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ABSTRACT: Colloidal semiconductor quantum dots connected by organic or e-

inorganic molecules can form periodic supercrystals. These supercrystals can be
used for various types of electronic and optical applications with properties
superior to those of random quantum dots and organic polymer mixtures. We
have used ab initio calculations to study the charge transport and carrier mobility in
such supercrystals. Among the different possible charge transport mechanisms, we
found that the phonon-assisted hopping is the most likely mechanism. The
calculated carrier mobility agrees well with the experimentally measured results.
Our predictions of the size and temperature dependences on the mobility are

awaiting experimental confirmation.
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1. INTRODUCTION

Semiconductor colloidal nanostructures have been used in
many different applications.'~” One type of application is in solar
cells and light-emitting diodes,"* where quantum dots or rods
were used as light absorbers or light emitters, and also served as
electron conducting materials. While most previous applications
involve random mixtures of colloidal nanostructures with organic
molecules and polymers, there is a current trend to explore the
use of the self-assembled quantum dot (QD) arrays. The incredible
capability of these QDs to form a periodic crystal structure
(supercrystal) provides opportunities to control their electron
conductivities and optical properties for designing functional
nanostructures.”**’ Not only do the QD supercrystals have
unique mechanical properties and enhanced thermopower pro-
perties,'® they also have distinctive electrical and optical behaviors.”
The regular QD arrays (thin films) over nonconducting sub-
strates have demonstrated the field effect transistor (FET)
behavior.'" The QDs can be connected by different linker
molecules, and there are experimental efforts””'>'> to study
the electronic effects of these different linker molecules. Never-
theless, the detailed electron transport mechanism has not been
established firmly, and there has been little support from
theoretical calculations. In this Article, we will study the electron
transport in such QD supercrystals using ab initio quality
calculations.

There are different possible mechanisms for electron transport
inside a QD supercrystal: (a) a narrow bulk band (also called
mini-band in the supercrystal) formed by the coupling of nearby

v ACS Publications ©2011 american chemical Society

QD wave functions and a bulk crystal-like Bloch state electron
transport;14 (b) the tunneling mechanism where the electron
transports from one QD to a nearby QD purelg by electronic
coupling without the help of the phonon;'*™ " (c) over-the-
barrier activation mechanism, where electrons are thermally
excited to QD eigen-states with energies higher than the poten-
tial barrier at the linker, then they transport freely to the other
side of the barrier; and (d) the phonon-assisted hopping, where
the electron hops from one dot to a nearby dot by absorbing one
or multiple phonons.® All of these scenarios are schematically
depicted in Figure 1. Theoretically speaking, without material-
specific, quantitative calculations, all of the above mechanisms
are possible. The quantitative calculations are therefore critical
for providing qualitative insights into the mechanism of the
transport.

To study the electron conductivity in a QD supercrystal, one
possible first step is to study the electron transport between two
QDs connected by a linker molecule. Such study can also have
significance beyond the QD supercrystal, for example, in a
random mixture of QDs, where the dot-to-dot connection can
still exist. Besides answering the above question about the
possible electron transport mechanisms, we will also address
the following questions: What is the atomic structure of the QD
and linker molecule attachment? How does it affect the charge
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Figure 1. Different possible mechanisms for the electron transport in a
QD supercrystal: (a) bulk crystal-like Bloch state electron transport; (b)
direct tunneling mechanism without the help of phonon; (c) over-the-
barrier activation mechanism; and (d) phonon-assisted hopping.
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Figure 2. The system with type I attachment contains two 1051-atom
CdSe QDs linked by a Sn,Ss molecule. The system has been divided into
three parts: left and right QDs as well as the central piece. To patch up
the charge densities in different parts, a smooth cutoff is introduced at
the red dashed line.

transport? What is the effect of QD size on the QD supercrystal
conductivity? What is the effect of QD size fluctuation within a
supercrystal? What is the temperature dependence for the
electron conductivity?

