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Abstract. We analytically evaluate the entanglement spectra of the superconductivity states in graphene,
primarily focusing on the s-wave and chiral dx2−y2 + idxy superconductivity states. We demonstrate that the
topology of the entanglement Hamiltonian can differ from that of the subsystem Hamiltonian. In particular,
the topological properties of the entanglement Hamiltonian of the chiral dx2−y2 + idxy superconductivity
state obtained by tracing out one spin direction clearly differ from those of the time-reversal invariant
Hamiltonian of noninteracting fermions on the honeycomb lattice.

1 Introduction

In graphene, the sixfold symmetry of the honeycomb
lattice favors the degenerate dx2−y2- and dxy-wave super-
conductivity states. Recent theoretical studies have shown
that a s-wave superconductivity state [1] and a chi-
ral dx2−y2 ± idxy superconducting state emerges from
electron–electron interactions in graphene doped to the
vicinity of the van-Hove singularity point [2–7], and in
lower doped bilayer graphene [8–10] (for a recent review,
see Ref. [11]). Below the superconducting transition tem-
perature TC , this degeneracy yields the time-reversal
symmetry-breaking dx2−y2 ± idxy state [11,12]. In the
past two years, considerable experimental progress has
been made regarding the observation of superconduc-
tivity in graphene. Evidence of superconductivity has
been experimentally observed on Ca-intercalated bilayer
graphene and graphene laminates at 4 [13] and 6.4 K
[14], respectively. Furthermore, additional experimental
progress has been made regarding evidence of super-
conductivity in Li-decorated monolayer graphene with a
transition temperature of approximately 5.9 K [15].

The discovery of topological phases, which possess
topological order and cannot be classified by a broken
symmetry, has revealed the urgent need for a tool for char-
acterization of these phases. It has been proven that the
entanglement entropy obtained from the reduced density
matrix can be an indicator of the topology in a system
[16–18]. Further, Haldane and Li [19] have suggested that
the entanglement spectrum of a system (the full set of
eigenvalues of the reduced density matrix) contains more
information about that system than the entanglement
entropy, a single number. They have reported a remark-
able relationship between the excitation spectrum and the
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edges separating the subsystems, considering the entan-
glement spectrum of the fractional quantum Hall system
obtained using a spatial cut. It has been suggested that
the entanglement spectrum constitutes a tower of states,
which can be regarded as a fingerprint of the topological
order [20–36] (for recent reviews, see Refs. [37,38]). The
relationship between the entanglement, which can be cal-
culated from the ground state, and the edge states, which
are excited states of the Hamiltonian in a sample with
boundaries, has been explored in this context. However,
this relationship is not valid in general, as shown in refer-
ences [39–41], in which the various entanglement spectra
fail to describe the topological phase transitions.

The relationship between the entanglement spectrum
obtained by tracing out one subsystem and the energy
spectrum of the remaining subsystem is attracting con-
siderable research attention. Particular focus has been
placed on various spin ladder systems [42–50] and on
bilayer systems [51–53], where a proportionality between
the entanglement and subsystem Hamiltonians is realized
by the strong coupling limit. However, this relationship is
not valid in general, as indicated in reference [54], in which
spin ladders of clearly nonidentical legs are studied, and
in the case of graphene bilayers in the presence of trigonal
warping [55].

In a two-dimensional topological superconductor with
broken time-reversal symmetry, the topology can be char-
acterized by a Chern number, which is an integral of the
Berry curvature over the Brillouin zone. The entanglement
Chern number C, i.e., the Chern number of the entan-
glement Hamiltonian obtained from the eigenvectors of
that Hamiltonian, has been suggested to be a topological
invariant of the entanglement Hamiltonian [55–57]. Note
that some investigation of the relationship between the
energetic and entanglement Hamiltonian topologies has
already been performed [55].
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In this paper, we present a fully analytical study of
the entanglement spectrum of the fermionic ground state
on a graphene honeycomb lattice, in the presence of
superconductivity instability and as obtained by tracing
out a single spin direction. We investigate the relation-
ship between the entanglement and energy spectra of the
remaining noninteracting part, placing a special focus on
the correlation between their topologies. We show that the
entanglement Hamiltonian obtained by tracing out one
of the subsystems and the Hamiltonian of the remain-
ing subsystem can have completely different topologies.
This difference is due to the fact that the entangle-
ment Hamiltonian is a ground-state property. That is,
the dx2−y2 + idxy superconductivity state breaks the
time-reversal symmetry of the superconductivity Hamil-
tonian; this behavior is reflected in the ground state of
the composite superconductivity Hamiltonian. Further,
the entanglement Hamiltonian is constructed from that
ground state. We also discuss the case of sublattices B is
traced out.

This paper is organized as follows: In Section 2, we
introduce the model Hamiltonian and discuss the differ-
ent superconductivity paired states that can arise on the
honeycomb lattice. Classification of the topological phases
of the superconductivity states on the honeycomb lattice
based on their different symmetries is also performed in
this section. The entanglement spectrum obtained from
the Bardeen-Cooper-Schrieffer ground state by tracing out
a single spin direction is analyzed in Section 3. Our pri-
mary interest in this section is to explore the relationship
between the geometrical and topological properties of the
entanglement Hamiltonian and the remaining noninter-
acting Hamiltonian. We close with a summary and an
overview of the future research outlook, which is presented
in Section 4. Some technical details on the analytical
derivation of the full eigenstates of the noninteracting
fermionic system on the honeycomb lattice in the presence
of superconductivity instabilities are presented, along with
correlation matrix calculations, in Appendices A and B.

