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In the paper, we investigate the miniband structure of one-dimensional quantum dash array and

its dependence on geometrical parameters by using a newly developed and efficient numerical

method. We show that miniband energy significantly depends on the dash height and width,

while the miniband width depends on the array period and the dash width. The excited

minibands may exhibit the effect of zero miniband gap and the multiple anticrossings, which

are followed by the swapping of the character of adjacent minibands top and bottom. The

wetting layer allows formation of a miniband cluster in the vicinity of the well top, which

essentially represents the barrier continuum embedded into the well of array. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4770437]

I. INTRODUCTION

Recent studies have shown that photonic devices incor-

porating semiconductor nanostructures in which the elec-

tronic motion is confined in more than one spatial direction,

may overcome some of the limitations of quantum well

based devices, especially short excited-state carrier lifetime,1

caused by numerous in-plane scattering paths.2 Self-

assembled nanostructures, as three-dimensionally (3D) con-

fined quantum dots (QDs) or their elongated version with 2D

confinement, called quantum dashes (QDH), may provide

the additional confinement required for reduction of scatter-

ing events or improvement of optical transitions strength and

polarization. Therefore, investigation of their electronic

structure is a basis for further understanding and optimiza-

tion with respect to carrier scattering processes and its life-

time, optical transitions strength and polarization type.

The electronic band structure in these nanostructures is

usually studied thoroughly for an isolated system comprising

the well and the barrier region and corresponding strain and

potential distribution.3–8 However, due to self-assembled

growth, these nanostructures form an ensemble in which dots

or dashes are usually distributed in the close proximity of

each other, leading to a quantum mechanical coupling.9 Due

to the coupling, the electronic band structure as well as the

optical properties of these nanostructures may significantly

differ from those for an isolated dot or dash.

In this paper, we present an efficient numerical method,

based on coordinate transformation and the finite differences

method, which provides calculation of electronic band struc-

ture of quantum dash array. In the case of sufficiently high

compressive strain, which is common for QDHs, it is possi-

ble to consider heavy and light holes decoupled and apply

this method even in the calculation of the QDH valence band

structure.5,9 Due to a stochastic distribution, QDH array may

consist of dashes with different cross-section, which means

that their width, height, shape and even separation of adja-

cent dashes might be different.8–11 However, our model is

based on the assumption that the QDH ensemble consists of

equally long dashes with the same cross-section profile

distributed in a periodic array. Although the model can not

provide precise insight into electronic band structure of array

consisting of QDHs with randomized cross-section dimen-

sions, it can help to understand and reveal the influence of

different geometrical parameters of the QDH array on the

electronic band structure. Therefore, we investigate how the

QDH width and height as well as the period of array, affect

electronic states in the QDH conduction band.

We focus our investigation on two different material

systems. As first, we study InAs/InAlGaAs QDHs, where

InAlGaAs is latticed matched to InP. Although this material

system is useful for telecom applications due to interband

emission at 1.5 lm, it was recently implemented as the active

region of a quantum cascade laser.2 However, the well in

this material system is shallow and doesn’t provide sufficient

depth for different minibands and effects which may occur

in deeper wells. Thus, we extend our research on InAs/GaAs

QDHs, which due to a larger depth exhibit more interesting

effects in the electronic band structure.

In Sec. II, we give details of our method, which com-

bines specially designed coordinate mappings and finite dif-

ferences for calculation of electronic band structure. In Sec.

III, we present application of the method to InAs/InAlGaAs

QDH array. In this section, we show and discuss how elec-

tronic minibands depend on the QDH height, full width at

half of the height, and the array period, and compare results

obtained for different material systems. In the last section we

present conclusions of this paper.

II. DESCRIPTION OF THE METHOD

In our analysis of minibands, we take into account the

wetting layer (WL), formed as a consequence of self-

assembled growth of InAs islands. The strength of quantum

mechanical coupling between dashes in the QDH material

depends on the WL thickness (tW) and the density of QDHs,

as well as on the actual profile of the QDH’s cross-section.

The WL thickness tW is defined as the well material thick-

ness in the middle of two neighbouring QDHs [Fig. 1(a)].

Parameters of the QDH cross section are the maximum
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height of the QDH array denoted by H, and the full width at

half maximum W of a single QDH with respect to the wet-

ting layer thickness [Fig. 1(a)]. Material parameters and the

conduction band offset (Table I) are taken from Refs. 12 and

13, assuming compressively strained dashes.9 Since QDHs

exhibit the quantum-wire like nature,4 we approximate them

with infinitely long wires and focus only on their profile of

carrier confinement in the transversal x-y plane [Fig. 1(a)].

