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Abstract: The anti-self-adjoint operators of coordinate and momentum are introduced and applied to the study of tun-

nelling through the potential barrier, in which the imaginary value of momentum unavoidably appears. Tunnelling through

a temporal barrier is treated similarly and it is shown that the quantum system can tunnel, while the classical systems are

destroyed by a such barrier. The imaginary observables of coordinate and momentum are used in a novel treatment of

passage through the event horizon. By considering the event horizon as the border of the finite potential barrier, it is found

that there is no singularity at the centre of a black hole.
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1. Introduction

Tunnelling through the potential barrier is a typical quan-

tum phenomenon and there are many articles discussing it

from different angles and applying it in a huge variety of

diverse situations [1–15]. Recently, attention are attracting

the cases of time-dependent potentials, see for instance

[16–19]. Usually, the potential depending on the coordinate

is multiplied by the time-dependent function and this

modulation of a barrier raises interesting effects in different

areas of research. Here, instead of proceeding in this

direction, we shall analyse the behaviour of the quantum

system when it is confronted with a barrier that depends

solely on time. Since we are interested in conceptual

aspects of the tunnelling through the temporal barrier, we

shall discuss it in general, being explicit only in the most

simple case of a square barrier. However, we shall compare

the behaviour of the quantum system with the behaviour of

the classical system in the same situation, and this will be

done in order to underline the big difference between the

two. So to say, the quantum system can survive, by tun-

nelling through the barrier, while the classical one cannot

survive the action of the temporal barrier.

There are solutions of the Schrödinger equation for

which the imaginary values of momentum appear. That is,

by applying the self-adjoint operator of momentum on such

solutions, one ends up with an imaginary value. This

surprising feature was discussed in [20, 21]. The typical

examples of this are the solutions of the Schrödinger

equation in the case of the square potential, when one

considers the solutions in the region where the quantum

system is within the barrier, i.e., during its supposed tun-

nelling through the barrier. To end up with an imaginary

value after acting with the operator of the momentum on

the solution of the Schrödinger equation is strange since

this operator is self-adjoint, so only real values are

expected. Directly attached to these imaginary values of

momentum are negative values of kinetic energy, which

are equally well unacceptable from the point of view of our

everyday experience. The same situation will arise also in

the case of the time-dependent barrier that we are going to

consider here. However, we shall approach these imaginary

values in a completely non-standard way. Namely, they

will lead us, so to say, to the complexification of the

coordinate and momentum. Just like beside the real axis

one introduces the imaginary one, we shall introduce anti-

self-adjoint (skew-symmetric) operators of coordinate and

momentum. These new operators will have imaginary

eigenvalues and offer an adequate and consistent descrip-

tion of the tunnelling through barriers.

The formalism of the operator of time, that we have

proposed in [22–26], will be used here. Let us just mention

that there is a whole variety of topics and approaches

related to the operator of time, e.g., [27–29] and references

therein. However, our approach is similar to [30], and

references therein, and [31], and its crucial point is to treat

time and energy on an equal footing with coordinate and
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momentum. This means that the separate Hilbert space, in

which operators of time and energy act, is introduced, just

as it is done for each degree of freedom in the standard

formulation of quantum mechanics. By doing this, the

Pauli’s objection is avoided. Proceeding in this way, the

same commutation relation that holds for the coordinate

and momentum is imposed for the energy and time, which

leads to an unbounded spectrum of these operators. Finally,

the Schrödinger equation appears as a constraint in the

overall Hilbert space, selecting the states with non-negative

energy for the standard Hamiltonians. However, after the

algebra of anti-self-adjoint operators of coordinate and

momentum is introduced, the negative eigenvalues of

energy will naturally appear in the formalism.

The standard quantum mechanics, with its self-adjoint

operators of coordinate and momentum and appropriate

real eigenvalues, is a part of the complete theory that

involves anti-self-adjoint operators of coordinate and

momentum and their imaginary eigenvalues. The last ones,

together with the negative energies, find natural explana-

tion within the complexified quantum mechanics. So, we

find not only that there is nothing wrong with the imaginary

values of momentum in the case of tunnelling, but that

these imaginary values are meaningful since, besides our

part of the universe characterized by real numbers, there is

also the other one characterized by imaginary numbers.

These two parts are on an equal footing and together form

the complete universe.