2 Model Hamiltonian

The tight-binding Hamiltonian for free fermions on a
graphene honeycomb lattice with a single 2pz orbital per
carbon (C) atom is

H0 =− t
∑
〈ij〉

∑
σ=↑,↓

(
a†i,σbj,σ + h.c.

)
− µ

∑
i,σ

(
a†i,σai,σ + b†i,σbi,σ

)
, (1)

where t is the hopping energy between the nearest-
neighbor C atoms, µ is the chemical potential and ai,σ
(a†i,σ) and bi,σ (b†i,σ) are the onsite annihilation (creation)
operators for electrons on sublattices A and B, respec-
tively, with spin σ =↑, ↓. Diagonalization of equation (1)
yields the energy spectrum ±E±, with

E± = ±t|γ(k)| − µ, (2)

where γ(k) =
∑
δ exp (ik · δ) and δ is a nearest-neighbor

vector. In what follows, we use coordinates with

δ1 = a

(
0,

1√
3

)
, (3)

δ2,3 =
a

2

(
±1,− 1√

3

)
, (4)

where a = 1.42 Å is the distance between neighboring C
atoms, such that the two inequivalent corners of the first
Brillouin zone can be expressed as

K± = ±
(

4π

3a
, 0

)
. (5)

The energy spectrum of the free fermions over the first
Brillouin zone is visualized in Figure 1.

In order to apply the mean-field approximation, we
define the superconductivity order parameter as a three-
component complex vector

−→
∆ ≡ (∆δ1 , ∆δ2 , ∆δ3) , (6)

where the components are defined by

∆δ = 〈ai↑bi+δ↓ − ai↓bi+δ↑〉 . (7)

We study the superconductivity pairing arising from the
nearest-neighbor attractive interaction

Hint =
∑
i,δ

∆δ

(
a†i↑b

†
i+δ↓ − a

†
i↓b
†
i+δ↑

)
, (8)

with the limit of strong onsite interaction. The resulting
mean-field Hamiltonian can be expressed in momentum
space as

HMF = −t
∑
kσ

(
γ(k)a†kσbkσ + h.c.

)
− µ

∑
kσ

(
a†kσakσ + b†kσbkσ

)
− J

∑
k,δ

(
∆δe

ikδ
(
a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑

)
+ h.c.

)
, (9)

where J is the effective pairing potential arising from the
electron–electron interaction. The kinetic part of the pre-
vious Hamiltonian can be diagonalized by introducing the
following transformations

ck,σ =
1√
2

(ak,σ − ei·φkbk,σ),

dk,σ =
1√
2

(ak,σ + ei·φkbk,σ), (10)

where the phase φk is defined as φk = arg(γk). Note that

c†k,σ and d†k,σ create an electron in the upper and lower
Bogoliubov bands, respectively.
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Thus, introducing the energy basis, the Hamiltonian
becomes

HMF = −t
∑
k,σ

|γk|(d†k,σdk,σ − c
†
k,σck,σ)

− µ
∑
k,σ

(d†k,σdk,σ + c†k,σck,σ)

− J
∑
k

∑
δ

(
∆δ

(
cos(kδ − φk)(d†k,↑d

†
−k,↓ − c

†
k,↑c

†
−k,↓)

+ i sin(kδ − φk)(c†k,↑d
†
−k,↓ − d

†
k,↑c

†
−k,↓)

)
+ h.c.

)
. (11)

The third line in this Hamiltonian is the intraband pairing,
containing an order parameter that is even in k-space and
corresponding to the spin-singlet pairing. The fourth line
is the interband pairing, containing an order parameter
that is odd in k-space and corresponding to the spin-triplet
pairing. We use the definitions

Ck = J
∑
δ

∆δ cos(kδ − φk), (12)

and

Sk = J
∑
δ

∆δ sin(kδ − φk). (13)

The corresponding span of the superconducting order
parameter is

−→
∆ =

{
∆(1, 1, 1),
∆(2,−1,−1),
∆(0,−1, 1),

(14)

where ∆ is the self-consistent superconductivity order
parameter. In what follows, we use the redefinition J∆ ≡
∆. The linearized self-consistence equations of the order
parameter are invariant with respect to the hexagonal
group C6v [2], i.e., the symmetry group of the honey-
comb lattice. The first solution corresponds to the s-wave,−→
∆ = ∆(1, 1, 1), belonging to the natural A1 irreducible
representation of the C6v group of the honeycomb lat-
tice. The A1 irreducible representation is spanned by

the vector u1 = (1, 1, 1). The final two solutions,
−→
∆ =

∆(2,−1,−1) and
−→
∆ = ∆(0,−1, 1), belong to the two-

dimensional subspace of the S3 group [58], the span of
which is u2 = (2,−1,−1) and u3 = (0,−1, 1). The second
(corresponding to the dx2−y2 wave) and third (correspond-
ing to the dxy wave) solutions belong to the E1 and E2
irreducible representations of the S3 group, respectively.
From the symmetry perspective, it is noteworthy that
every combination of the dx2−y2 and dxy waves is possible.
However, it has been shown that the dx2−y2 ± idxy-wave
superconductivity state with an order parameter

−→
∆dx2−y2±idxy =

1√
3
∆

 1

e±
2iπ
3

e∓
2iπ
3

 , (15)

Fig. 1. Brillouin zone with density plot of |γ(k)| − µ
t

for: (a)
µ
t

= 0.2; (b) µ
t

= 0.8; and (c) µ
t

= 1. The edge of the first
Brillouin zone is marked by dashed blue lines.

is preferred in graphene below TC for a superconductivity
coupling strength J that is not excessively large, and
for doping up to and in the vicinity of the van-Hove
singularity point [2].