Thus, the quantization in the longitudinal z-direction leads to

a quasi-continuous subband structure, the energy of which is

well approximated with parabolic dependence on corre-

sponding wave vector kz.

The conduction band structure of the periodic array of

QDHs is modelled by using the single-band Schr€odinger

equation in the envelope function approximation:
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where w ¼ wðx; yÞ is slowly varying part of the total wave-

function, U¼U(x, y) is the 2D potential profile determined

by the heterointerface of the well and the matrix material

and the conduction band offset DEc; m� ¼ m�ðx; yÞ is the

electronic effective mass, while E is the confinement energy

referenced to the conduction band edge of the QDH barrier

material. In our analysis, we are interested only in the eige-

nenergies corresponding to the subband bottom, for which

kz ¼ 0.

Although realistic QDH ensemble comprises nonuni-

formly distributed InAs islands, in our calculation we analyze

the array of identical QDHs equally spaced in the x-direction.

Therefore solution of Eq. (1) satisfies Bloch theorem for the

wave function wðx; yÞ in periodic potential:

wðxþ L; yÞ ¼ expðiKLÞwðx; yÞ; (2)

where L is the period of QDH array in the x-direction, while

K is Bloch wave number (miniband wavevector). The

extreme values of the phase shift factor expðiKLÞ, þ1 and

�1, corresponding to KL¼ 0 and KL ¼ p, respectively,

determine boundaries of the minibands and corresponding

wavefunctions. Since the periodicity exists only in the

x-direction, while in the y-direction there is no coupling

between dashes, formation of the minibands is limited to the

range of energies below the band edge of the QDH barrier

material. The full periodicity can be achieved by stacking

additional arrays of quantum dashes on the top of each other.

In this case, the minibands can be formed in and above the

well. In the paper, we focus on the single array of QDHs.

Depending on the material system, nominal thickness of

the InAs layer and growth parameters, e.g. the growth temper-

ature, group-III/V ratio and growth rate, self-assembled QDHs

may have different dimensions and shapes of the cross-section

profiles.8–11 Thus, the functions used for coordinate transfor-

mation and the QDH cross-section profile fitting may differ

significantly. Before we proceed with a detailed description of

these functions, we generally present the method used for cal-

culation of the electronic band structure.

The method is based on the combination of coordinate

transformation and the finite differences method (FDM).12

Essentially, the coordinate transformation maps the well,

i.e., the profile of the dash array cross-section, and surround-

ing barrier space, which has to be sufficiently large to natu-

rally accommodate the wavefunctions [Fig. 1(a)], into the

computational domain with straight boundaries and heteroin-

terfaces [Fig. 1(b)]. Since we apply the periodic boundary

condition (2), the computational domain in the x-direction is

limited to the elementary cell of the array, which is deter-

mined by the array period L. This converts the computational

domain from infinite stripe into a rectangle, and enables the

solving of the single-band Schr€odinger equation in the new

coordinates by straightforward implementation of the finite

differences method.

The form of invertible coordinate transformation is

given by:

x ¼ u;

y ¼ f ðu; vÞ:
(3)

FIG. 1. The cross-section profile of QDH array and the computational do-

main in (a) the real xy-space, and in (b) the mapped uv-space. Dashed lines

represent boundaries of the computational domain and the elementary cell of

the QDH array.

TABLE I. Material parameters used for band calculation.

InAs GaAs In0:53Ga0:23Al0:24As

m�ðm0Þ 0.0221 0.0623 0.0547

DEc(meV) 858.7 396.9
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In order to describe the periodic array of QDHs and provide

proper implementation of the boundary conditions, function

f(u, v) must be periodic with respect to u with period L. More-

over, suitable functions f(u, v) should provide good fitting of

the heterointerfaces in transversal plane, as well as rectangular

profile of the well region within the elementary cell in the uv-

space. Advantage of the approach based on coordinate map-

ping compared to direct implementation of FDM without the

mapping is that potential problems with curvilinear boundary

conditions or their careful implementation can be avoided.14,15

Moreover, the profile of analyzed QDH can be varied simply

by changing parameters of function f(u, v).