As an example of the possible application of complex-

ified mechanics, we shall propose a new way of looking at

passages of the quantum and classical systems through the

event horizon during the fall in and possible escape from a

black hole. We will discuss the evaporation of a black hole

and the virtual particles that escaped from a black hole.

2. Operators of time and energy

Analogously to the treatment of spatial degrees of freedom,

a separate Hilbert space Ht, in which operators of time t̂

and energy ŝ act non-trivially, can be introduced. So, for

the case of one degree of freedom, there are self-adjoint

operators q̂� Î, p̂� Î, Î � t̂ and Î � ŝ, acting in Hq �Ht,

with commutation relations:

1

i�h
½q̂� Î; p̂� Î� ¼ Î � Î; ð1Þ

1

i�h
½Î � t̂; Î � ŝ� ¼ �Î � Î: ð2Þ

The other commutators vanish. The operators of time t̂ and

energy ŝ have continuous spectrum f�1;þ1g, just like
the operators of coordinate and momentum q̂ and p̂. The

eigenvectors of t̂ are jti for every t 2 R. In jti
representation, operator of energy is given by i�h o

ot and its

eigenvectors jEi, in the same representation, are e
1
i�hE�t for

every E 2 R. In [22] we have shown how the unbounded

spectrum of the operator of energy is regulated by the

Schrödinger equation. Namely, the Schrödinger equation,

which appears as a constraint in Hq �Ht, selects the states

with non-negative energy since the spectrum of the

standard Hamiltonians is bounded from below. That is,

the Hamiltonian and operator of energy are acting in

different Hilbert spaces, but there is a subspace of the total

Hilbert space in which:

ŝjwi ¼ Hðq̂; p̂Þjwi: ð3Þ

The states that satisfy this equation have non-negative

energy for the usually used Hamiltonians. The last equation

is nothing else but the Schrödinger equation. By taking its

jqi � jti representation, one gets the familiar form of the

Schrödinger equation:

i�h
o

ot
wðq; tÞ ¼ Ĥwðq; tÞ; ð4Þ

where we introduced the shorthand notation

Ĥ ¼ Hðq;�i�h o
oqÞ. In other words, the operator of energy

has negative eigenvalues as well as non-negative, but the

states with non-negative energies, used in the standard

quantum mechanics, are selected by the Schrödinger

equation due to the non-negative spectrum of Hðq̂; p̂Þ. For
the time-independent Hamiltonian, the typical solution of

the Schrödinger equation wEðqÞe
1
i�hE�t is jqi � jti represen-

tation of jwEi � jEi, where Hðq̂; p̂ÞjwEi ¼ EjwEi and

ŝjEi ¼ EjEi. The energy eigenvectors jEi have the same

formal characteristics as, say, the momentum eigenvectors

(they are ‘‘normalized’’ to dð0Þ and, for different values of
energy, they are mutually orthogonal).

The negative eigenvalues of ŝ will appear in the dis-

cussion below.

3. Spatial barrier

Let us briefly review the standard treatment of the tun-

nelling through the square potential. If the potential van-

ishes everywhere except between qa and qb, where has

constant value V ¼ V0, one firstly solves the Schrödinger

equation for the regions where V ¼ 0 and then for the

region where V ¼ V0. If the energy of the quantum system

is taken to be E0, then the solutions outside the barrier, in

the coordinate representation, are plane waves e�
1
i�hp�qe

1
i�hE0�t,

where E0 ¼ p2

2m. For the region with V ¼ V0 one finds

e�
1
i�hp

0 �qe
1
i�hE�t, where E0 ¼ p02

2m þ V0. We are talking about
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tunnelling when E0\V0. Then, the quantum system can be

in the region that is forbidden from the point of view of

classical mechanics. Namely, the classical system, having

momentum p, will approach the potential barrier, say from

the left, and at the point q ¼ qa it will be pushed back by

the force caused by the barrier. It will never enter the

region between qa and qb since it does not have enough

energy to overcome the repulsive force that acts at qa.

After finding mentioned solutions for all three regions,

one proceeds with making superpositions of the appropriate

solutions (which are occasionally called left and right

moving waves). The coefficients in these superpositions are

found from the boundary conditions of the wave function at

the barrier surface. Namely, the requirement that the wave

function be continuous and smooth at the boundaries qa
and qb, the meaning of which is that one demands the wave

function and its derivative to be continuous, leads one to

the solution of the considered Schrödinger equation for the

whole space. Discussion regarding the tunnelling through

the potential barrier usually proceeds by the calculation of

reflection and transition rates. Instead of repeating this in

detail, let us focus on the difference between the classical

and quantum systems that is essential for tunnelling.