The s-wave superconductivity order parameter is given
by ∆(k) = γ(k), while the dx2−y2 + idxy-wave supercon-
ductivity order parameter is

∆d±id(k)=cos
(π

3

)
∆dx2−y2

(k)±sin
(π

3

)
∆dxy (k), (16)
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with

∆dx2−y2
(k) = 2∆

(
eiakx − e−i a2 kx cos(

a
√

3

2
ky)

)
, (17)

∆dxy (k) = −2i∆ sin

(
a
√

3

2
ky

)
e−i

a
2 kx . (18)

Introducing the spinor

ϕ†k =
(
a†k↑, b

†
k↑, a

†
k↓, b

†
k↓, a−k↑, b−k↑, a−k↓, b−k↓

)
, (19)

the Hamiltonian of equation (9) can be expressed as

HMF =
1

2

∑
k

ϕ†kMkϕk, (20)

where

Mk=


ζ(k) 0 0 −∆(k)

0 ζ(k) ∆(k) 0

0 ∆
∗
(−k) −ζ∗(−k) 0

−∆∗(−k) 0 0 −ζ∗(−k)

 , (21)

with

ζ(k) =

(
−µ −tγ(k)

−tγ∗(k) −µ

)
, (22)

∆(k) =

(
0 ∆(k)

∆(−k) 0

)
. (23)

The resultant Hamiltonian indicates that the spin-
singlet superconductivity state without spin-orbit cou-
pling is invariant under the spin SU(2) rotation. Hence,
we obtain the condition

[Ji,M(k)] = 0, Ji =

(
si 0
0 −s∗i

)
, (i = x, y, z). (24)

As a result of the spin SU(2) rotation, it is sufficient to use

the spinor Ψ†k = (a†k↑, b
†
k↑, a−k↓, b−k↓) in order to express

the Hamiltonian of the superconductivity state on the
honeycomb lattice in the form

HMF =
∑
k

Ψ†kh(k)Ψk, (25)

where

h(k)=

 −µ −tγ(k) 0 −∆(k)
−tγ∗(k) −µ −∆(−k) 0

0 −∆∗(−k) µ tγ∗(−k)
−∆∗(k) 0 tγ(−k) µ

 . (26)

When the superconductivity order parameter is pure real
the Hamiltonian h(k) satisfies

Th(k)T−1 = h(−k), (27)

where T = K mimics time-reversal symmetry. The con-
dition given in equation (27) can satisfy a real supercon-
ductivity order parameter only. The dx2−y2 + idxy-wave
superconductivity order parameter given by equation (16)
breaks the time-reversal symmetry. It appertains to the
CI-class in the Altland-Zirnbauer classification of topolog-
ical insulators and superconductors [59–61]. Furthermore,
it is possible to classify two-dimensional C-class supercon-
ductors using the Chern number C. Note that the nontriv-
ial topology of the dx2−y2 + idxy-wave superconductivity
state is denoted by the Chern number C = 2.

3 Entanglement spectra

A method for analytically calculating the entanglement
spectrum of a free-fermion system is given in references
[52,62,63]. Here, we generalize this method to super-
conductivity systems, using an approach similar to that
described in references [64,65].

The entanglement Hamiltonian can be constructed as a
single-particle operator in a quadratic matrix [52,62,63],
as it is completely determined by any correlation matrix
of operators acting on the remaining part after the sub-
system has been traced out. Our system consists of two
subsystems, A and B. The reduced density matrix for
subsystem A, defined as ρA = trBρ, can be formulated
as in the free fermion case, such that ρA = 1

Z e
−Hent ,

using the entanglement spectrum Hent and the partition
function Z = tr

(
e−Hent

)
. Furthermore, the average 〈O〉

of a local operator in subsystem A can be calculated as
〈O〉 = tr(ρAOA).

By tracing out a single spin direction, e.g., the negative
spin ↓, from the ground state on the honeycomb lattice in
the presence of the s-wave and chiral d + id-wave super-
conductivity, the correlation matrix can be formulated
as

C(k) =

(
〈a†k↑ak↑〉 〈a

†
k↑bk↑〉

〈b†k↑ak↑〉 〈b
†
k↑bk↑〉

)
. (28)

For more technical details of the analytical calculations of
the correlation matrix, we refer the reader to Appendix B.
Here, one can show that the eigenvalues of the correlation
matrix ηl are related to the entanglement spectrum ξl,
such that

ξl = ln

(
1− ηl
ηl

)
. (29)

3.1 s-wave scenario

The s-wave superconductivity order parameter corre-
sponds to the bond-independent superconductivity state;
thus, Sk is identically zero.

We analytically obtain the entanglement levels (Eq.
(29))

ξ1(k) = −2arcsinh

(
t|γ(k)|+ µ

|Ck|

)
(30)

https://epjb.epj.org/
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and

ξ2(k) = 2arcsinh

(
t|γ(k)| − µ
|Ck|

)
. (31)

The entanglement Hamiltonian has the form

Hent =
∑
k

(
ξ1e
†
k,+ek,+ + ξ2f

†
k,+fk,+

)
, (32)

where ek,+ and fk,+ are Bogoliubov transformations given
in Appendix B by equations (B.1) and (B.2). The entan-
glement levels for different values of µ, with t = 2.5 eV,
and ∆ = 3 eV are shown in Figure 2.

