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Abstract
Many-body dipolar effects in Fermi gases are quite subtle as they energetically competewith the large
kinetic energy at and below the Fermi surface (FS). Recently it was experimentally observed in a sample
of erbium atoms that its FS is deformed from a sphere to an ellipsoid due to the presence of the
anisotropic and long-range dipole–dipole interaction Aikawa et al (2014 Science 345 1484).Moreover,
it was suggested that, when the dipoles are rotated bymeans of an external field, the FS follows their
rotation, thereby keeping themajor axis of themomentum-space ellipsoid parallel to the dipoles. Here
we generalise a previousHartree–Fockmean-field theory to systems confined in an elongated triaxial
trapwith an arbitrary orientation of the dipoles relative to the trap.With this we study for the first time
the effects of the dipoles’ arbitrary orientation on the ground-state properties of the system.
Furthermore, taking into account the geometry of the system,we showhow the ellipsoidal FS
deformation can be reconstructed, assuming ballistic expansion, from the experimentallymeasurable
real-space aspect ratio after a free expansion.We compare our theoretical results with new
experimental datameasuredwith erbiumFermi gas for various trap parameters and dipole
orientations. The observed remarkable agreement demonstrates the ability of ourmodel to capture
the full angular dependence of the FS deformation.Moreover, for systemswith even higher dipole
moment, our theory predicts an additional unexpected effect: the FS does not simply follow rigidly the
orientation of the dipoles, but softens showing a change in the aspect ratio depending on the dipoles’
orientation relative to the trap geometry, as well as on the trap anisotropy itself. Our theory provides
the basis for understanding and interpreting phenomena inwhich the investigated physics depends on
the underlying structure of the FS, such as fermionic pairing and superfluidity.

1. Introduction

Since thefirst experimental realisation of a dipolar Bose–Einstein condensate (BEC) of chromium atoms [1] and
the subsequent demonstration of the presence of the anisotropic and long-range dipole–dipole interaction
(DDI) in the laboratory [2], dipolar quantum gases have developed into a vast and fast-growing research field.
Indeed, the interplay of theDDI and the isotropic and short-range contact interaction between the particles in
these systemsmakes themparticularly intriguing fromboth the experimental and the theoretical point of view
[3–5].

More recently, BECs of evenmoremagnetic species, i.e., dysprosium (m 10 Bm= ) [6] and erbium
(m 7 Bm= ) [7] have been created.Here, Bm denotes the Bohrmagneton. Such species exhibit fascinating
phenomena, such as the Rosensweig instability [8], the emergence of quantum-stabilised droplets [9–11] and
roton quasiparticles [12]. Correspondingly, all these developments triggeredmuch theoretical work, including,
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but not limited to, the numerical effort to simulate dipolar quantumgases in fully anisotropic traps [13–17], the
roton instability in pancake-shaped condensates [18–20], the investigation of beyond-mean-field effects in one-
component [21, 22] and two-component [23] gases, the formation of the previously observed droplets [24–26],
their ground-state properties and elementary excitations [27–29], the role of three-body interactions [30], and
the self-bounded nature of the droplets [26].

In parallel, quantum-degenerate dipolar Fermi gases of dysprosium [31], erbium [32] and chromium [33]
became also available in experiments. Remarkably, identical fermions of dipolar character do interact even in the
low-energy limit because of the peculiar formof dipolar scattering [34]. Few-body scattering experiments have
indeed confirmed universal scaling in dipolar scattering among fermions [32, 35, 36].Many-body dipolar effects
in Fermi gases aremuchmore subtle to observe because of the competitionwith the large kinetic energy stored
in the Fermi sphere, which leads to the Fermi pressure. Recently, the key observation of the Fermi surface (FS)
deformationwasmade [37], confirming previous theoretical predictions [38].

It is well known that in the case of a single-component Fermi gas, the isotropic and short-range contact
interaction is suppressed by the Pauli exclusion principle. Also, we know that the FS is a sphere, as a consequence
of the symmetry of the Pauli pressure. Theoretical predictions which take theDDI into account, however, have
shown that the antisymmetry of thewave function leads to the deformation of the FS into an ellipsoid [38]. The
ground-state [39, 40] and the dynamic properties of such systems have been systematically investigated
theoretically and numerically in the collisionless regime [41–43], in the hydrodynamic regime [44, 45], as well as
in thewhole collisional range fromone limiting case to the other [46, 47]. The FS deformationwas also recently
theoretically studied inmixtures of dipolar and non-dipolar fermions [48], as well as in the presence of aweak
lattice confinement [49].

Within theHartree–Fockmean-field theory for amany-body system, the interaction energy of the system is
expressed bymeans of theHartree direct term,which gives rise to a deformation of the atomic cloud in real space
[50], and the Fock exchange term,which leads to a deformation of the FS inmomentum space [38]. The
Hartree–Fockmean-field approximation, which includes energy terms up tofirst-order in theDDI, is
sufficiently accurate to qualitatively explain and quantitatively describe results of ongoing experiments.
However, up to now, existing theories are limited to afixed orientation of the dipoles, which has to coincide with
one of the trap axes [38, 46, 47, 50]. Such a restriction greatly simplified theoretical considerations, but, on the
other hand, limited their scope since the anisotropy of theDDI is best controlled by the dipoles’ orientationwith
respect to the trap axes.

Motivated by this, we develop a general theory to describe the ground state of a dipolar Fermi gas for an
arbitrary orientation of the dipoles and trap geometry. Our full theoretical description provides a substantial
advance in understanding dipolar phenomena and in describing experimental observations in a very broad
parameter range, see e.g. [37]. Our theory captures both the cloud shape in real space and the FS inmomentum
space. To test our theory, we have performed newmeasurements of the FS deformation in an erbiumFermi gas
for various traps and dipole orientations. The comparison between the theory and the experiment shows a
remarkable agreement, demonstrating the predictive power of our newly developed theory to calculate the
system’s behaviour.Moreover, whereas in the Er case the deformed FS rigidly rotates with the dipole orientation,
our theory also predicts a softening of the FS in systemswith largerDDI. There the degree of deformation also
changes depending on the dipoles’ orientation.

The approach presented here is very general and can be applied to both fermionic atoms andmolecules with
electric [51–54] ormagnetic [55] dipolemoments, and any triaxial trap geometry. Our calculation provides a
starting point to addressmore complex dipolar phenomena. Indeed,many physical properties depend on the
shape of the FS and on its deformation, as the FS is directly connected to the density distribution inmomentum
space. For instance, one can revisit a pairing problemwithin a one-component dipolar Fermi gas, where in a
previouswork by Baranov et al [56] it was assumed that the FS is spherically symmetric. A relevant question for
future investigations is whether one can instead have both a deformation of the Fermi sphere and a pairing of
fermions at the same time, and if a critical deformation exists for which the pairingmechanismbreaks down.