Namely, regarding the position, the classical system is

always located at one point. Its state, i.e., the coordinate

part of its state, is given by dðq� qðtÞÞ. So, at some

moment, the classical system starts to feel the presence of

the barrier. More precisely, only at the moment when it

comes to qa it feels the repulsive force that pushes it back

to the region from which it came. In difference to the

classical system, the quantum system, having energy E0, is

not located in one point of the space. Its state spreads all

over the space, and in the standard approach, as outlined

above, it is given by mentioned superpositions of e�
1
i�hp�q, for

q between �1 and qa, e
�1

i�hp
0 �q, for q between qa and qb, and

e�
1
i�hp�q, for q between qb and þ1. In the present context,

being in a state with a sharp value of energy actually means

that the quantum system is not in a state that is spatially

located. Since we are not measuring the coordinate of the

quantum system, we are not reducing its state to the one

with the sharp value of the position, in particular not to the

state jqai. In this way, the quantum system is never actually

in front of the barrier, so it does not feel its repulsive force.

So to say, being in a state with a sharp value of energy, the

quantum system is potentially in front, inside and beside

the barrier simultaneously, and its existence is not con-

centrated to some particular point of the space.

4. Imaginary momentum

If one applies momentum operator �i�h o
oq to the states of

quantum system e�
1
i�hp

0 �qe
1
i�hE�t, where E0 ¼ p02

2m þ V0, then for

E0\V0 one ends up with the imaginary value of momen-

tum. This is, of course, strange since we do not expect to

find imaginary values when the self-adjoint operators act

on perfectly correct solutions of the Schrödinger equation.

There are other situations for which we find imaginary

momentum, as well, see [32].

Since the imaginary values are unavoidable in the con-

sidered cases, then their meaning should be addressed. As

is well known, Hermitian and self-adjoint operators are

used in quantum mechanics because they have real eigen-

values. The world we live in is characterized by real

numbers as the values of considered quantities. So, if we

say, in a case when some system is in a state that has real

value of some observable, that this quantity belongs to our

real world, then in the case when the system is in a state

that gives imaginary value of some observable we cannot

attribute reality to this quantity. This quantity with imagi-

nary value does not belong to the real world. It belongs to

the world of imaginary quantities.

The unavoidable imaginary values of the momentum for

e�
1
i�hp

0 �qe
1
i�hE�t (where E0 ¼ p02

2m þ V0 and E0\V0) are demon-

strations of the existence of a world other than ours. So,

there are two worlds. One is the world characterised by

properties that are real. It is our world where everything is

expressed by real numbers, but there is another world

where everything is expressed by imaginary numbers. This

world of unreality is on an equal footing with ours. It is as

natural as our world. For the sake of simplicity, let us call

that other world the imaginary world. The universe consists

of both the real and the imaginary world.

5. Anti-self-adjoint operators

As we have underlined, it is unavoidable to end up with the

imaginary values of the momentum for the above-men-

tioned states. Since this is not consistent with the fact that

momentum is a self-adjoint operator, the question is whe-

ther there exists an operator of the momentum with which

we can reproduce all important features of the tunnelling

considered, being such that the imaginary values are in

accordance with its nature. The answer is affirmative.

Namely, there are anti-self-adjoint operators which have
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imaginary eigenvalues. For such an operator it is com-

pletely consistent to obtain the imaginary value when

applying this operator on some state, just as it is consistent

to get the real value when a self-adjoint operator is applied

to some state.

Let us introduce anti-self-adjoint operators of the

imaginary coordinate and the imaginary momentum in the

following way. For each real qre there is jqrei, which is the

eigenvector of the self-adjoint operator of real coordinate

q̂re ¼
R
qrejqreihqrejdqre:

q̂rejqrei ¼ qrejqrei: ð5Þ

The self-adjoint operator of the real momentum p̂re, in the

basis jqrei, is represented by �i�h o
oqre

. Its eigenvectors, in

the same representation, are the (real) plane waves e
1
i�hpre�qre

with the real eigenvalues. These two operators, acting in

the rigged Hilbert space Hre, are the standard operators of

coordinate and momentum used in quantum mechanics.

They form the Heisenberg algebra and do not commute
1
i�h ½q̂re; p̂re� ¼ Îre, where Îre ¼

R
jqreihqrejdqre.

