfied. These include the thermodynamic
limit N → ∞ regarding the ensemble size, the negligible
noise amplitude D 
 1, as well as the negligible interaction
between the units gin 
 1. Naturally, the term negligible
does not allude to asymptotic limits D → 0 or gin → 0
but refers to very small values of these parameters which
correspond to an idealized rather than the realistic setup.
However, depending on the particular system, it often turns
out that the validity of the MF based approximation extends
beyond the initially prescribed parameter range, getting closer
to the more realistic parameter values. This holds true in
our case, where we have demonstrated that the approximate
system is able to predict with sufficient accuracy the behavior
of relatively large, but finite populations (N ∼ 100) with
the non-negligible internal interactions (gin ∼ 0.1), provided
that the understandable requirement for a not-too-large noise
amplitude is met. Regarding the latter, see the remarks follow-
ing the discussion on the setup with symmetrically coupled
populations.

By stating the results in broad terms, the intention has
been to stress their applicability to the class of systems made
up of type II excitable units. Nonetheless, one recognizes
that valuable motivation for the study comes from the field
of neuroscience, which goes beyond the adopted model of
local dynamics or the fashion in which the interactions are
introduced. The methods for providing the reduced descrip-
tions of the behavior of large neural assemblies are typically
cast in the categories of the neural-mass and the MF models,
whereby the former neglect and the latter take into account the
distribution of individual neuron states over the ensemble. In
these terms, the model considered here interpolates between
the two classes. Recall that we have introduced an additional
approximation on the second-order moments to translate the
original MF system (7) into the form incorporated in (8), with
the latter preferred as it allows for the analytical tractability of
the subsequent local bifurcation analysis.

An inference from such an analysis is that the approxi-
mate system can undergo direct and inverse supercritical or
subcritical Hopf bifurcations such that the direct (inverse)
ones lead to the destabilization (stabilization) of the stationary
state. The complex bifurcation sequence under variation of
cross-population coupling strengths and delays is found to
depend on the details of the system configuration, like the
symmetrical or asymmetrical character of the bidirectional
interaction between the ensembles. The main set of results
refers to the symmetrical case, where it is demonstrated that
the equilibrium may lose stability according to two different
scenarios. One involves a direct supercritical Hopf bifurcation
and can be achieved for instantaneous couplings solely by
increasing gc, whereas the other scenario unfolds via the
direct subcritical Hopf bifurcation. The latter involves an
interesting point that for strengths gc � gin one finds a time-lag
threshold necessary to destabilize the equilibrium. Increasing
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τc, there are parameter domains bounded from below (above)
by the curves indicating subcritical (supercritical) bifurcations,
where the stability of stationary state is regained. In many
of such instances, the system is actually bistable, exhibiting
coexistence between the equilibrium and the oscillatory state.
This is a corollary of an interplay with the global fold-cycle
bifurcation, as the large stable limit cycle born in this way
remains unaffected by the local phenomena. Note that the
global events may influence the system dynamics in several
other instances. In particular, an unstable limit cycle created
in a fold-cycle bifurcation may destabilize the fixed point in a
direct subcritical Hopf bifurcation or may limit the growth of
an incipient limit cycle following the direct supercritical Hopf
bifurcation. By numerical simulation, we have verified that
the parameter domains of stability or instability of equilibrium
for the exact system are reproduced by the approximate one
with high accuracy. In addition, it has been shown that the
average oscillation frequency for the global variable of the
exact system is well matched by that of the corresponding
MF variable. In the exact system, the ability to observe
the bistable regimes, where the unstable limit cycle act as

a threshold between the equilibrium and the large cycle, is
contingent on the noise amplitude. In general, the predictions
of the approximate system are better if the deterministic
component, governed by the coupling strengths and delays,
prevails over the stochastic component in the dynamics of
the exact system. An interesting study complementary to the
present one would be to examine whether the MF based
model may reproduce the forms of synchronization between
the generated collective rhythms the way they are exhibited
by the exact system. These could include the in-phase and
antiphase synchronization or the phase-locked states, as well
as their coexistence. The preliminary results implementing
the H-function approach suggest that the approximate system
may account for the stability of the synchronization regimes
and provide indications on the possible multistability.
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