The paper is structured as follows. In section 2we introduce our theoreticalmodel and several suitable
ansätze for the formof the system’sWigner function. Considering theHartree–Fock total energy of the system,
we identify the ansatz that yieldsminimal energy for the ground state and use it for all further calculations. In
section 3we present the generalised theory and ourmain results for the FS deformation and real-space
magnetostriction. In particular, we discuss the behaviour of the variational parameters and their impact upon
theHartree–Fock total energy for the considered system.We also study in detail the ground-state properties for
an arbitrary orientation of the dipoles, as well as for different parameters of the system, e.g., trap frequencies,
number of particles, and dipolar species. Afterwards, in section 4we directly compare our theoretical
predictionswith the novel experimental data. Finally, section 5 gathers our concluding remarks and gives an
outlook for future research.
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2. Theoreticalmodel

Weconsider an ultracold quantum-degenerate dipolar gas at zero temperature consisting ofN identical spin-
polarised fermions ofmassM. The fermions have a strong dipolar character, arising from either a largemagnetic
or an electric dipolemoment m.Moreover, as is usual in the experiments, we assume that all dipoles are
polarised along a single direction, as their orientation can be controlled by an external field, see, e.g.,
[10, 37, 53, 57]. To account for the influence of the dipoles’ orientation, wewill consider themost general
possible orientation of an external field, as depicted infigure 1, where, e.g., themagnetic field BB e= is oriented
along the unit vector e. The trap axes set the reference frame. Additionally, we account for a possible off-axis
imaging and consider the case of an imaging beam forming an angleαwith the y axis, as shown infigure 1.

Since the Pauli exclusion principle inhibits short-range contact interaction, the long-rangeDDI between the
particles dominates the interaction behaviour of the system. If the polarisation direction of the dipoles is defined
by a unit vector e, theDDI is described by
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where r denotes the relative position of two dipoles andCdd is the dipolar interaction strength. For electric
dipoles, it is given by C mdd
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as it simplifies the evaluation of theHartree–Fockmean-field energy of the system.We also assume that the
system is trapped by a triaxial anisotropic harmonic potential given by

V
M

x y zr
2

, 3x y ztrap
2 2 2 2 2 2w w w= + +( ) ( ) ( )

whereωiwith i=x, y, z denote the respective trap frequencies.

2.1.Wigner function in equilibrium
The physical properties of the above described system can be captured bymeans of the semiclassicalWigner
function [50]. Indeed, the quantum-mechanical expectation values of the systemobservables, which are
required for the calculation of the properties of nonrelativistic quantum systems based on exact diagonalization,
can be obtained as their phase-space averages, weighted by theWigner function. In the case where the dipolar
orientation axis lies along one of the trapping axes, an accurate ansatz for theWigner function takes the simple
form [38–47]
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whereΘ represents theHeaviside step function, while the variational parametersRi andKi stand for the
Thomas–Fermi radius and the Fermimomentum in the direction i x y z, ,= , respectively. This ansatz is
motivated by the Fermi–Dirac distribution of a noninteracting Fermi gas at zero temperature, whoseWigner
function has the above form.A theory based on the above ansatz [38, 47]was successfully used to determine the
deformation of the FS, while its extension [46] enabled a detailed analysis of the ground state and the time-of-
flight (TOF) expansion dynamics of the system for different collisional regimes. Furthermore, numerical
comparisons [59, 60] have confirmed that, even in the case of polarmolecules withmasses of the order of 100
atomic units and an electric dipolemoment as large as 1D, the above variational ansatz yields highly accurate
results, within a fraction of permille. This indicates that the general ansatz (4),first introduced in a slightly
differentmanner in [38], is indeed verywell suited to describe dipolar Fermi gases.

However, the experiment of [37]was performed for an arbitrary angle θ, and therefore the comparison of the
theory [46, 47]was only possible for the special case of dipoles oriented along the z axis, i.e., for θ=0°.
Therefore, in order tomodel the global equilibriumdistribution of the dipolar Fermi gas for arbitrarily oriented
dipoles and to provide an accurate description of the experiment, it is necessary to generalise the ansatz (4). This
is done in the present paper, wherewe apply an analogous reasoning and introduce the following ansatz for the
Wigner distribution
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where ij and ij arematrix elements that account for the generalised geometry of the system and determine the
shape of the cloud in real space and of the FS inmomentum space, respectively.

The particle density distribution in real space is determined by the trapping potential and theHartree direct
energy. Therefore, one expects that thematrix  can bewell approximated by a diagonalmatrix in the
coordinate system S, which is defined by the harmonic trap axes
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In this way, we neglect off-diagonal elements, whichmay arise due to the dipoles’ arbitrary orientation.
However, this is certainly justified for elongated traps, for which the cloud shape in the ground state is well
determined by the trap. Therefore, wewill consider here trap configurations that satisfy this condition.

On the other side, themomentumdistribution is dominated by the interplay between the Pauli pressure,
which is isotropic, and the Fock exchange energy, which is responsible for the deformation of the FS [38]. The
experiment of [37] suggested that the FS follows the rotation of the external field, keeping themajor axis of the FS
always parallel to the direction of themaximumattraction of theDDI.Motivated by this, wewill consider several
possible scenarios for a detailed theoretical description, in order to verify the above hypothesis.

For the sake of completeness, we start with a simple spherical scenario, inwhich the FS remains a sphere, as
displayed infigure 2(a). In that case all Fermimomenta are equal (Ki=KF) and thematrix  is given by

K1 F
2 = , where  is the 3×3 identitymatrix.We also consider a second, on-axis scenario, which includes

the FS deformation such that it is an ellipsoidwithfixedmajor axes coincidingwith the trap axes, as shown in
figure 2(b). Here thematrix  has a diagonal form
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in a similar way as thematrix , which recovers the old ansatz given by (4).We note that the first, spherically-
symmetric scenario is a special case of the second ansatz, obtained by restricting the Fermimomenta to be equal.
Finally, as a third andmore general possibility, we consider the off-axis hypothesis of [37] and assume that the
matrix  has a diagonal form 3¢ in a rotated coordinate system S¢, which is defined by the axes qx, qy and qz,
where the qz axis remains parallel to the dipolemoments, as depicted infigure 2(c)