By using coordinate transformations (3), Eq. (1) in the

xy-space for kz ¼ 0 is mapped to equation:
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in the uv-space, where wðu; vÞ ¼ w½xðu; vÞ; yðu; vÞ�; Uðu; vÞ
¼ U½xðu; vÞ; yðu; vÞ�; m�ðu; vÞ ¼ m�½xðu; vÞ; yðu; vÞ�. Accord-

ing to the inverse function theorem, lðu; vÞ and qðu; vÞ are

given by l¼ lðu; vÞ ¼ vx ¼�fu=fv; q¼ qðu; vÞ ¼ vy ¼ 1=fv,
where fu and fv denote partial derivatives of f(u, v) with

respect to u and v. Jacobian matrices Juv and Jxy of transfor-

mation (3) and inverse transformation, respectively, are

Juv ¼
�

xu xv

yu yv

�
¼
�

1 0

fu fv

�
; (5a)
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so that invertibility condition of transformation (3) is simply

jJuvj ¼ jJxyj�1 ¼ fv 6¼ 0. The form of transformation (3), as

well as the periodicity of f(u, v), provide that the periodic

boundary condition (2) in the xy-space maps correctly into

the uv-space and incorporates in the FDM scheme in

straightforward manner. In case that f(u, v) was an aperiodic

function, the mapped space beyond the boundaries of the cell

would be improperly mapped, which might lead to degrada-

tion of the boundary conditions.

The function f(u, v), as well as lðu; vÞ and qðu; vÞ, are

given by analytical expressions. In addition, the well region

corresponding to the elementary cell is a rectangle in the

uv-space [Fig. 1(b)]. The computational domain in the uv-

space is also a rectangle which is chosen to be large enough

to comprise the well region of the elementary cell and corre-

sponding wavefunctions [Fig. 1(b)]. Thus Eq. (4) can be

directly discretized by using standard central differences.12

Since the periodicity exists only in the u-direction, we

apply Dirichlet boundary condition in the v-direction, i.e.,

wðu; vÞ ¼ 0 at the edge of the computational domain in

the v-direction (jvj ¼ Dv). The boundary condition in the

u-direction is wðL=2; vÞ ¼ expðiKLÞwð�L=2; vÞ. The imple-

mentation of the finite differences scheme provides that the

boundary conditions on heterointerfaces are naturally built in

into the discretization and need not be enforced explicitly.

If the upper heterointerface of the QDH can be fitted by

y ¼ f ðu; vgÞ ¼ gðuÞ, where vg is corresponding v coordinate,

all introduced parameters can be related to function g(u) as

follows: tW ¼ gð6L=2Þ, H¼ g(0) and finally ðH � tWÞ=2

¼ gð6W=2Þ � tW , as shown in Fig. 1. Due to the symmetry

of the profile of QDHs in the array, f(u, v) and g(u) are even

functions with respect to u.

We first introduce transformation which provides fitting

of the Gaussian-like QDH profile, given by following analyt-

ical expression (Gauss-mapping):

x¼ u;

y¼ f ðu;vÞ

¼ sinhðAvÞ DþFexp �Csin2 p
L

u
� �

expð�Bv2Þ
h in o

:

(6)

As we already mentioned, the function gðuÞ ¼ f ðu; vgÞ, fits

the upper heterointerface of QDH in the xy-space for v ¼ vg,

while the lower heterointerface of QDH, represented by the

straight line y¼ 0, corresponds to v¼ 0. However, vg is also a

fitting parameter, which depends on the actual dimensions of

the QDH elementary cell and positive constants A, B, C, D
and F. Although all these parameters generally provide the fit-

ting of the QDH cross-section profile and the adequate shape

and dimensions of the computational domain, each of them

differently affects the fitting of various geometrical parame-

ters of the QDH elementary cell. For example, parameters A
and B provide control of the computational domain dimen-

sions in the xy-space. Once A and B are adopted, it is possible

to investigate other parameters as C, D and F, which are rele-

vant for precise fitting of the upper heterointerface within the

elementary cell of QDH array. For example, D and F are used

to fit the thickness of the wetting layer, since for common C
and B-values the expression for the wetting layer thickness

tW¼gð6L=2Þ¼sinhðAvgÞfDþFexp½�Cexpð�Bv2
gÞ�g, besides

a scaling cofactor sinhðAvgÞ, is dominantly determined by D
and F. In addition, D and F considerably affect the fit of

the QDH height, since gð0Þ¼sinhðAvgÞðDþFÞ. Finally, C is

used to fit the QDH width and its Gaussian-like profile. By

using relation (6) it is possible to calculate C, D and F for

a wide range of geometrical parameters tW , H, W.