The undoped graphene is a gapless semi-metal and is
not a superconductor at low temperatures. However, when
the system is at half-filling (with µ = 0), the entanglement
levels are

ξ1,2(k) = ±2arcsinh

(
t

∆

)
, (33)

being constant over the entire Brillouin zone. In the strong
coupling regime, when ∆� t, one finds

ξ1,2(k) ≈ ±2
t

∆
. (34)

The canonical entanglement Hamiltonian at half-filling is
independent of the inverse temperature [53] β = kE/∆,
such that

Hcan =

2∑
i=1

1

kE

(
e†k,+ek,+ + f†k,+fk,+

)
, (35)

where kE is a constant. In general, there is no propor-
tionality between the entanglement Hamiltonian and the
energy Hamiltonian of free fermions, because the coupling
between subsystems Ck is k-dependent in the Brillouin
zone. When Ck = 0, at the Dirac points, the entanglement
levels are not entangled. However, at finite doping, the
maximally entangled states, when the entanglement levels
are zero, correspond to the zero-energy state of the nonin-
teracting fermions. To provide a superior visualization, a
thick black line is used to connect the zero-energy states in
Figure 1 and the maximally entangled states in Figure 2.

3.2 Chiral d-wave scenario

To enable analytical calculations, we diagonalize the
Hamiltonian (26)

HMF =
∑
k

Eα(o†k,+ok,+ + o†−k,−o−k,−)

+
∑
k

Eβ(p†k,+pk,+ + p†−k,−p−k,−), (36)

by the Bogoliubov quasiparticles ok,+, o−k,−, pk,+ and
p−k,− given in Appendix A with equations (A.30) and

Fig. 2. Contour plot of entanglement level ξ1(k) of s-wave
superconductivity state on honeycomb lattice plotted for J

t
= 3

and: (a) µ
t

= 0.2; (b) µ
t

= 0.8; and (c) µ
t

= 1. The thin blue
dashed and thick black lines represent the first Brillouin zone
and connect the zero energy states, respectively.

(A.31). The energies of the Bogoliubov quasiparticles are
±Eα and ±Eβ , where

Eα=

√
t2|γ(k)|2+µ2+(|Sk|2+|Ck|2)+2

√
u+v, (37)

https://epjb.epj.org/
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and

Eβ =

√
t2|γ(k)|2 + µ2 + (|Sk|2 + |Ck|2)− 2

√
u+ v (38)

with

u =
(
µ2 + |Sk|2

)
t2|γ(k)|2, (39)

and

v = (Re(Ck)Im(Sk)− Re(Sk)Im(Ck))
2
. (40)

When the superconductivity order parameters ∆δ are
pure real, i.e., when no time-reversal symmetry breaking
occurs, v vanishes.

From analytical calculations, one obtains the correlation
matrix at T = 0

C(k) =

(
C11(k) C12(k)
C∗12(k) C22(k)

)
, (41)

where

C11 = 〈a†k↑ak↑〉

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (42)

C22 = 〈b†k↑bk↑〉

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√

t2|γ(k)|2 +m2

)
, (43)

C12 = 〈a†k↑bk↑〉

=
1

4
e−iφk

((
ε1
Eα
− ε2
Eβ

)
− in

(
1

Eα
− 1

Eβ

))
× t|γ(k)|√

t2|γ(k)|2 +m2
(44)

with

ε1,2 =
√
µ2 + |Sk|2 ±

√
t2|γ(k)|2 +m2, (45)

while

m =
Re(Ck) · Im(Sk)− Im(Ck) · Re(Sk)√

µ2 + |Sk|2
, (46)

and

n =
Re(Ck)Re(Sk) + Im(Ck)Im(Sk)√

µ2 + |Sk|2
. (47)

Thus, the entanglement spectrum obtained from the
eigenvalues of the correlation matrix given in equation
(29) consists of entanglement levels ξ1 and ξ2 where:

ξ1,2 = −2arctanh

×(C11 + C22 − 1±
√

(C11 − C22)
2

+ 4|C12|2). (48)

As the d-wave spin-singlet superconductivity order
parameter involves both Ck and Sk, there is no rela-
tionship between states with the zero-value states of the
entanglement spectrum and the zero-energy states of the
free fermions. At the van-Hove singularity point, i.e., when
µ = t, both the entanglement spectrum and the energy
spectrum of the free fermions are zero at the M point. The
results of our analytical calculations of the entanglement
spectrum of the dx2−y2 + idxy-wave superconductivity on
the honeycomb lattice are presented in Figure 3.