Figure 1. Schematic illustration of themost general arbitrary geometry of a dipolar Fermi gas, which corresponds to the one used in
the Innsbruck experiment with erbium atoms, see later and also [37]. Axes x, y, z indicate the harmonic trap axes. The external
magnetic fieldB=Be defines the orientation of the atomic dipoles, which is given by the spherical coordinates θ andj. Earth’s
gravitational field is parallel to the z axis. The imaging axis, denoted by y¢, lies in the xy plane, and forms an angleαwith the y axis.
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Here the parameters Ki¢ represent the Fermimomenta in the rotated coordinate system S¢. In order to describe
the rotation from S to S¢, we introduce a rotationmatrix ,
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such that T
3 3   ¢ = and q kT= , where the angles θ andj are defined infigure 1.We again note that the

on-axis scenario is a special case of the off-axis onewhen the dipoles are parallel to one of the trap axes. For
example, for θ=j=0° thematrix 3 is already diagonal, i.e., K Ki i¢ = .We also note that, for all considered
ansätze, the normalisation of theWigner distribution r k,n ( ) is given by
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where the bar denotes the geometric averaging: R R R Rx y z
1 3=¯ ( ) and K K K Kx y z

1 3¢ = ¢ ¢ ¢¯ ( ) .
To determine the values of the variational parameters for each scenario, as usual, we require that they

minimise the totalHartree–Fock energy of the system. This leads, together with the particle number
conservation (10), to algebraically self-consistent equations that determine the Thomas–Fermi radii and
momenta. In section 2.2we calculate the total energy of the system for each of the outlined scenarios and then in
section 3.1we proceed to determine the one that yields aminimal energy and thatwill be used in the rest of the
paper.We note that one can certainly consider evenmore general ansätze, however, as wewill see from the
comparisonwith the experimental data, the proposed approach is fully suitable for describing our systemnot
only qualitatively, but also quantitatively.

2.2. Total energy
Now that we have identified several relevant ansätze for describing theWigner function of a dipolar Fermi gas of
tilted dipoles, we proceed to determine the optimal values of the variational parameters. In order to do so, we
have tominimise the total energy of themany-body Fermi system,which is in theHartree–Fockmean-field
theory given by the sumof the kinetic energyEkin, the trapping energyEtrap, theHartree direct energy Edd

D , and
the Fock exchange energy Edd

E .Within a semiclassical theory, they can bewritten in terms of theWigner function
according to [50]
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Figure 2. Schematic illustration of possible FS configurations in the presence of an externalfield B, described by spherical coordinates
BB , ,q j= ( ). (a) Spherical scenario: FS remains spherical. (b)On-axis scenario: FS is deformed into an ellipsoidwhose axes coincide

with the trap axes. (c)Off-axis scenario: FS is deformed into an ellipsoid stretched in the direction of B.
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and have already been calculated beforewith an ansatz (4) for the case when the dipoles are parallel to one of the
trap axes [38, 44–47].Whereas both the kinetic energy (11) and the trapping energy (12) yield simple integrals,
the computation of the integrals in theHartree term (13) and the Fock term (14) is nontrivial and is therefore
presented for themost general case in appendices A andB, respectively.

In the spherical scenario, depicted infigure 2(a), the total energy of the system can be calculated using
Ki=KF in ansatz (5), where the Fock exchange term turns out to give no contribution, yielding
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Here c C2 3 5 70
10

dd
4 3p= ( · · · ) is a constant related to the dipolar strength, while the features of theDDI are

embodied into the generalised anisotropy function f x y, , ,A q f( ), which includes explicitly the angular
dependence of theDDI. It is defined as
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where f (x, y) stands for thewell-known anisotropy function derived, at first, for dipolar BECs [61]. Note that
f x y f x y, , , 0, 0A=( ) ( ). This function has been encountered also in previous studies of fermionic dipolar
systems [45] in the hydrodynamic collisional regime, as well as in the transition from the collisionless to the
hydrodynamic regime in both the TOF expansion dynamics [46] and collective excitations [47].More details on
the anisotropy and the generalised anisotropy function are given in appendix C.

In the on-axis scenario, the FS is deformed to an ellipsoidwhose axes are taken to be parallel to the trap axes,
as shown infigure 2(b). This ansatz leads to the total energy of the system given by
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Note that (17) reduces, indeed, to (15) for the special case of K K Kx y z= = , since f 1, 1, , 0A q j =( ) .
Finally, in themost-general considered off-axis scenario displayed infigure 2(c), we allow for both the FS

deformation and its rotation so that one of its axes is parallel to the external field. In this case, the total energy of
the system reads as
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Note that the above formof the Fock energy in the last term is not surprising if we bear inmind the formof
equation (16). Namely, in the rotated coordinate system S¢, the axis qz coincides with the direction of the external
field, so the generalised anisotropy function fA reduces to the standard anisotropy function f, just with the
arguments Ki¢ from the rotated system.

3.Ground-state properties

Having obtained the total energy for all three scenarios, we nowdeterminewhich configurationminimises the
system’s total energy for afixed particle number and, hence, can be considered as themost physically suitable
ansatz for the ground state of the systemof dipolar fermions. Afterwards, we use it to numerically calculate the
FS and atomic cloud deformation, and discuss the obtained results.

In practical terms, we start from (15), (17) and (18), andminimise the energy of the system for each scenario
under the constraint (10) that the particle numberN isfixed to a given value. Therefore, the corresponding
equations are obtained by extremizing the grand-canonical potential E Nk k

tot mW = -( ) ( ) for k=1, 2, 3with
respect to the variational parameters, whereμ is the chemical potential of the system, and the particle numberN
in the last term is replaced by the expression (10)whenΩ(k) is evaluated. In this way, the chemical potential acts
as a Lagrangemultiplier and fixes the particle number through the condition N k m= -¶W ¶( ) .

In the spherical scenario, there are five variational parameters, (KF,Ri,μ), where i=x, y, z. The
corresponding five equations are obtained by setting the first derivatives ofΩ(1)with respect toKF andRi to zero,
plus the particle-number fixing equation, i.e., N 1 m= -¶W ¶( ) . In both the on-axis and the off-axis scenario we
have seven variational parameters: (Ki,Ri,μ) and (Ki¢,Ri,μ), respectively. The sets of seven equations for both
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cases are obtained similarly as in the previous case. The complete sets of equations for the respective variational
parameters for all cases are given in appendixD.

3.1.Minimisation of total energy
In order to compare the three ansätze, we solve the corresponding sets of equations and calculate the total energy
of the system in each case. As amodel system, we consider the case of a dipolar Fermi gas of atomic 167Er, using
the typical values from the Innsbruck experiments (see below and also [37]),N=6.6×104, (ωx,ωy,ωz)=
(579, 91, 611)×2πHz, unless otherwise specified. The underlying geometry of the experimental setup is
depicted infigure 1.