Besides this, there is the algebra of non-commuting anti-

self-adjoint operators of the coordinate q̂im and momentum

p̂im, acting in the rigged Hilbert space Him. The spectral

form of the imaginary coordinate q̂im, in the basis jqimi,
where qim ranges over entire imaginary axis, is q̂im ¼R
qimjqimihqimjdqim (with the real measure dqim), and its

action on the eigenvectors is given by:

q̂imjqimi ¼ qimjqimi: ð6Þ

In the basis jqimi, the anti-self-adjoint operator of the

imaginary momentum is represented by �i�h o
oqim

. Its

eigenvectors, in the same representation, are the imaginary

plane waves e
1
i�hpim�qim with the imaginary eigenvalues.

Analogously to the case of the real coordinate and

momentum, the commutator of the imaginary ones is

proportional to the Îim which is Îim ¼
R
jqimihqimjdqim.

In the case of one degree of freedom, the complete

description demands the direct product of the rigged Hil-

bert spaces Hre and Him. In Hre �Him the operator of the

real coordinate is q̂re � Îim, while the operator of the

imaginary coordinate is Îre � q̂im (and similarly for the

operators of momentum). These operators, together with

the identity, form the basis of complexified quantum

mechanics.

The quantum and classical mechanics have to be iden-

tical regarding the formal structures. Therefore, there are

the imaginary variables of coordinate and momentum qim
and pim, beside the standard real ones qre and pre. These

variables will be used below.

6. Temporal barrier

The opportunity to be in a superposition of states is

essential for tunnelling through the spatial barrier. When

the quantum system is in a state with a sharp value of

momentum it is potentially everywhere without actually

being there. This is related to the non-commutativity of the

operators of coordinate and momentum. On the other side,

the classical system simultaneously possesses sharp values

of coordinate and momentum since they commute. A

similar situation is with energy and time. The operators ŝ

and t̂ do not commute, so they do not have common

eigenvectors. Sharp values of energy imply no definite

tunnelling time. The classical system, of course, is always

present and has definite energy since the variables s and

t commute. As in the case of the spatial barrier, this dif-

ference between classical and quantum systems is what

makes possible tunnelling through the temporal barrier.

How the temporal barrier would affect the classical

system can be understood by considering the following

situation. Let the initially free classical system interacts

with some other one in such a way that it loses its

mechanical energy over time, transferring it to that other

system. Within the formalism of complexified classical

mechanics, let the total energy of these systems be:

p2re
2m

þ p2im
2m

þWðtÞ; ð7Þ

where W(t) is the energy of the other system for which we

assume that, at t1, it starts to rise smoothly from zero,

overcomes the initial energy of the considered system, and

then, after some time, smoothly drops down becoming zero

at t2. As it rises, the energy of the classical system lowers

in order to keep the total energy of these systems constant.

At some moment ta, t1\ta, W(t) becomes equal to the

energy that the system had before ta, so the energy of the

system becomes equal to zero. At some tb, ta\tb, W(t)

drops to the value of the initial energy of the system, and

then at t2, tb\t2, vanishes. If the classical system initially

was in the state with pre ¼ p0re and pim ¼ 0, so all of its

energy is in the positive kinetic energy, it is crucial to find

out what happens at ta.

In between t1 and ta system loses positive kinetic energy

of the motion in the real world, at ta it becomes zero and

then negative since W(t) rises. What this means can be

better understood in the full relativistic approach. So, the

energy of the system is given by:

mc2re

ð1� v2re
c2re
Þ
1
2

þ mc2im

ð1� v2im
c2im
Þ
1
2

; ð8Þ

where cre ¼ c is the speed of light in the real world and cim
is the speed of light in the imaginary world. (The speed of
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light in the imaginary world is imaginary, as are all

velocities, and cim ¼ i � c.) In between t1 and ta, due to the

fourth component of the 4-vector of force in the real world,

which is equal to � 1
cre

dWðtÞ
dt , the fourth component of the 4-

vector of momentum in the real world decreases until it

becomes mcre at ta. Since W(t) continues to increase, the

further decrease of the system’s energy cannot proceed by

the decrease of its rest mass m. Namely, the particle at rest

in both worlds has total energy:

mc2re þ mc2im ¼ 0: ð9Þ

This holds irrespective of the value of m. So, from the state

with the vanishing energy at ta, the system goes to the state

with a small negative kinetic energy of the motion in the

real world:

� mc2re

ð1� v2re
c2re
Þ
1
2Þ
� mc2im: ð10Þ

This means that the mass of the system becomes negative.