As we have discussed above, the dx2−y2- and dxy-wave
superconductivity order parameters preserve the time-
reversal symmetry (Eq. (27)). Based on the time-reversal
symmetry and provided Ψk are the eigenstates of the
Hamiltonian given in equation (26), we can state that

Ψ∗k = Ψ−k, (49)

where the Ψ∗−k are also eigenstates of the Hamiltonian of
equation (26). This yields

Φ∗k = Φ−k. (50)

Hence, the real d-wave superconductivity order parameter
preserves the time-reversal symmetry in the correlation
matrix, which is constructed from the Φk as C(k) =

〈Φ†kΦk〉. The entanglement Hamiltonian satisfies:

TEHent(k)T−1E = Hent(−k), (51)

with TE = K.
When the dx2−y2 + idxy-wave superconductivity order

parameter is considered, Ck and Sk are complex func-
tions. Then, the m and n terms are non-zero. Hence,
the average occupancy number at site A, C11(k), and
the average occupancy number at site B, C22(k), are
not equal and the off-diagonal element of the correla-
tion matrix C12(k) is complex. Because Sk is an odd

https://epjb.epj.org/
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Fig. 3. Contour plot of the entanglement level ξ1(k) of
dx2−y2 + idxy-wave superconductivity state on the honeycomb

lattice plotted for J
t

= 3 and (a) µ
t

= 0.2, (b) µ
t

= 0.8 and (c)
µ
t

= 1. The dashed blue line delineates the first Brillouin zone,
while the thick black line shows maximally entangled states.

function in the momentum space, while Ck is a even
function, it can be shown that elements of the correla-
tion matrix C11(k), C22(k), and C12(k) are constrained
as C11(−k) = C22(k) and C∗12(−k) = C12(k). Therefore,
it follows that the complex dx2−y2 + idxy-wave super-
conductivity order parameter breaks the time-reversal

symmetry in the entanglement Hamiltonian. The topol-
ogy of the entanglement Hamiltonian in two-dimension
with broken time-reversal symmetry is characterized by
the entanglement Chern number.

For further analysis of the topological properties of the
entanglement Hamiltonian, we require not only its eigen-
values, but also its eigenstates. The eigenstates of the
correlation matrix are identical to the eigenstates of the
entanglement Hamiltonian and can be expressed as

qk↑ = δ+(k)ak↑ + δ−(k)bk↑, (52)

rk↑ = δ+(−k)ak↑ − δ∗−(−k)bk↑, (53)

where explicit expressions for δ+(k) and δ−(k) are given in
Appendix B by equation (B.17). Using these eigenstates,
we can calculate the Berry curvature

F (k) =
∂Ay
∂kx

− ∂Ax
∂ky

(54)

and the Berry connection

A(k) = i〈r(k)| ∂
∂k
|r(k)〉, (55)

which vanish everywhere outside the Dirac points where
quantized “monopole” sources of the δ-function type exist.

Through numerical integrations of the Berry curvature
along the Brillouin zone, we find that the entanglement
Chern number is C = 1, in the case of the chiral dx2−y2 +
idxy-wave superconductivity state. In the presence of
SU(2) rotation and broken time-reversal symmetry, as in
the case of an energetic Hamiltonian, the Chern number
C can have even values only. For the entanglement Hamil-
tonian, it is possible to obtain an odd value for the Chern
number, as it is not invariant to the SU(2) rotation. As
a result, the topology of the entanglement Hamiltonian,
which is obtained by tracing out the spin-down subsys-
tem of the ground state of the chiral dx2−y2 + idxy-wave
superconductivity state on the honeycomb lattice, clearly
differs from the topology of the energetic Hamiltonian of
free fermions without the superconductivity instabilities.

3.3 Tracing out B sublattices

3.3.1 s-wave scenario

We will now consider the ground state of interacting
fermions on the honeycomb lattice in the presence of the
s-wave superconductivity instability. Upon tracing out B
sublattices the entanglement levels:

ξ± = ±2arctanh

(
t2|γ(k)|2 − µ2 +∆2|γ(k)|2

EαEβ

)
, (56)

where Eα =

√
(t|γ(k)| − µ)

2
+∆2|γ(k)|2 and

Eβ =

√
(t|γ(k)|+ µ)

2
+∆2|γ(k)|2. When system is at

half-filling the subsystems are maximally entangled. The
entanglement levels are plotted at Figure 4.

https://epjb.epj.org/
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Fig. 4. Contour plot of entanglement level ξ1(k) of s-wave
superconductivity state on honeycomb lattice plotted for J

t
= 3

and µ
t

= 0.8. The first Brillouin zone is border by the dashed
blue line, while the thick line connects maximally entangled
states.

3.3.2 Chiral d-wave scenario

Upon tracing out B sublattices, the entanglement spec-
trum of d-wave superconductivity state on the honeycomb
lattice is completely determined by the correlation matrix:

C(k) =

(
C11(k) C13(k)
C∗13(k) C33(k)

)
, (57)

where C11, C33 and C13 are given in Appendix B. The
eigenvalues η1,2 of the correlation matrix

η1,2 =
1

2

(
(C11+C33+±

√
(C11 − C33)

2
+ 4|C13|2

)
. (58)

are related to the entanglement levels ξ1,2 = ln
(

η±
1−ηpm

)
.

At finite doping the entanglement levels never vanish.
Here, space inversion symmetry of the entanglement
spectrum is broken and the entanglement levels satisfy
ξ±(−k) = −ξ∓(k). The entanglement level ξ2(k) is visu-
alized in Figure 5. The broken time-reversal symmetry in
the entanglement Hamiltonian leads to the entanglement
Chern number C = 1.