Infigure 3we compare the total energy of the system as a function of angles θ andj for all three different
scenarios. The comparison is done in terms of the relative total energy shift

E
E

E
1, 19tot

0

d = - ( )

where E NE0
3

4 F= stands for the total energy of the ideal Fermi gas confined into a harmonic trap (3), and

E N6F
1 3w= ¯ ( ) denotes its Fermi energy, where x y z

1 3w w w w=¯ ( ) . Figure 3(a) presents the relative total energy
shifts as functions of the angle θ for afixed value of the anglej=14°, corresponding to the typical experimental
configuration (see below). The three curves, from top to bottom, correspond to E 1d ( ), E 2d ( ), and E 3d ( ),
respectively. As a cross-check, we note that the total energies Etot

2( ) and Etot
3( ) coincide for θ=0°. This is expected,

since the on-axis scenario is a special case of the off-axis one for θ=0°. From this figurewe immediately see that
there are no intersections between the curves, and that it always holds E E Etot

1
tot

2
tot

3 ( ) ( ) ( ). As a consequence, we
conclude that the off-axis scenario, inwhich the FS is deformed into an ellipsoid that follows the orientation of
the dipoles, is favoured among the considered cases as it has theminimal energy. The same conclusion is
obtained if we consider thej-dependence of the relative total energy shifts, depicted infigure 3(b) for afixed
value of the angle θ=10°.More exhaustive numerical calculations show that this remains to be true even for
arbitrary values of the angles θ andj.

Comparing figures 3(a) and (b)we see that the relative total energy shift always remains small, of the order of
0.4%–0.7%, due to a relatively weakDDI between the erbium atoms compared to the energy scale set by the
Fermi energy.We also see that the θ-dependence of the total energy ismuch stronger than the correspondingj-
dependence.We note that the shift would certainly bemore significant for atomic andmolecular species with a
strongerDDI.

The above conclusion is valid not only for the parameters used infigure 3, but, in fact, we have numerically
verified that the off-axis scenario for the ansatz (5) for theWigner function in global equilibrium always yields a
minimal energy given by (18) and, thus, wewill use it throughout the rest of the paper. The corresponding
equations determining all seven variational parameters are given in appendixD as (D.13)–(D.19). A closer
examination of those equations reveals that the FS is always a cylindrically symmetric ellipsoid, where K Kx y¢ = ¢
holds. This is expected, since the orientation of the dipoles in the rotated coordinate system coincides with the qz
axis and singles this particular direction out, leaving the perpendicular plane perfectly symmetric inmomentum
space. Therefore, as shown in appendixD, the equations for the seven variational parameters can be rewritten in
amore convenient form as (D.16)–(D.22).

Figure 3.Relative total energy shift (19) for experimental parameters of [37] as a function of: (a) angle θ, forfixedj=14°; (b) anglej
for fixed θ=10°. The three curves, correspond to E 1d ( ) (black dotted line, spherical scenario), E 2d ( ) (blue dashed line, on-axis
scenario), and E 3d ( ) (red solid line, off-axis scenario).
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3.2. FS deformation
Now that we have shown that the FS is, indeed, deformed by theDDI into an ellipsoid, which follows the
orientation of the dipoles, we study the angular dependence of this deformation inmore detail. To that end, and
taking into account the cylindrical symmetry of the FS, we define the FS deformation as the difference between
themomentum-space aspect ratio for the dipolar and the noninteracting Fermi gas in the rotated system S¢
according to

K

K
1. 20z

x

D =
¢
¢
- ( )

This quantitymeasures the degree of deformation, which emerges purely due to theDDI. In particular, we
investigate how the deformationΔ depends on the trap geometry, the orientation of the dipoles, theDDI
strength, and the number of particles. TheDDI strength is usually expressed in terms of a dimensionless relative
strength εdd, defined as

C M
N

4
, 21dd

dd
3

5
1 6


e

p
w

= ¯ ( )

which gives a rough estimate of the ratio between themean dipolar interaction energy and the Fermi energy.We
will use it to characterise the strength of theDDIwhen comparing its effects for different species.

We now calculate the FS deformation of 167Er for the parameters of [37], yielding the relative interaction
strength εdd=0.15. Infigure 4(a)wepresent the angular dependence ofΔ on θ andj, whose values turn out to
be around 2.6%, consistent with earlier experimental results [37].We observe that there is amaximum
deformation of the FS at θ=j=90°, which corresponds to the direction of the smallest trapping frequencyωy

(y axis). This can be understood heuristically, if one recalls that theDDI is attractive for dipoles oriented head-to-
tail. Thus, a weaker trapping frequency favours the stretching of the gas in that direction so that, in turn, this
cigar-shaped configuration enhances the relative contribution of theDDI to the total energy.

Another aspect relevant for experiments is the influence of the particle numberN and the trap geometry on
the deformation of the FS. Tuning these parameters and the direction of the dipolesmight lead to an
enhancement of theDDI effects, and therefore to a stronger deformation of the FS. This is investigated in
figures 4(b)–(d), where the FS deformation is given as a function of parametersN, θ and the trap anisotropy

x z yl w w w= for afixed value of the anglej=90°. Figures 4(c) and (d) explore the FS deformation as a

Figure 4. FS deformationΔ for 167Er atomswithmagnetic dipolemoment m 7 Bm= as a function of: (a) dipoles’ orientation angles θ
andj, for parameters of [37]; (b) particle numberN and angle θ, forj=90° and trap frequencies of [37]; (c) particle numberN and
trap anisotropyλ, for θ=j=90°; (d) angle θ and trap anisotropyλ, forj=90° andN=6.6×104. Trap anisotropyλ in (c) and
(d)was varied by changing the frequenciesωx=ωz andωy, while keeping themean frequency 300 2w p= ´¯ Hz constant.
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function of the trap anisotropyλ, whichwas varied by changing the frequenciesωx=ωz andωy, while keeping
themean frequency 300 2w p= ´¯ Hz constant. From all thesefigures we conclude that the increase in the
particle number yields a dominant increase inΔ compared to all other parameters.We note that, in fact,Δ also
depends on w̄, whichwe do not showhere, since it can be directly connected to the particle number dependence.
Indeed, the FS deformation depends on εdd [37], yielding a dependence ofΔ on N1 6 1 2w̄ . As the trap
frequencies can bemore easily tuned than the particle number, w̄ can be considered as a predominant control
knob in the experiment. However, a precise control of the angles and the anisotropy, which is experimentally
easy to realise,may help to achieve an even larger increase in the deformation of the FS.We also note that theλ-
dependence is theweakest one, and therefore the formalism for calculating the angular dependence presented
here is significant for a systematic study of the influence of the relevant parameters.