We find that coordinate transformation (6) cannot be

used for fitting QDH arrays with densely packed QDHs. In

this case, W/L ratio is relatively large, causing that C, D and

F may not be positive. Moreover, the coordinate transforma-

tion becomes noninvertible. In order to analyze QDH arrays

with large values of W/L, we use another coordinate transfor-

mation (Atanh-mapping) given by:

x ¼ u;

y ¼ f ðu; vÞ ¼ sinhðAvÞ
Dþ arctanh½Csin2ðpu=LÞ�=coshðBvÞ

:
(7)

Here, positive parameters vg and B are used to control

dimension of the computational domain in the xy-space.

Once vg and B are fixed, Eq. (7) can provide positive param-

eters A, C and D in terms of tW , H, W.

Fig. 2(a) shows the profiles of QDHs, fitted by Atanh-

mapping [Eq. (7)], for which the dash width W and the
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period L are comparable. It can be seen that such QDH

dimensions (i.e., W¼ 7 nm and L¼ 8 nm) correspond to

almost vertical edges of the QDH elementary cells, which is

common profile in the case of densely packed QDH arrays.

The profile obtained from Atanh-mapping for relatively

small ratios (e.g., W¼ 7 nm, L¼ 20 nm), can be equally well

fitted by Gaussian profile defined by Eq. (6). For much

smaller W/L ratios, the profile of QDH heterointerface can be

better fitted by Gauss-mapping than by Atanh-mapping,

since Eq. (6) provides very small values W/L. Figs. 2(b) and

2(c) show profiles of QDH array for various heights and all

other parameters fixed, obtained for Atanh-mapping and

Gauss-mapping, respectively. It can be seen that Eq. (6),

which is used for larger L and smaller W/L ratio, provides

broad range of Gaussian or lens-like QDH profiles with dif-

ferent heights [Fig. 2(c)], while Eq. (7), specialized for

smaller L and larger W/L ratio, enables fitting of triangular-

like profiles [Fig. 2(b)]. Figs. 2(d) and 2(e) depict the profile

families derived from Eqs. (7) and (6), respectively, for

which we vary the width W and keep all other parameters

fixed. It can be seen that variation of W in the case of Gauss-

mapping, besides lens-like profile, provides bell-like profile,

for which the width can be very small. On the other hand,

Atanh-mapping may produce much larger variety of profiles,

which range from concave to convex shapes [Fig. 2(d)].

III. RESULTS AND DISCUSSION

The method described in Sec. II is generalization of the

method we implemented on a single QDH.12 Here, we

extend the method to the one-dimensional array of QDHs, by

using periodic functions for fitting the array heterointerface.

The efficiency and convergence of the method are already

investigated and presented in the case of the single QDH.12

Since the only significant change in the case of QDH array

are fitting functions, which must satisfy the same conditions

as those used for isolated QDHs, especially the invertibility

condition described in the previous section, further investiga-

tion and characterization of the method are not needed.

Essentially, the method proposed in Ref. 12 is revised to

account for the periodic boundary conditions and instead of

its implementation on an isolated QDH, it can be applied on

the elementary cell of the QDH array. It means that method

performances are not affected, as long as the invertibility

condition is well satisfied.

In this section, we study the influence of geometrical pa-

rameters of the QDH array on its band structure. The analy-

sis is based on the variation of the array period L, QDH

width W and height H. In this study, the wetting layer thick-

ness is set to tW ¼ 0:5 nm. However, the influence of the

wetting layer thickness is also included in the discussion. In

the analysis we vary one parameter at time, while other two

are fixed and set to some average value. All calculations are

performed for at least two different periods L, where one cor-

responds to large, while the others are for small W/L ratio.

First, we study InAs/InAlGaAs QDH array, latticed matched

to InP, and then QDH array based on InAs/GaAs which

provides much deeper well.