We use the CdSe spherical quantum dots supercrystal linked
by metal chalcogenide complexes (MCC), more specifically the
Sn,S¢ molecules, as an example. This system is chosen because
such QD supercrystals have been synthesized in laboratories, and
strong electron conductivity has been observed.”"* We first study
two QDs connected by one Sn,Ss molecule. The results are then
used to study a QD supercrystal. One of the challenges to
simulate such a system from first principles calculations is the
large size of the system. In experiments, a typical QD is ~5 nm in
diameter or consists of about 3000 atoms. Thus, a two-QD system
will have about 6000 atoms, which is beyond the limit of current
computational power using direct density functional theory
(DFT) method.**' To overcome this difficulty, we adopted a
multiple level strategy to obtain the total charge density of the
two-QD system, as described in the next section. Using this
strategy, we are able to study the large system without sacrificing
the ab initio accuracy.

2. COMPUTATIONAL METHODS

To obtain the total charge density of the two-QD system in Figure 2
(hence the single particle Kohn—Sham equation under DFT),
we use a divide-and-conquer approach. We first cast out a small

part of the two-QD system as indicated by the red solid lines in
Figure 2. Pseudo hydrogen atoms are used to passivate the cutoff
bonds. This subsystem has about 500 atoms, and thus can be
calculated self-consistently directly using DFT. We then con-
struct the charge density of each QD (without the surface Sn,S
molecule) using the charge patching method (CPM),** which is
well-tested*> with charge density differs from the self-consistent
DEFT result by only 0.1%. Next, we use a smooth cutoff at the red
dashed line in Figure 2 to seamlessly connect the three sub-
systems (two QDs, and one central region piece) to yield the
total charge density of the whole system (see the Supporting
Information for details).

Given the total charge density of the system, the DFT
potential Vi, (r) can be calculated by solving the Poisson
equation. The DFT single particle equation is then given as:

Hy, = {_%VZ + Viee(r) + VNL}’/’:‘ = &Y, (1)

where the Vo is the nonlocal part of the atomic pseudopoten-
tials. In the present work, the folded spectrum method (FSM)**
is used to calculate the electron conduction band edge states.
Instead of working on eq 1, we solve (H — &,¢)°1; = (& — €wef) ;i
where &,.¢is the energy reference placed inside the band gap and
is close to the conduction band minimum; thus the first few
eigen-states are those conduction band edge states of the system.
Here, & is evaluated using the generalized moments method
(GMM).*® Note that there is an issue of using DFT eigen-
energies to represent the true quasi-particle energies (e.g., a large
band gap error). In this work, we are only concerned about the
electron conductivity; thus the band gap error will not affect the
results significantly. Nevertheless, more accurate GW correc-
tions”®*” will be used in the future.

3. RESULTS AND DISCUSSION

To study the molecule—QD atomic attachment, we first study
the attachment between the Sn,S¢ molecule and a flat CdSe
(10—10) surface. We use this surface to approximate the QD
surface. This approximation is reasonable because the (10—10)
is the most stable surface of CdSe crystal,”® and thus it might be
the prominent surface of the CdSe QD (note, another prominent
surface is the (11—20) surface, which is very similar to the
(10—10) surface). Because the molecule attachment only in-
volves a small area on the surface, we thus believe the flat surface
attachment and the QD surface attachment can be very similar.
Using different initial atomic configurations followed by DFT
atomic relaxation to minimize the total energy (see the Support-
ing Information for calculation details), we find two attachment
geometries that have relatively low total energy (large molecu-
le—surface binding energy), as shown in Figure 3. Note that the
center Sn—S,—Sn rhombus has been rotated 90° between these
two attachments. While attachment type I has the two end S
atoms attached to one standout Cd atom and one neighboring
Cd atom in the plane, the attachment type II has these two end S
atoms attached to this Cd and another two Cd atoms in the plane.
The standout Cd atom is used to satisfy the local electron
counting rule. Overall, the attachment type II has a closer
distance between the molecule and the surface and is also 0.5
eV lower in energy. Note that it is difficult to claim that the actual
molecule—QD attachments in the experiment must be the ones
we found in Figure 3. In reality, there could be many different attach-
ments due to local surface environment, thermo fluctuations, and
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Figure 3. Two types of molecular attachments between Sn,S¢ and the
CdSe surfaces. Panels (a), (b) are the side views of the type I attachment,
while panels (c), (d) show the type Il attachment at two different views.
Here, balls with color yellow, purple, dark green, white, and blue refer to
Se, Cd, Sn, S, and H, respectively.