Finally, we study the role of theDDI strength and explore whether qualitative changes of the system’s
behaviour emerge by increasing the value of the dipolemoment. To this aim, we compare the erbium casewith a
molecular Fermi gas of 40K87Rb, assuming that the same gas characteristics can be achieved in the same trapwith
this species [54]. The latter possesses an electric dipolemoment of strengthm=0.56 D, yielding amuch larger
relative interaction strength εdd=7.76 for the same parameters. Since the critical value of εdd, for which the
system is stable, amounts to 2.5dd

crite = [46], themolecular 40K87Rb gas in such a geometry andwith themaximal
strength of theDDIwould in fact not be stable andwould collapse under the attractive action of theDDI. For the
sake of simplicity and comparison between the systems, we consider amolecular sample of similar geometry and
atomnumber but inwhich the dipolemoment has been tuned tom=0.25 Dbymeans of an externalfield [34].
This leads to the relativeDDI strength εdd=1.51, whichwe use in the following.

Aswe see, the FS deformationΔ has amuch stronger angular dependence infigure 5 than infigure 4(a) for
the erbium case. Furthermore, infigure 5we see thatΔ has a localminimum forj=0° around θ=40°, while
no suchminimumexists infigure 4(a). Only a detailed numerical study based on the formalismdeveloped here
can provide a precise landscape of the FS deformation behaviour for a concrete experimental setup.

Although the shapes of both angular dependencies infigures 4(a) and 5 are quite similar, themain difference
is that the deformation of the FS for polarmolecules is an order ofmagnitude larger than for erbiumand has a
value of around 30%.However, we also observe that the variation in the values ofΔ for different angles θ andj is
around 0.03% in the case of an atomic erbium gas, while for themolecules it amounts to around 5%, i.e., the
variations ofΔ are two orders ofmagnitude larger for themolecular case. The reason for this increase in both the
maximal FS deformation and its angular variation is the same, namely the increase in the relativeDDI strength
εdd, which is one order ofmagnitude larger for ourmolecules compared to 167Er.While the FS deformation is
proportional to εdd, as expected [46] and as evidenced by our results above, ourfindings suggest that itsmaximal
angular variation is proportional to εdd

2 .
The calculated angular dependence of the FS deformation on theDDI strength has the following important

physical consequence. For erbium atoms, where dde is small, the angular variation of the FS deformation is even
smaller, since it is proportional to dd

2e , and it would be difficult to observe in experiments. Therefore, one could
say that the FS behaves as a rigid ellipsoid, which just rotates following the orientation of the dipoles, without
changing its shape [37], as illustrated infigure 6(a). This also implies that the atomic cloud shape in real space is
practically disentangled from the FS, and ismainly determined by the trap shape.On the other hand, when εdd is
large enough, as in the case of 40K87Rb, the FS not only rotates, but also significantly changes its shape, since the
angular variation can be as high as 5%,which is experimentally observable. This is schematically shown in
figure 6(b), where the FS behaves as a soft ellipsoid, whose axes are stretched as it rotates. Althoughwe know that
the phase-space volume is preserved, according to the particle number conservation (10),figure 6(b) illustrates

Figure 5.Angular dependence of FS deformationΔ for polarmolecules with electric dipolemomentm=0.25 D and relativeDDI
strength εdd=1.51 for parameters of [37].
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that the FS, i.e., themomentum-space volume increases (Ki¢ increase), while in real space the volume of the
cloud shape decreases (Ri decrease). From this we see that the real-space atomic cloud shape is indeed coupled to
the FS, and this effect can becomemeasurable in future dipolar fermion experiments, with sufficiently large
values of dde .

3.3. Real-spacemagnetostriction
The presence of theDDI in both bosonic [62] and fermionic [50] quantum gases has been predicted and
evidenced in experiment by detailed TOF expansionmeasurements [63] to inducemagnetostriction in real
space, i.e., a stretching of the gas cloud along the direction of the dipoles. In this sectionwe investigate the
dependence of this effect on the orientation of the dipoles for the fermionic case. To this end, wefirst define real-
space aspect ratios A R Rij i j= of the corresponding Thomas–Fermi radii, as well as their noninteracting

counterparts A R Rij i j j i
0 0 0 w w= = . Themagnetostriction can nowbe studied in terms of the relative cloud

deformations:

A A A A1, 1. 22xz xz xz yz yz yz
0 0d d= - = - ( )

Here the anisotropies due to the harmonic trap are already taken into account and eliminated, so that only effects
of theDDI contribute to the nontrivial value of δxz and δyz. This is in close analogy to the definition of the relative
total energy shift of the system in (19), or the FS deformation in (20).

Infigure 7we present the angular dependence of the relative cloud deformations for the Fermi gas of erbium
with the same parameters as infigure 4(a).We see that both deformations for a fixed angle 0q > turn out to
possess aminimum forj=90°, while along thej direction the FS deformationmonotonously increases. If we
compare this to the behaviour inmomentum space, seefigure 4(b), we see that along thej directionwe have
qualitatively the same type of increasing dependence, while the behaviour in the θ direction ismarkedly
different. Indeed, inmomentum space it exhibits amaximum forj=90°, while in real spacewe observe a
minimumvalue in that direction forj=90°. A related effect has been previously found, showing that the Bose
gasmomentumbecomes distorted in the opposite sense to that of the Fermi gas [40]. There, the effect can be
traced back to the differences in the statistical nature of bosons and fermions. Here, however, the different
behaviour is due to the anisotropic nature of theDDI and its interplay with the direction of the dipoles and the
trap geometry.

4. Comparisonwith the experiment

Having developed a general theoretical framework and having numerically studied the ground-state properties
of dipolar Fermi gases with arbitrary oriented dipoles in the two previous sections, we now compare those results
with experimental data obtained in our experimental setup in Innsbruck, producing degenerate Fermi gases of
erbium [32]. The FS deformationwasfirst observedwith this setup and reported in reference [37]. Here we
performed additionalmeasurements, using different trapping configurations to test our theoretical
understanding developed above. In these experiments the FS deformation is probed by the TOF expansion
measurements. Starting from a degenerate Fermi gas with N 6 7 104~ ´– atoms and at the temperature
T T 0.2F ~ , we slowly set the cloud geometry and dipole orientation to the one of interest, let the cloud

Figure 6. Illustration of the angular dependence of the FS deformation inmomentum space for system in an anisotropic trap
elongated along the horizontal y axis (seefigure 1): (a) forweakDDI, when the FS ellipsoid just rotates like a rigid object; (b) for strong
DDI, when the FS ellipsoid stretches in all directions and its deformation strongly depends on the dipoles’ orientation.
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equilibrate for several hundreds ofmilliseconds and then suddenly remove the trapping potential. After a free
expansion of duration t, we perform standard absorption imaging along afixed direction, see figure 1.

Beforewe compare theory and experiment, let us note again that our theoretical results are only valid for
T=0. For finite temperatures the isotropic thermal fluctuations have already been shown towork against any
directional dependence stemming from either the harmonic confinement or theDDI, thus they diminish the FS
deformation. The thermal corrections to the total energy are known to be proportional to T TF

2( ) at lowT [64].
The corresponding effect on the FS deformationwas also previously theoretically [65] and experimentally [37]
investigated, showing similar scalings. However, for the low temperatures of our experiments, this would yield
only a few percent correction to the zero-temperature results, which lies within the experimental error bars.
Therefore, we can neglect the thermal corrections here. Generally speaking, the value of T TF

2( ) can be used to
estimate the relevance of the finite-temperature effects forT T 0.5F < , while T TF

5 2-( ) should be considered
for larger temperatures [65].