Fig. 3 shows the miniband profile versus the array period

L for two fitting functions, given by Eq. (7) [Figs. 3(a), 3(c),

3(f)] and Eq. (6) [Figs. 3(b), 3(d), 3(e), 3(g), 3(h)] for InAs/

InAlGaAs QDH array. The QDH width is set to W¼ 7 nm,

therefore for the range of period L from 8 to 20 nm it is more

suitable to use Atanh-mapping since the ratio W/L is rela-

tively large. For larger L, W/L ratio is smaller and much bet-

ter fitting can be achieved by using Gauss-mapping. It can be

seen that for densely packed QDHs there is a single and wide

miniband [Fig. 3(a), L < 12 nm], which becomes narrower

for increased period of the array and converges to the ground

discrete state for L > 25 nm [Fig. 3(b)]. The coupling of

QDHs also leads to formation of higher minibands, which

become bound minibands for sufficiently large L
(L > 12 nm). In other words, the excited minibands are part

of the continuum for positive energies, i.e., small array peri-

ods. However, for large L, due to decreased quantum-

mechanical coupling, these excited minibands become bound

and narrower with respect to energy and tend to converge to

the discrete excited states as the period increases. Finally, in

the case of weak coupling between QDHs, i.e. for large L
corresponding to almost isolated dashes, the band structure

of the QDH array comprises one discrete state and wide

band, consisting on a few almost joined minibands, close to

the top of the well.

The variation of the QDH height H shows that for

densely packed array, for which the ratio W/L is relatively

large [Fig. 3(c)], height variation slightly affects the ground

miniband width, especially for larger H-values. This result is

not surprising, since the QDH coupling and consequently the

miniband width depends on horizontal distance between the

adjacent dashes (i.e., L or W) rather than on their vertical

size. On the other hand, the variation of the QDH height H,

FIG. 2. Profile of the QDH cross-section (a) for H¼ 3 nm, W¼ 7 nm and

various array periods L¼ 8, 12, 16, and 20 nm. Same for different heights

H¼ 1 – 5 nm for QDH array with W¼ 7 nm and (b) L¼ 14 nm or

(c) L¼ 23 nm. Same for different widths (d) W¼ 4, 6, 8, 10 and 12 nm for

QDH array with H¼ 3 nm and L¼ 14 nm, and (e) W¼ 2, 4, 6, 8 and 10 nm

for QDH array with H¼ 3 nm and L¼ 23 nm. Profiles in (a), (b), and (d) are

obtained by fitting with Atanh-mapping, while (c) and (e) correspond to

Gauss-mapping.
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representing the QDH dimension in the direction of stronger

confinement, leads to pronounced variation of the miniband

energy. Similarly as for an electron in the infinitely deep

quantum well, energy of which is inversely proportional to

the square of the well width, the QDH miniband energy

varies more rapidly with thickness variation for thinner than

for thicker wells. Thus variation of the QDH height causes

sudden change of the miniband energy. The dependence of

the ground miniband width on H is, to some extent, different

for relatively large L-values [Figs. 3(d) and 3(e)], since the

miniband is already very narrow and its width slightly

decreases with increase of H only for small H (1–2 nm). The

reason is that increased H provides more space for the wave-

functions, which expand in the y- rather than in the x-direc-

tion, and in such way effectively reduces coupling among

the dashes.

The increase of the dash width W, similarly as the

increase of H, leads to the decrease of miniband energy.

However, the width increase, for large W/L ratio, leads to the

increase of the ground miniband width [Fig. 3(f)]. As a mat-

ter of fact, the width increase effectively decreases the period

L, since the lateral sides of dashes come closer to each other

[c.f. Fig. 2(a)]. As a result, the ground miniband becomes

wider with increase of the QDH width. For smaller W/L ratio

or large L, the QDH width weakly affects width of the mini-

bands [Figs. 3(g) and 3(h)], although they decrease with W.

For sufficiently large L, the miniband dependence on

width and height exhibits zero miniband gap effect (ZMBG),

which can be observed for excited minibands, close to the

top of the well [insets in Figs. 3(e) and 3(h)]. This effect is

followed by miniband anticrossing. In other words, for the

critical dimensions of QDH, the character of the top of the

lower miniband is exchanged with the bottom of the higher

miniband. The effect can be seen only for larger L, since the

excited minibands, which are close to the well top, split due

to the decrease of coupling, providing more minibands with

smaller width. The effect can be also found in the case of

variation of L, although it is not shown in figures.