With the negative rest mass, the fourth component of the 4-

vector of momentum in the real world is inverted. And, if

the positive fourth component of the 4-vector of momen-

tum in the real world, which was the case before ta, caused

the propagation in the positive direction of the fourth

component of the 4-vector of position in the real world cret,

then the negative one causes propagation in the negative

direction. As is well known, having negative mass is

equivalent to the propagation backward in time, so at ta, by

acquiring the negative mass, the system starts to propagate

towards the past. This holds for both the real and the

imaginary world.

On the other hand, the quantum system, like in the case

of a spatial barrier, can tunnel this temporal barrier. If

before t1 it was in the state jp0rei and jp0imi, where p0im ¼ 0,

then it can be observed after t2. As stated before, at the

moment that is the turning point for the classical system,

the quantum one would not be present since, for all the

time until it is observed, it would be in an eigenstate of

energy. So to say, being in a state with a sharp value of

energy, it potentially exists before, during and after the

period in which the barrier is present, and the existence of

the quantum system is not connected to any moment of

time in particular - uncountably many moments of time are

superposed in the actual state of the system with a sharp

value of the energy. Its jpreðtÞi and jpimðtÞi would vary

with respect to t in such a way that the energy of the system

plus W(t) is equal to the initial
p0

2

re

2m. Concretely, in the case

when W(t) is square shaped between ta and tb, with the

value W0, W0 [
p0

2

re

2m, the state of the quantum system before

the barrier is:

Z þ1

�1

Z þ1

�1

Z ta

�1
e
�1
i�h p

0
re�qree

�1
i�h p

0
im�qime

1
i�hE0�tjqrei � jqimi

� jtidqredqimdt;
ð11Þ

where p0im ¼ 0 and E0 ¼ p0
2

re

2m. Between the moments ta and tb
the state is:
Z þ1

�1

Z þ1

�1

Z tb

ta

e
�1
i�h p

T
re�qree

�1
i�h p

T
im�qime

1
i�hET �tjqrei

� jqimi � jtidqredqimdt;
ð12Þ

where pTre, pTim and ET are the tunneling momenta and

energy, and where pTre ¼ 0, pTim ¼ ð2mðp
02

re

2m �WoÞÞ
1
2 and

ET ¼ pT
2

im

2m. Finally, after tb the state is:

Z þ1

�1

Z þ1

�1

Z þ1

tb

e
�1
i�h p

0
re�qree

�1
i�h p

0
im�qime

1
i�hE0�tjqrei

� jqimi � jtidqredqimdt:
ð13Þ

In both cases of the spatial and the temporal barrier, the

appropriate momentum of the classical system is reverted

at the point where the system is confronted with the barrier.

However, there is a big difference between these two cases.

Since there is no back propagation in time, at the moment

ta the classical system ceases to exist, it is no longer present

at later times. It can be said that the force executed by the

barrier is the cause of its death and destruction. (Dead

means to be at rest.) In this context, for the quantum sys-

tem, it could be said that tunnelling is the process of dying

at ta in the real world and immediate reincarnation in the

imaginary world and, at the moment tb, resurrection in the

real world.

7. Black hole modelled as a barrier

When a black hole is looked at from its centre it looks like

a barrier. The attractive gravitational force, directioned

towards the centre, plays the same role as the repulsive

force of the potential barrier considered above. For the

potential barrier, it is important to know at which point the

barrier starts and how high it can be.

The particle in the gravitational field at rest at r ¼ þ1
has vanishing energy [33]. During its fall into a black hole,

its velocity increases. At the distance rE from the centre,

where rE is the Schwarzschild radius, the velocity of the

particle becomes equal to the speed of light. Since the

speed of light sets the upper bound for all velocities, the

particle cannot move faster. This means that at the rE is the

bottom of the potential well or, when looked at from the

centre of a black hole, at rE starts the potential barrier. The

depth of the potential well is finite and equal to the value of

Complexified quantum and classical mechanics



the gravitational potential at rE, which means that the

potential is constant from r ¼ 0 to rE. In other words, the

gravitational force equals zero within the event horizon -

the sphere of radius rE, and the speed of light, as the finite

upper bound for velocities, determines the depth of the

potential well.