V, (mHartree)

Figure 4. (a) Isosurfaces of the charge densities of CBM (green, left)
and CBM+1 (purple, right) electron states. (b) The eigen-energies for
CBM and CBM+1 as functions of the added small external potential at
one QD, in the case of 1916-atom QDs, type I attachment.

the overall orientation of the QD. Nevertheless, we use the two
attachments (one weak, one strong) in Figure 3 to represent the
range of plausible attachments in actual experiments.

We then use the atomic configuration of the surface—molecule
attachment to construct a two-QD system linked by one Sn,Sg4
molecule. For the other part of the QD surface, we use artificial
hydrogen atoms to represent an ideal passivation situation where
there is no dangling bond state inside the band gap. The con-
structed system is shown in Figure 2. According to our calcula-
tions, there are two close conduction band states from the two
QDs. Typically, one is localized in one QD, while the other is
localized in the other QD as shown in Figure 4a. In the experi-
ment,"® one electron can transfer from one QD state to another
QD state, which constitutes the main step of the charge trans-
port. The electronic coupling of these two QD states can be
calculated by their anticrossing.”® This is achieved by artificially
adding a very small external potential at one QD, hence driving
the energy of that eigen-state crossing the energy of the other

Table 1. Results of the Reorganization Energy 4 and Elec-
tronic Coupling V(I) [V.(II)] for Type I (II) Molecule
Attachment Using Different Sizes of QDs"

N d(nm) E;—Eg(eV) 4 (meV) V(I) (meV) V(II) (meV)

468 2.5 1.25 145 4.1 21.9
1051 3.4 0.87 62 14 9.5
1916 4.3 0.64 32 0.37 19
3193 S.1 0.51 23 0.14 0.48

? N is the number of atoms in one QD and d is its diameter. E, — E is
the band gap difference between the QD and bulk CdSe, indicating the
quantum confinement effect.

eigen-state. This is shown in Figure 4b. The anticrossing is 2V,
where V_ is the electron coupling between these two states.

The coupling constants V. are shown in Table 1 for the two
molecular attachments and different QD sizes. There are a few
things worth mentioning. First, the coupling constant ranges in a
few meV. Note that, if there is no Sn,Ss molecule between the
two QDs, and the two QDs keep the same distance, the coupling
constant will be thousands of times smaller. Second, the coupling
constant increases with the decreasing QD size. As the size of the
QD decreases from S.1 to 2.5 nm, the coupling constant increases
by a factor of 30 and 45 for the type I and II attachments,
respectively. This enhancement is mostly due to the quantum
confinement effect. From the 5.1 to 2.5 nm QD, the calculated
QD band gap has increased by 0.74 eV. This increase mostly
comes from the conduction band, which reduces the relative
height of the potential barrier at the Sn,Ss molecule, and hence
increases the electron coupling. Third, the coupling constant
increases from type I attachment to type II attachment by a factor
of ~35, indicating the importance of the atomic structures of the
attachments. Not surprisingly, the more tightly bound case (type
II attachment) has a larger coupling constant.