4.1. Aspect ratios and FS deformation
TheTOF images are taken in the plane perpendicular to the imaging axis and the deformation of the atomic
cloud is described in terms of the time-dependent cloud aspect ratio AR, which is defined as a ratio of vertical
and horizontal radii of the cloud in the imaging plane. As depicted infigure 1, the imaging axis y¢ is in the xy
plane, rotated by an angleα to the y axis, and the aspect ratioAR is given by [46]

A t
r t

r t r tcos sin
, 23z

x y
R

2

2 2 2 2a a
=

á ñ
á ñ + á ñ

( ) ( )
( ) ( )

( )

where r ti
2á ñ( ) is the average size of the cloud in the direction i=x, y, z after TOF. These quantities are directly

measurable in the experiment, andwe use them to extract the value of the deformation of the FS, which is
connected to the aspect ratio inmomentum space. It is defined similarly asAR [46], according to

A
k

k kcos sin
, 24z

x y
K

2

2 2 2 2a a
=

á ñ
á ñ + á ñ

( )

where ki
2á ñ is the average size of the FS in the direction i=x, y, z in global equilibrium, before the trap is released.

Using the definition (24), a straightforward but lengthy calculation yields the following expression for the aspect
ratio inmomentum space in terms of the Fermimomenta Ki¢ in the rotated coordinate system:

A
K K

K K

sin cos

1 sin cos cos sin sin sin cos cos sin sin
. 25x z

x z
K

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

q q
q j a j a q j a j a

=
¢ + ¢

¢ - + + ¢ +[ ( )] ( )
( )

Please note that only for θ=0°, when the dipoles are parallel to the z axis, the abovemomentum-space
aspect ratio coincides with the ratio between the Fermimomenta, A K K 1z xK = ¢ ¢ = + D, whereΔ denotes the
previously introduced deformation of the FS. In general, however, the relation betweenAK andΔ is nonlinear
and can be obtained from (25), as follows:

A

A

1 sin cos cos sin sin sin

cos sin cos cos sin sin
1. 26K

2 2 2 2 2 2 2

2
K
2 2 2 2 2 2

q j a j a q
q q j a j a

D =
- + -

- +
-

[ ( )]
( )

( )

Figure 7.Angular dependence of relative cloud deformation (22) for 167Er, with parameters as in figure 4(a): (a) δxz; (b) δyz.
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In order to extract the value of the deformation of the FS from the experimental data using the above
equation, we still need to calculate themomentum-space aspect ratioAK. This is done by using the fact that the
long-time expansion ismainly dominated by the velocity distribution right after the release from the trap.Here
we rely on the ballistic approximation, which assumes that the TOF images, that show the shape of the atomic
cloud in real space, purely reflect themomentumdistribution in the global equilibrium, i.e.

A A tlim . 27
t

K R
bal»

¥
( ) ( )

In principle, this is true just in the case of ballistic expansion, when the effects of theDDI can safely be neglected
during the TOF.However, since theDDI is long-range, it should be taken into account, rendering the TOF
results always non-ballistic. A general theory that would allow such a treatment is not yet available and is beyond
the scope of the present ground-state study. Nevertheless, if theDDI is weak enough, as in the case of erbium
atomic gases, the difference between the ballistic (free) and non-ballistic expansion is small, as already shown in
[46]. Thus, (27) can approximately be used in our case and the value ofAK in global equilibrium can be extracted
from the long-time limit ofAR, which is available from the experimental data.We highlight that in some limiting
cases it is still possible to take into account a non-ballistic expansion by using the previously developed
dynamical theory [46]. This is expected to yield amore precise value of the aspect ratio, as will be illustrated in
the next section.

With those cautionary remarks inmind, we complete the algorithm for analysing our experimental data by
calculating the FS deformation from the extracted aspect ratio using (26), which enables its comparisonwith our
numerical results.

4.2. Experimental and theoretical results
Herewe consider three different datasets corresponding to the experimental parameters listed in table 1. Case 1
corresponds to the experimental results published in [37], while Case 2 andCase 3 are new results reported here.
Table 1 also gives themean frequency of the trap w̄ and the trap anisotropyλ for each case.While Cases 1 and 2
represent cigar-shaped traps, Case 2 is selected so that it has the same value ofωy as Case 1, but a smaller
anisotropyλ. On the other hand, Case 3 is chosen so that itsmean frequency w̄ is approximately the same as for
Case 1, but its anisotropyλ ismuch reduced. For each dataset, we probe the FS deformation for various angles θ
and afixed anglej=14°. Themeasurement for each experimental configuration is repeated a large number of
times, typically twenty, so that themean value can be reliably estimated and the statistical error is reduced
below 0.2%.

Figure 8 shows a direct comparison between our experimental and theoretical results without any free
parameters. Experimentally wemeasure themean value of the aspect ratioAR in free expansion using the TOF
t=12 ms, which is taken to be sufficiently long so that the approximation (27) can be used, and yet not too long
so that the cloud does not get too dilute and a reliable fit of the density distribution from the absorption images is
possible. Infigure 8(a)we show the θ dependence of themeasured quantity A 12 msR ( ) for the parameters of
Case 1 (red circles), Case 2 (blue squares) andCase 3 (black triangles), as well as the corresponding theoretical
curves (solid red, dashed blue and dotted black line, respectively) forAK at global equilibrium, calculated
according to (25).We see that the agreement is generally very good, and that the experimental data are closely
matched by the shape predicted by theory. At the same time, this figure also presents an a posteriori justification
for using the ballistic approximation in those three cases.

The discrepancies observed in the figure can be accredited to the effects of theDDI, which are neglected
during the TOFby using the ballistic approximation. Even better agreement between the experiment and the
theory can be expected if a non-ballistic expansionwould be taken into account. Although a theory for this is not
yet available for an arbitrary orientation of the dipoles, [46] allows us to perform a non-ballistic expansion
calculation for the special case θ=0° in the collisionless regime. The comparison of the results is given in
table 2, wherewe see that accounting for theDDI during the TOF yields theoretical values of the TOF real-space
aspect ratio equal to the experimental ones, within the error bars of the order of 0.1%. Table 2 also shows that
non-ballistic effects amount to 0.7% forCase 1, which has the largest anisotropy, and becomes smaller as the

Table 1.Number of atomsN, trap frequenciesωi, mean frequencies w̄ and anisotropiesλ for three
sets of experimental parameters used throughout this paper. Case 1 corresponds to [37], while Case 2
andCase 3 are new results.