After its passage through the event horizon, the particle

thermalises with the matter that has been already present in

a black hole, so its velocity drops in time. Due to the

absence of the gravitational force within the sphere of

radius rE, the matter is not shrinking to a single point and,

therefore, there is no singularity at r ¼ 0 (all the matter

contained within the event horizon is not concentrated

within the single point).

If a classical system, with velocity v, v\c, that is

directioned outwards a black hole, tries to escape it, it

would be pulled back by attractive gravitational force. In

the case of the potential barrier considered above, the

repulsive force and insufficient energy were the reasons

why the system could not go beyond a certain point, while

here the attractive force, directioned towards the centre of a

black hole, and insufficient energy are the reasons why the

system cannot escape. The quantum system also behaves as

it behaved in the case of the potential barrier.

In the case of the square spatial barrier the state of the

quantum system is:
Z qa

�1

Z þ1

�1

Z þ1

�1
e
�1
i�h p

0
re�qree

�1
i�h p

0
im�qime

1
i�hE0�tjqrei

� jqimi � jtidqredqimdtþ

þ
Z qb

qa

Z þ1

�1

Z þ1

�1
e
�1
i�h p

T
re�qree�

1
i�hp

T
im�qim � e1

i�hE0�tjqrei

� jqimi � jtidqredqimdtþ

þ
Z þ1

qb

Z þ1

�1

Z þ1

�1
e
�1
i�h p

0
re�qree

�1
i�h p

0
im�qree

1
i�hE0�tjqrei

� jqimi � jtidqredqimdt;

ð14Þ

where p0re is the initial real momentum, p0im ¼ 0, pTre ¼ 0

and pTim ¼ ð2mðp
02

re

2m � VoÞÞ
1
2. The quantum system can

escape from a black hole, which is modelled here as a

barrier, by tunnelling through it. Its state in this situation is:
Z ra

0

Z þ1

�1

Z þ1

�1
e
�1
i�h p

0
re�rre e

�1
i�h p

0
im�qime

1
i�hE0�tjrrei

� jqimi � jtidrredqimdtþ

þ
Z þ1

ra

Z þ1

�1

Z þ1

�1
e
�1
i�h p

T
re�rre e�

1
i�hp

T
im�qim � e 1

i�hE0�tjrrei

� jqimi � jtidrredqimdt;

ð15Þ

where p0re is the initial real p0im ¼ 0, pTre ¼ 0 and pTim ¼
ð2mðVðrEÞ þ p0

2

re

2m � VðrreÞÞ
1
2 and VðrreÞ ¼ �c m�M

rre
. So, due

to the possibility to tunnel the barrier, the quantum system

could be found outside the event horizon. For the systems

that have evaporated from a black hole it is usually said

that they are virtual particles. The attribute virtual is used

in order to underline that their kinetic energies need not be

positive. Within the complexified quantum mechanics it

becomes obvious that the evaporated particles are the

standard particles that have the non-vanishing imaginary

momentum, propagating forwards, not backwards, in time

(as is the case for some Feynman diagrams).

8. Conclusions

The complexified quantum and classical mechanics were

founded by the introduction of the anti-self-adjoint opera-

tors of coordinate and momentum for the quantum system

and the imaginary variables of the classical system. Within

the proposed formalism, the tunnellings through the bar-

riers, spatial and temporal, were thoroughly discussed. It is

a well-known fact that, during the tunnelling through the

potential barrier, the quantum system is characterized by

the imaginary value of the momentum. This appears to be

strange within the framework of standard quantum

mechanics since only the self-adjoint operator of momen-

tum is used, whose spectrum is real. The complexified

quantum mechanics offered a self-consistent description of

the tunnelling through the spatial barrier where the

unavoidable imaginary value of the momentum does not

contradict the nature of the operator of the imaginary

momentum. The enlarged quantum mechanics was used in

the discussion of the tunnelling through the temporal bar-

rier and, in order to make the argumentation more trans-

parent, the previously introduced operator of time

formalism was employed. The complexified version of

classical mechanics, on the other hand, was used in the

discussion regarding the system’s passage through the

event horizon, which was found to be the border of the

potential barrier around a black hole.

The main conclusions are the following. The tunnelling

through the potential barrier shows that the standard for-

mulation of quantum mechanics, and consequently of

classical mechanics as well, have to be enlarged. The

quantum system can tunnel through the temporal barrier,

while such a barrier destroys the classical systems. There is

no singularity at the centre of a black hole and the negative

energies are natural for the imaginary world.
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