4 Conclusion and outlook

We analytically evaluated the entanglement spectra of
the superconductivity states on the graphene honey-
comb lattice, primarily focusing on the s-wave and chiral
dx2−y2 + idxy superconductivity states. When one spin
direction was traced out, exact correspondence between
the maximally entangled states of the s-wave superconduc-
tor and the zero energies of the noninteracting fermionic
honeycomb lattice at finite doping was observed. The
relationship between the topologies of the entanglement

Fig. 5. Contour plot of entanglement level ξ2(k) of dx2−y2 +
idxy superconductivity state on honeycomb lattice plotted for
J
t

= 3 and µ
t

= 0.8. The thin blue dashed and thick black lines
represent the first Brillouin zone and connect the zero energy
states, respectively.

and subsystem Hamiltonians was found to depend on
the coupling between the subsystems. Further, the chiral
dx2−y2 + idxy superconductivity order parameter breaks
the time-reversal symmetry in the entanglement Hamil-
tonian. The topological properties of the entanglement
Hamiltonian, characterized by the topological nontrivial
entanglement Chern number C = 1, clearly differ from
those of the time-reversal invariant Hamiltonian of the
noninteracting fermions on the honeycomb lattice. The
investigations presented herein are based on closed ana-
lytical expressions for the full eigensystems of the s- and
d-wave superconductivity states on the honeycomb lat-
tice over the entire Brillouin zone. The method used to
examine these eigensystems may constitute a useful tool
for new studies of superconductivity in graphene. Future
work may investigate the relationship between the topolo-
gies of the entanglement and subsystem Hamiltonians
through the topological phase transition; for example, in
the coexistence region between antiferromagnetism and
dx2−y2 + idxy superconducting correlations in graphene
[66] and graphene bilayers [8].

The authors kindly acknowledge Milica V. Milovanović. This
work was supported by Deutsche Forschungsgemeinschaft via
GRK1570.

Appendix A: Derivation of the eigensystem

In this appendix we present analytical diagonalization
of the Hamiltonian of the chiral d + id-wave supercon-
ductivity state on the honeycomb lattice. Complexity
of the order parameter makes the analytical approach
more difficult. The starting point of our analysis is
the Bardeen-Cooper-Schrieffer mean-field Hamiltonian in

https://epjb.epj.org/
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H1(k) =

 t|γ(k)| − µ 0 Ck −iSk
0 −t|γ(k)| − µ iSk −Ck
C∗k −iS∗k −t|γ(k)|+ µ 0
iS∗k −C∗k 0 t|γ(k)|+ µ

 (A.4)

H
′

1(k) =

 t|γ(k)| − µ 0 0 −iSk
0 −t|γ(k)| − µ iSk 0
0 −iS∗k −t|γ(k)|+ µ 0
iS∗k 0 0 t|γ(k)|+ µ

 (A.5)

momentum space

HMF (k) = −t
∑
k

(
γ(k)a†kσbkσ + h.c.

)
− µ

∑
k

(
a†kσakσ + b†kσbkσ

)
− J

∑
k,δ

(
∆δe

ikδ
(
a†k↑b

†
−k↓ − a

†
k↓b
†
−k↑

)
+ h.c.

)
, (A.1)

where we define the superconductivity order parameter

∆(k) =
∑
δ

∆δe
ikδ, (A.2)

as a combination of the dx2−y2 and dxy-wave super-

conductivity state ∆d±id(k) = cos
(
π
3

)
∆d2x−y2(k) ±

sin
(
π
3

)
∆dxy (k) which minimalizes a free energy.

We apply the transformations

ck,σ =
1√
2

(ak,σ − ei·φkbk,σ),

dk,σ =
1√
2

(ak,σ + ei·φkbk,σ), (A.3)

such that in

see equation (A.4) above

diagonalize the kinetic part of the Hamiltonian. Ck =
J
∑
δ∆δ cos(kδ − φk) and Sk = J

∑
δ∆δ sin(kδ − φk)

are complex functions.
Here it is useful to split this Hamiltonian as H1 = H

′

1 +

H
′′

1 where

see equation (A.5) above

and

H
′′

1 (k) =

 0 0 Ck 0
0 0 0 −Ck
C∗k 0 0 0
0 −C∗k 0 0

 . (A.7)

H
′

1 is diagonalized by

ek+ = iα∗−ck↑ + α+d
†
−k↓ (A.8)

fk+ = −iα∗−dk↑ + α+c
†
−k↓ (A.9)

with

α+ =

√√√√1

2

(
1 +

µ√
µ2 + |Sk|2

)

α− =
Sk√

2
√
µ2 + |Sk|2

(
µ+

√
µ2 + |Sk|2

) . (A.10)

This leads to

H2 = U2H1U
†
2 =

 e1 m −l 0
m e2 0 l
−l∗ 0 −e1 m
0 l∗ m −e2

 (A.11)

with

m =
Re(Ck) · Im(Sk)− Im(Ck) · Re(Sk)√

µ2 + |Sk|2
(A.12)

and

l = α2
+C
∗
k + (α∗−)2Ck (A.13)

and ±e1 and ±e2 are eigenenergies of the Hamiltonian H
′

1
given by

e1 = t|γ(k)|+
√
µ2 + |Sk|2 (A.14)

and

e2 = −t|γ(k)|+
√
µ2 + |Sk|2. (A.15)

https://epjb.epj.org/
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We can now split this Hamiltonian as H2 = H
′

2 + H
′′

2
where

H
′

2 =

 e1 m 0 0
m e2 0 0
0 0 −e1 m
0 0 m −e2

 ,

H
′′

2 =

 0 0 −l 0
0 0 0 l
−l∗ 0 0 0
0 l∗ 0 0

 . (A.16)