167Er N 104´( ) ωx (Hz) ωy (Hz) ωz (Hz) Hzw̄ ( ) λ

Case 1 6.6 579×2π 91×2π 611×2π 318×2π 6.54

Case 2 6.3 428×2π 91×2π 459×2π 261×2π 4.87

Case 3 6.1 408×2π 212×2π 349×2π 311×2π 1.78
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trap is closer to a spherical shape, i.e., as the trap anisotropy approaches the value of 1. Therefore, we conclude
that the agreement of experimental data and theoretical results infigure 8(a) can be further improved by
developing a theory for a non-ballistic expansion for a general experiment geometry, which is out of the scope of
the present study.

Figure 8(b) shows a comparison of our theoretical and experimental results for the deformationΔ of the FS
for the three considered cases, where the experimental values are calculated according to (26), assuming ballistic
expansion (27) and using the real-space aspect ratios shown infigure 8(a). Although the statistical error bars

AR
expD for the experimentallymeasured values of the real-space aspect ratios are small and almost constant, the

corresponding errors for the FS deformation, calculated as

A
A

, 28
A A

R
exp

K K R
exp

D
¶D
¶ =

( )

show a strong angular dependence, due to the presence of a pole in the function AK¶D ¶ . For the parameters of
figure 8, the pole emerges at around θ=50°. Therefore, the error bars appear significantly larger in the
neighbouring region, which justifies to drop the data points around θ=50° (shaded area in the graph).

As can be seen infigure 8(b), for all three cases the deformation of the FS is almost constant for all angles θ.
Therefore, from the experimental point of view, it would be enough just tomeasure the aspect ratio for one value
of θ, e.g., θ=0° in order to determine the deformation of the FS.However, this is only true for aweak enough
DDI.Nevertheless, even if this is the case, themeasurement of the angular dependence ofAR is an indispensable
tool for a full verification of the developed theory, as demonstrated infigures 8(a) and (b).

4.3. Universal consequences of geometry
As already observed infigure 8(a), theAK curves for all three considered cases intersect at a special point (θ

*,
A 1K* = ). Figure 9 reveals that this is not just a coincidence. It shows the θ-dependence of themomentum-space
aspect ratioAK for several trapping geometries for erbium atomic gases, ranging from a cigar-shaped trap,
through a spherical, to a pancake-shaped trap. The azimuthal angle is kept constant at the valuej=0°, as well

Table 2.Comparison of theoretical values of aspect ratios inmomentum spaceAK in
global equilibrium andTOF aspect ratios in real space: theoretical value of AR

nbal and
experimental value of AR

exp , with corresponding statistical errors AR
expD . Real-space

aspect ratios correspond toTOF of t=12 ms and θ=0°. Last two columns give trap
mean frequency w̄ and anisotropyλ for each case.

167Er AK AR
nbal AR

exp AR
expD Hzw̄ ( ) λ

Case 1 1.0258 1.0324 1.0321 0.0012 318×2π 6.54

Case 2 1.0232 1.0282 1.0292 0.0015 261×2π 4.87

Case 3 1.0253 1.0270 1.0258 0.0020 311×2π 1.78

Figure 8.Comparison of our results for θ dependence of: (a) theoretical value of aspect ratioAK and its experimental estimate
A t 12 msR

exp =( ) according to (27); (b) theoretical value of the FS deformationΔ and its experimental estimate (seemain text). Red
solid lines and circles correspond toCase 1, blue dashed lines and squares correspond toCase 2, and black dotted lines and triangles
correspond toCase 3. Vertical bars for experimental results correspond to statistical errors. Anglej=14°was kept constant during
the experiment. Intersection point of three curves in panel (a) corresponds to (θ*, AK*)=(49.16°, 1), while shaded area in panel (b) is
excluded due to a pole in (28); seemain text for further details.
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as the trapping frequencies 500 2x zw w p= = ´ Hz,while the frequency n 100 2yw p= ´ ´ Hz is varied by
changing the value n 1, 2, 3, 5, 7, 9Î { }, which corresponds to the trap anisotropyλ=5/n. The number of
particles wasfixed atN=7×104.We observe again that all curves intersect for A 1K* = , which suggests that
this is a general rule. Indeed, if we take into account that K K 0z x¢ ¢ > , for A 1K* = we can show from (25) that
the following relation holds, which connects the intersection angles θ* andj*:

sin
1

1 cos cos sin sin
. 292

2 2 2 2
*

* *
q

j a j a
=

+ +
( )

This result is universal, i.e., it is independent on other systemparameters as the trap geometry, the number of
particles, and theDDI strength. In other words, this intersection point is purely a consequence of the geometry,
and for any orientation of the dipoles there exists an imaging angle such that the aspect ratio is given byAK=1,
while the FS deformationΔ can be nontrivial and even can have a significant value.We note that for larger εdd
values additional parameter-specific intersection pointsmay appear for some geometries, but the intersection
point forAK=1 is universal and always present.

To further illustrate this, infigure 10we plot a diagram in the ,* *q j( )-plane forα=28°, where the regions
withAK>1 andAK<1 are delineated by a solid line defined by (29). The two black dots correspond to
intersection points from figure 9 forj=0° and from figure 8(a) forj=14°, respectively.

5. Conclusions

In conclusion, we have explored the ground-state properties of dipolar Fermi gases in elongated traps at zero
temperature for an arbitrary orientation of the dipoles. Bymeans of aHartree–Fockmean-field theorywith an
appropriate ansatz for theWigner function, we have shown that the ground-state FS is deformed into an
ellipsoid, themain axis of which coincides with the orientation of the dipoles.We have then used this theory to

Figure 9. θ dependence of aspect ratioAK for
167Er forj=0°,α=28°,N=7×104 andωx=ωz=500×2πHz.Different curves

correspond to varying n 100 2yw p= ´ ´ Hz,where n 1, 2, 3, 5, 7, 9Î { }, bottom to top on the left hand side of the intersection,
respectively. Intersection point is at (θ*, AK*)=(48.56°, 1).

Figure 10.Relation between intersection angles θ* andj* forα=28°, determined by (29): red solid line corresponds to A 1K* = ,
region below toAK>1, and region above toAK<1. Black dots correspond to intersection points identified infigures 9 and 8(a) for
j=0° and 14°, respectively.
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study effects of the dipoles’ orientation, the particle number and the trap anisotropy on the deformation of the
FS.We have found that the FS deformation ismaximal when the dipoles point along the axis with the smallest
trapping frequency and demonstrated this for two samples of different dipolar strengths, values of which are
achievable with atomic erbium in one case andwith polarmolecules in the other case. Furthermore, for the
erbium casewe have observed that the angular dependence of the FS deformation is larger than the
corresponding dependence on the trap anisotropy, and that both are less pronounced than the corresponding
effect when the number of particles is varied. Note, however, that a strongerDDImaymodify this behaviour.