The effect of zero miniband gap had been previously

found in one-dimensional effective-mass superlattices.16 It

was shown that the effect can be noticed only for the mini-

bands in the barrier (above the top of the well), in the case of

variation of transversal, i.e., in-plane wave-vector kt. The an-

alytical treatment, which can be applied for the one-

dimensional superlattices case, shows that the effect occurs

for a certain conditions satisfied by the well and barrier

width, and their corresponding effective masses. However,

in the case of QDH array, the problem seems to be too com-

plicated for analytical treatment. As it is shown in Fig. 3, the

occurrence of the ZMBG effect depends on all three parame-

ters (L, W, H). By using our numerical technique, we find

that plots similar to Fig. 3 corresponding to kz > 0 exhibit

the shift of the ZMBG toward larger dimensions, i.e., larger

L, W and H. The reason for this is the difference between the

effective masses in the barrier and the well. Since the effec-

tive mass in the barrier is larger than the mass in the well,

the increase of kz effectively decreases the well depth, lead-

ing to weaker variation of subbands energy with dash dimen-

sion, than for kz ¼ 0. As a result, for kz > 0, the ZMBG

occurs for larger QDH dimensions, than for kz ¼ 0.

The presence of the wetting layer allows the barrier

minibands to sink into the well and to exhibit the effect of

zero miniband gap for energies for which the effect is not

usually expected. Our calculation shows that the increase of

the WL thickness increases the dash coupling and leads to

the increase of the minibands width, their number and depth

in the well. On the other hand, the decrease of the wetting

layer to zero shows that the miniband structure almost com-

pletely disappears for large L, leaving only discrete energies.

Consequently, the ZMBG effect is also vanishing in this

case.

The ZMBG effect is followed by the anticrossing phe-

nomenon, which is closely investigated in the case of height

variation [zoom in Fig. 3(e)]. Fig. 4 shows the wavefunctions

at the bottom of the 3rd and at the top of the 2nd miniband,

for two height values, H¼ 3.2 nm and H¼ 3.6 nm, close to

the critical height H¼ 3.4 nm, for which the zero miniband

gap occurs. The boundary conditions at the extremes of the

particular miniband (at its top and the bottom) have different

sign of the phase shift factor expðiKLÞ, which can be þ1 or

FIG. 3. The miniband structure for the periodic InAs/InGaAlAs QDH array

with tW ¼ 0:5 nm with respect to (a)-(b) period L, (c)–(e) QDH height H,

and (f)–(h) QDH width W. The miniband structure in (a), (c), and (f) corre-

spond to QDH arrays obtained by fitting with Atanh-mapping, while those in

(b), (d), (e), (g), and (h) correspond to the QDH arrays obtained by fitting

with Gauss-mapping. Insets show zero-band-gap region between 2nd and

3rd miniband.
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�1, depending on the miniband order. In addition, the sign

of the phase factor, for the particular miniband extreme,

according to the one-dimensional Kronig-Penney model,

should alternate for adjacent minibands. According to this,

the top of the 2nd and the bottom of the 3rd miniband should

both correspond to the same, in this case, positive phase fac-

tor (þ1). In principle, the wavefunction of the higher mini-

band should have different parity or more precisely, larger

number of nodes in one or the other confinement direction,

than the lower miniband. Figs. 4(a) and 4(b) representing the

wavefunctions of the states denoted by a’ and b’ in the inset

of Fig. 3(e), show that the wavefunctions corresponding to

height smaller than the critical (H¼ 3.2 nm) do not follow

this rule. However, for heights larger than the critical

[H¼ 3.6 nm, points b and a in the inset of Fig. 3(e)] the rule

applies again [Figs. 4(c) and 4(d)]. This means that for the

states at the top and the bottom of the adjacent minibands,

for which the ZMBG occurs, swap the character, i.e., wave-

functions parity, while keeping the same phase factor.

In order to further investigate minibands in the QDH

array, we calculate the band structure for deeper wells, which

occur in InAs/GaAs QDH array. Fig. 5 shows the miniband

profile versus dash period L, for larger W/L ratio [Fig. 5(a)]

with fitting function given by Eq. (7), and for smaller W/L,

corresponding to the fitting function (6) [Fig. 5(b)]. It can be

seen that the number of minibands is increased, as one may

expect, compared to the previous material system. In addi-

tion, the minibands more rapidly converge to discrete states

with the increase in L. Similar results are obtained for varia-

tion of H [Fig. 5(c)–5(e)] and W [Fig. 5(f)–5(h)]. It should be

noted that the effect of zero miniband gap is quite common

in deeper wells. As shown in Figs. 5(e) and 5(h), it can occur

more than once for particular miniband and cause alternation

of the wavefunction parity for the considered range of geo-

metrical parameters.