Proceeding now with the transformations

gk+ = β+ek+ + σβ−fk+ (A.17)

hk+ = σβ−ek+ − β+fk+ (A.18)

where σ = sign(m) and

β± =

√√√√1

2

(
1± t|γ(k)|√

t2|γ(k)|2 +m2

)
(A.19)

we diagonalize first part of the Hamiltonian H
′

2 and we
get

H3 = U3H2U
†
3 =

 ε1 0 0 −l
0 ε2 −l 0
0 −l∗ −ε2 0
−l∗ 0 0 −ε1

 (A.20)

where ±ε1 and ±ε2 are eigenenergies of the Hamiltonian
H
′

2

ε1 =
√
µ2 + |Sk|2 +

√
t2|γ(k)|2 +m2 (A.21)

and

ε2 =
√
µ2 + |Sk|2 −

√
t2|γ(k)|2 +m2. (A.22)

Finally, this Hamiltonian is brought to the diagonalized
form with transformations

ok+ = γ
(1)
+ gk+ − γ(1)− g†k− (A.23)

pk+ = γ
(2)
+ hk+ − γ(2)− h†k− (A.24)

with

γ
(1)
+ =

√
1

2

(
1 +

ε1
Eα

)
, γ

(1)
− =

l√
2Eα (Eα + ε1)

(A.25)

and

γ
(2)
+ =

√
1

2

(
1 +

ε2
Eβ

)
, γ

(2)
− =

l√
2Eβ (Eβ + ε2)

(A.26)

and

Eα =

√
t2|γ(k)|2+µ2+|Sk|2+|Ck|2+2

√
u+v (A.27)

and

Eβ =

√
t2|γ(k)|2+µ2+|Sk|2+|Ck|2−2

√
u+v (A.28)

where

u =
(
µ2 + |Sk|2

)
t2|γ(k)|2

v = (ReCkImSk − ReSkImCk)
2
. (A.29)

Bogoliubov transformations ok+ and pk+ in the basis
ak↑, bk,↑

ok+ = − 1√
2

(
α+γ

(1)
− − iα∗−γ

(1)
+

)
(β+ − σβ−) ak↑

− 1√
2
eiφk

(
α+γ

(1)
− + iα∗−γ

(1)
+

)
(β+ + σβ−) bk↑

+
1√
2

(
α+γ

(1)
+ + iα−γ

(1)
−

)
(β+ + σβ−) a†−k↓

+
1√
2
eiφk

(
α+γ

(1)
+ − iα−γ(1)−

)
(β+ − σβ−) b†−k↓ (A.30)

pk+ = − 1√
2

(
α+γ

(2)
− + iα∗−γ

(2)
+

)
(β+ + σβ−) ak↑

+
1√
2
eiφk

(
α+γ

(2)
− − iα∗−γ

(2)
+

)
(β+ − σβ−) bk↑

+
1√
2

(
α+γ

(2)
+ − iα−γ(2)−

)
(β+ − σβ−) a†−k↓

− 1√
2
eiφk

(
α+γ

(2)
+ + iα−γ

(2)
−

)
(β+ + σβ−) a†−k↓ (A.31)

Appendix B: Correlation martix

B.1 s-wave scenario

The Hamiltonian equation (26) for s-wave superconduc-
tivity state in graphene can be diagonalized by using
Bogoluibov transformations

ek+ = α+
1√
2

(ak,↑ − ei·φkbk,↑)

+α−
1√
2

(a†−k,↓ − e
i·φkb†−k,↓) (B.1)

fk+ = β−
1√
2

(ak,↑ + ei·φkbk,↑)

−β+
1√
2

(a†−k,↓ + ei·φkb†−k,↓) (B.2)

https://epjb.epj.org/
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where α+ =

√
1
2

(
1 + t|γ(k)|−µ√

(t|γ(k)|−µ)2+|Ck|2

)
,

α− = Ck√
2Eα(Eα+t|γ(k)|−µ)

,

β+ =

√
1
2

(
1 + t|γ(k)|+µ√

(t|γ(k)|+µ)2+|Ck|2

)
, and

β− = Ck√
2Eβ(Eβ+t|γ(k)|+µ)

with Eα and Eβ are energies of

Bogoliubov quasi-particles

Eα =

√
(t|γ(k)| − µ)

2
+ |Ck|2 (B.3)

and

Eβ =

√
(t|γ(k)|+ µ)

2
+ |Ck|2. (B.4)

The e (f) sections are determined by equations (B.1)
and (B.2), respectively. These sections are decoupled in
Bogoliubov description and we are allowed than to obtain
their contributions to the ground state separative. We can

demand ek+|G〉 = 0 and e†k−|G〉 = 0 where |G〉 is the
ground state. The e section contributes to the ground state
as:

∏
k∈IBZ

(
α+(k)− α−(k)c†k↑c

†
−k↓

)
|0〉 (B.5)

where |0〉 is the vacuum state. Similar, the contribution of
the f section to the ground state:

∏
k∈IBZ

(
β−(k) + β+(k)d†k↑d

†
−k↓

)
|0〉 (B.6)

the ground state |G〉 is determined by conditions:

fk+|G〉 = 0 and f†k−|G〉 = 0. This leads to the complete
ground state vector:

∏
k∈IBZ

(
α+(k)− α−(k)c†k↑c

†
−k↓

)
∏

q∈IBZ

(
β−(q) + β+(q)d†q↑d

†
−q↓

)
|0〉. (B.7)

Similar findings are obtained for the ground state of the
p-wave superconductivity state in graphene [67].