We have established a relationship between the FS deformation and themomentum-space aspect ratio for a
general system geometry, which is experimentally accessible bymeasuring the real-space aspect ratio during the
TOF, if we assume ballistic expansion.We have performed newmeasurements on degenerate gases of atomic
167Er in different trap geometries and found very good agreement, without any free fitting parameters. As an
extension, using pure geometric considerations, we have shown that the FS deformation can have a nontrivial
value evenwhen themeasured TOF real-space aspect ratio equals one. Furthermore, we have derived a relation
between the orientation of the dipoles and the imaging direction forwhich the aspect ratio is always equal to one.

The theory for the ground-state properties of trapped Fermi gases of tilted dipoles presented heremay be
relevant for a precise calculation of the critical temperature for BCS pairing of dipolar fermions [56].
Furthermore, it can also serve as a basis for a further study of the system’s dynamics, such as the TOF analysis and
the low-lying excitations. Indeed, a proper comparison between theory and experiment for the finite-time real-
space aspect ratio, to the best of our knowledge, is still lacking for an arbitrary geometry. These aspects of dipolar
Fermi gases, whose understanding is highly relevant for current and future experiments, will be studied in a
forthcoming publication.
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AppendixA.Hartree energy

TheHartree term (13) can bewritten in terms of the Fourier transformof the potential according to
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Defining h k kk 1 ij i ij j= - å( ) as a suitable abbreviation for themomentumpart of the argument of the
Wigner function (5), the Fourier-transformed distribution function yields

R h h

k R k R k R
J h k R k R k Rk k

k k
k,

2
, A.2

x x y y z z
x x y y z z

3

2 2 2 2 2 2
2 2 2 2 2 2

3
2

3
4

3
4

3
2

1
2

1
2n

p
-  =

Q
 +  + 

 +  + ˜ ( ) ( ) ¯ ( ) [ ( )]
( )

[ ( ) ( ) ] ( )

where Ja represents the Bessel function of thefirst kind. Then, after an algebraic substitution and switching into
spherical coordinates, the integral yields
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Subsequently, we apply [66, (6.574.2)] for the radial integral andmake use of the anisotropy function described
in appendix C, equations (C.3)–(C.5), so that theHartree energy Edd

D yields
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E
N c

R
f

R

R

R

R

6
, , , , A.5x

z

y

z
dd
D

2
0

3 A q j= -
⎛
⎝⎜

⎞
⎠⎟¯ ( )

with the definition (16) for the generalised anisotropy function.

Appendix B. Fock energy

The Fock term can be rewritten in the following form
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where k k,n ¢¯ ( ) and x x,n ¢˜ ( ) denote the Fourier transforms of x k,n ( )with respect to thefirst and second
variable, respectively. Thefirst step is to calculate these two Fourier transforms of theWigner function. Thefirst
of these two transforms has already been obtained in (A.2). Using this result, one gets
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2 2 2 2 2 2 =  +  + ( ) and c xT= . The three q-integrals will be treated separately, yet all
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After this substitution, theϑ-integral can be calculated using [66, (6.688.2)]. The other two k-integrals can be
treated in the sameway. Then, the Fourier transform reads
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It is clear that k x,n ˜̄ ( ) is an even function, which further simplifies the calculations. The next step is to calculate
the x¢-integral in (B.1). To avoid a quadratic Bessel function, one can use the integral representation [66,
(6.519.2.2)], which leads to an integral over a Bessel function
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where kTk = ¢.We treat the three integrals separately, startingwith the z-integral. After the substitution
u z Kz z=  ¢, we can use [66, (6.726.2)] to evaluate the integral over z
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The other two integrals will be calculated in the sameway. The solution of the x¢-integral reads
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The next step is to integrate the k-integral. Using the underlying spherical symmetry, the calculation of this
integral becomes relatively short. Indeed, substituting u k Ri i i=  and then transforming these new integration
variables into spherical coordinates, one can use [66, (6.561.17)], which leads to
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The last step of the calculation of the Fock term is to solve the k¢-integral, and therefore wewill again switch to
another coordinate system k q¢ = and use the Fourier transformof the interaction potential
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Using the substitution u q Ki i i= ¢ and afterwards switching to spherical coordinates we get
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Theϑ- andf-integrals will lead to the anisotropy function, which is defined by (C.5) and (C.6), and the u-
integral and t-integral can be solvedwithout any difficulties. The solution of the Fock term reads
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AppendixC. Anisotropy function

Herewe recall the definition of the usual anisotropy function [47]
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integral offirst kind and E k,j( ) is the elliptic integral of second kind.Notice that
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denotes the cylindrically symmetric anisotropy function [62, 67–69].We, then, introduce some auxiliary
functions
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At this point, the following identities can be derived

f x y f x y, 1 3 , , C.6A3= -( ) ( ) ( )

f x y f y x x, , 1 , C.7A1 A3=( ) ( ) ( )

f x y f x y y, , 1 , C.8A2 A3=( ) ( ) ( )
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f x y, 1. C.9
i

i
1,2,3

Aå =
=

( ) ( )

Thus,finally, taking (C.6)–(C.8) into account, we have
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AppendixD. Equations for variational parameters inmomentumand real space

Herewe present the respective equations for the variational parameters of theWigner function ansätze, i.e.,
Thomas–Fermi radii andmomenta, for all three considered scenarios in section 2, see figure 2.

D.1. Spherical scenario
Thefive variational parameters (KF,Ri,μ) are determined byminimising the grand-canonical potentialΩ(1),
which leads to the following set of algebraic equations:
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Note that (D.5) represents the particle-number conservation constraint, which is the special case of (10)
for K K K Kx y z F= = = .

D.2.On-axis scenario
The seven variational parameters (Ki,Ri,μ) are determined byminimising the grand-canonical potentialΩ(2),
which leads to the following set of algebraic equations:
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Similarly as in the spherical scenario, (D.12) coincides with the particle-number conservation equation (10).
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D.3.Off-axis scenario
The seven variational parameters (Ki¢,Ri,μ) are determined byminimising the grand-canonical potentialΩ(3),
which leads to the following set of algebraic equations:
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As before, (D.19) coincideswith the particle-number conservation equation (10).
Due to the symmetry of the anisotropy function f (x, y)=f (y, x), it follows from (D.13) and (D.14) that

K Kx y¢ = ¢, i.e., that the FS is cylindrically symmetric with respect to the dipoles’ orientation. Additionally, in close
analogywith the special casewhen the dipoles are alignedwith one of the trapping axes [44–47], the three
equations (D.13)–(D.15) can be rewritten in the following form:
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