The material system of InAs/GaAs represents better

environment for explanation of the ZMBG effect, than the

previous one. In order to qualitatively explain the effect we

closely inspect Fig. 5(h) and the anticrossing of the 2nd and

3rd miniband shown as schematics in Fig. 6. We start with

small QDH widths (W < 3 nm), for which the wavefunctions

of the 2nd and 3rd miniband are mainly situated in the wet-

ting layer. This can be seen in the left column of Fig. 6 show-

ing profiles of the wavefunctions for W¼ 2.5 nm. The widths

of the minibands are very narrow. This is due to the fact that

array period L is large enough that modulo of the wavefunc-

tions corresponding to the extremes of the miniband are very

similar, although the wavefunctions themselves have differ-

ent parity due to the opposite phase factors. The increase of

the QDH width provides more space for the wavefunction to

accommodate into the QDH region. As long as the wave-

function is mainly situated into the wetting layer, the

increase of the QDH width does not affect the miniband

energy. Once the QDH width is large enough to accommo-

date a considerable part of the wavefunction, the increase of

the QDH width will decrease the energy of the miniband or

its extreme. However, due to different parity, the extremes of

a miniband or the closest extremes of two adjacent mini-

bands, have different critical widths for which their energy

begins to decrease. For example, the top of the 2nd miniband

has the same phase factor as the bottom of the 3rd miniband.

FIG. 4. Profile of the wavefunctions for QDH with L¼ 35 nm, W¼ 7 nm and

H¼ 3.2 nm (a) at the bottom of the 3rd and (b) at the top of the 2nd mini-

band. (c) and (d): Same for H¼ 3.6 nm, respectively.

FIG. 5. The miniband structure for the periodic InAs/GaAs QDH array with

tW ¼ 0:5 nm with respect to (a)–(b) period L, (c)–(e) QDH height H, and

(f)–(h) QDH width W. The miniband structure in (a), (c), and (f) correspond

to the QDH arrays obtained by fitting with Atanh-mapping, while those in

(b), (d), (e), (g), and (h) correspond to the QDH arrays obtained by fitting

with Gauss-mapping.
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In spite of that, the parity of these two wavefunctions is dif-

ferent, similarly as the parity of the top and the bottom of

any of these two minibands. Due to larger number of nodes

in the wavefunction (solid dot marker and corresponding

wavefunction for W¼ 2.5 nm) the top of the 2nd miniband

begins to decrease for larger widths than the bottom of the

3rd miniband, which wavefunction has smaller number of

nodes (open square marker and corresponding wavefunction

for W¼ 2.5 nm). Thus, for widths for which the bottom of

the 3rd miniband decreases, the top of the 2nd miniband is

almost constant. As a result, these two extremes approach

each other, leading to the anticrossing of the minibands and

the swap of the wavefunctions parity (solid dot and open

square markers and corresponding wavefunctions profiles for

W¼ 7.5 nm).

In general, the band structure at the top of the well con-

sists of densely packed minibands, which represent a kind of

so-called bound continuum. It can be expected that careful

design of such complex continuum may provide efficient cap-

ture and relaxation of carriers into the QDH well, which might

be essential for applications comprising optical transitions.

IV. CONCLUSIONS

The paper presents an efficient method for the calcula-

tion of the miniband structure of one-dimensional periodic

QDH array, and based on the method, provides an analysis

of its miniband character versus geometrical parameters. The

method is a combination of the coordinate transformation of

the QDH array and its vicinity into rectangular computa-

tional domain and the single-band Schr€odinger equation

solving in this domain by the finite differences method. The

efficiency of the method is the result of array periodicity and

carefully designed periodic fitting functions used for the

coordinate transformation. The study of the minibands of the

QDH array shows that miniband width is strongly related to

the array period L and the wetting layer thickness tW ,

although the width of QDHs may have significant impact for

large ratio of the QDH width and array period. The miniband

energy, on the other hand, considerably depends on the width

W and the height H of QDHs in the array. For large periods

L and some critical dimensions L, H or W, adjacent mini-

bands in QDH array may exhibit the phenomenon of zero

miniband gap, which is followed by the swap of the mini-

band character in its vicinity. Due to the wetting layer,

higher minibands are clustered in the vicinity of the well top,

providing a kind of the “bound continuum,” which might be

relevant for control of capture and relaxation of excited

carriers.
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