This ground state leads to the correlation matrix when
spin ↓ is traced out:

C(k)

=

(
1
2

(
|α−|2+|β+|2

)
1
2e
−iφk

(
|β+|2−|α−|2

)
1
2e
iφk
(
|β+|2−|α−|2

)
1
2

(
|α−|2+|β+|2

) )
. (B.8)

B.2 Chiral d-wave scenario

Using

ak↑ = − 1√
2

(
α+

(
γ
(1)
−

)∗
+ iα−γ

(1)
+

)
(β+ − σβ−) ok,+

− 1√
2

(
α+

(
γ
(2)
−

)∗
+ iα−γ

(2)
+

)
(β+ + σβ−) pk,+

+
1√
2

(
α+γ

(2)
+ − iα−γ(2)−

)
(β+ + σβ−) p†−k,−

+
1√
2

(
α+γ

(1)
+ − iα−γ(1)−

)
(β+ − σβ−) o†−k,− (B.9)

we can calculate the mean occupancy at cite A:

〈a†k↑ak↑〉 =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2

− i α+γ
(1)
+

(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

(
α−γ

(2)
−

−α∗−
(
γ
(2)
−

)∗))
(β+ + σβ−)

2
. (B.10)

After basic algebra we find that the correlation matrix
obtained by tracing out spin ↓ at T = 0 reads

C(k) =

(
C11(k) C12(k)
C∗12(k) C22(k)

)
(B.11)

with

C11(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 − α+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (B.12)
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C22(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 + iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ + σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 + iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ − σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√

t2|γ(k)|2 +m2

)
, (B.13)

and

C12(k) =
1

2
e−iφk

(
α2
+(γ

(1)
+ )2 − |α−|2|γ(1)− |2 − iα+γ

(1)
+

×
(
α
(1)
− γ

(1)
− +

(
α
(1)
−

)∗ (
γ
(1)
−

)∗)) (
β2
+ − β2

−
)

−1

2
e−iφk

(
α2
+(γ

(2)
+ )2 − |α−|2|γ(2)+ |2 − iα+γ

(2)
+

×
(
α
(1)
− γ

(2)
− +

(
α
(1)
−

)∗ (
γ
(2)
−

)∗)) (
β2
+ − β2

−
)

=
1

4
e−iφk

((
ε1
Eα
− ε2
Eβ

)
−i n

(
1

Eα
− 1

Eβ

))
t|γ(k)|√

t2|γ(k)|2 +m2
(B.14)

where n = Re(Ck)Re(Sk)+Im(Ck)Im(Sk)√
µ2+ |Sk|2

. Here, one should

notice that C11(−k) = C22(k) and C12(k) = (C12(−k))
∗
.

Eigenvectors of the correlation matrix

qk↑ = δ+(k)ak↑ + δ−(k)bk↑ (B.15)

rk↑ = δ+(−k)ak↑ − δ∗−(−k)bk↑ (B.16)

where:

δ+(k) =

√√√√√1

2

1 +
C11 − C22√

(C11 − C22)
2

+ 4|C12|2


δ−(k) =

2C12√
2

√
(C11 − C22)

2
+ 4|C12|2w

(B.17)

with w = (C11 − C22 +

√
(C11 − C22)

2
+ 4|C12|2).

Finally, we find that the correlation matrix obtained by
tracing out one sublattice, B for example

C(k) =

(
C11(k) C13(k)
C∗13(k) C33(k)

)
(B.18)

with

C11(k) =
1

2

(
α2
+(γ

(1)
+ )2 + |α−|2|γ(1)− |2 − iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ − σβ−)

2

+
1

2

(
α2
+(γ

(2)
+ )2 + |α−|2|γ(2)− |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ + σβ−)

2

=
1

2
+

1

4

µ√
µ2 + |Sk|2

(ε1 +m)

× 1

Eα

(
1− m√

t2|γ(k)|2 +m2

)

+
1

4

µ√
µ2 + |Sk|2

(ε2 +m)

× 1

Eβ

(
1 +

m√
t2|γ(k)|2 +m2

)
, (B.19)

C33(k) =
1

2

(
α2
+(γ

(1)
− )2 + |α−|2|γ(1)+ |2 − iα+γ

(1)
+

×
(
α−γ

(1)
− − α∗−

(
γ
(1)
−

)∗))
(β+ + σβ−)

2

+
1

2

(
α2
+(γ

(2)
− )2 + |α−|2|γ(2)+ |2 − iα+γ

(2)
+

×
(
α−γ

(2)
− − α∗−

(
γ
(2)
−

)∗))
(β+ − σβ−)

2

=
1

2
− 1

4

µ√
µ2 + |Sk|2

(ε1 −m)

× 1

Eα

(
1 +

m√
t2|γ(k)|2 +m2

)

−1

4

µ√
µ2 + |Sk|2

(ε2 −m)

× 1

Eβ

(
1− m√

t2|γ(k)|2 +m2

)
, (B.20)

and

C13(k) =
1

2

(
α2
+

(
γ
(1)
+ γ

(1)
− − γ

(2)
+ γ

(2)
−

)
−
(
α∗−
)2 (

γ
(1)
+

×(γ
(1)
− )∗ − γ(2)+ (γ

(2)
− )∗

)) (
β2
+ − β2

−
)

=
1

4

(
1

Eα
− 1

Eβ

)
µ√

µ2 + |Sk|2

× t|γ(k)|√
t2|γ(k)|2 +m2

C∗k. (B.21)
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