To understand the role of phonon in the electron transport,
one needs to calculate the electron—phonon coupling. The
electron—phonon coupling can be calculated as: C;; = (y;|0H/
ou|y;), where u is the phonon mode, H is the single particle
Hamiltonian given in eq 1, and |1/)1> is the i-th eigen-state of H.
The displacement of atomic position under phonon mode u
causes the change of Vi, (r) and Vi, in H, which induces the
electron—phonon coupling. Because the electron wave function
as shown in Figure 4a has very small amplitude at the central
Sn,Se molecular site, and the small molecule has a small phonon
density of state, we can ignore the phonon modes from the
molecule. Note that, if one wants to calculate the single phonon
transitions caused by a phonon-induced coupling between the “i”
and “j” electron states from two neighboring QDs, then it is
necessary to include the phonon modes from the linker molecule.
In our case, however, the dominant process is the multiphonon
process described by the Marcus theory,” where the electro-
n—phonon coupling causes a reorganization energy and the
electron—electron coupling comes from a state anticrossing
picture. In that case, the diagonal electron—phonon coupling
constants C;; and the spring constants of the phonon modes are
used to calculate the reorganization energy (the atomic relaxa-
tion energy due to the occupation of the electronic state “i”). For
this purpose, we can restrict the electron—phonon coupling
within each QD. So, the left (right) electron state will only couple
to the phonon modes within the left (right) QD. We can thus
calculate the electron—phonon coupling inside an isolated QD.
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A similar approach is used in a previous calculation for porous Si
QDs using a tight-binding model.** The direct calculation of Cij
inside one QD is nontrivial as the total number of the possible
atomic displacements inside a QD can be close to 10 000. We
have approximated this calculation using the CPM.>* The detail
of the calculation is given in the Supporting Information. Figure
S1 shows a comparison between the directly calculated electro-
n—phonon couplings for a few atomic displacements using the
CPM and the direct self-consistent DFT calculations. We see that
the overall CPM error on Cj, especially regarding to the large C;;
values, is about 30%, and there is no systematic error. Because the
effects of phonon coupling are averaged over thousands of
modes, we believe the net error on charge transport can be even
smaller.

Under the Marcus theory, what is most important is the
reorganization energy. This is the atomic relaxation energy after
the electron transfer from one state to another state. As discussed
above, this energy can be calculated from the diagonal electron—
phonon coupling constant: C;;. More specifically, if C;(R) =
(|dH/0R|1p;) is calculated for each atomic coordinate R, then
C;(R) can be considered as the additional force on each atom R
when the electron is removed from (or added on) electron state
;. To compute the atomic relaxation induced by this additional
force, we employ the valence force field (VFF) model® for quantum
dots. Such VFF model can describe the atomic displacement in
crystal structures very well. As most of the wave functions (hence
the additional atomic forces) are at the interior of the QD, we
expect the VFF model should give a good description of the
relaxation energy (especially for acoustic phonon modes, as they
are most important to be shown in Figure S). The calculated
reorganization energy (note, which is twice the single QD
relaxation energy, as the electron moves from one QD to
another, inducing relaxations in both QDs) 4 is listed in Table 1.
Note that 4 is roughly inversely proportional to the volume of the
quantum dot (see Figure S2) as expected from simple scaling
arguments provided in the Supporting Information.

Using the electron coupling constants V. and the reorganiza-
tion energies A given in Table 1, we can employ the Marcus
theory formula®' to calculate the charge transfer rate 7' from
one quantum dot to a neighboring quantum dot:

! = |v| [— (A + & — &)’ /4AkT]  (2)

JT
€
akrh F

Here, €, and &, are the electron eigen-energies at the left and the
right QD, respectively. If the two quantum dots are exactly the
same, they will be the same. However, if there is a quantum dot
size fluctuation, then these two eigen-energies can be different.
Figure 6 shows the dependence of 7 ' asafunction of &, — &, for
the attachment type I at room temperature. For attachment type
II, the curves will be modified by an overall scaling factor
proportional to the coupling constant |V,|*. From Figure 6, we
see that the hopping rate changes dramatically at &, — &, = 0,
from 10 > to 10~ " 1/ps, from the largest QD to the smallest QD.
Overall, the hopping can happen rather fast, especially for the
small QD case. This indicates a high conductivity for the
corresponding system.

The above Marcus theory treats the phonon degree of free-
dom classically within the harmonic approximation and does not
allow quantum tunneling of the atomic movement. One can
however treat the atomic movement quantum mechanically
under harmonic approximations. The corresponding charge

10%2 ; : . —

]

10
10%f
0%}
10%}
100}
107}
104}
10% '
0

Huang-Rhys factors S .

0.01 0.02 0.03
phonon energy hwj (eV)

Figure 5. The Huang—Rhys factors S; for different phonon modes for
the d = 4.3 nm QD, type I attachment. Each cross represents one phonon
mode. There are only a few modes with S; larger than 0.01, which is
indicated by the dashed line.
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Figure 6. The electron hopping rate 7! from one QD to another at
room temperature as functions of the eigen-energy difference between
the two QDs for the cases of (a) 468-atom QD, (b) 1051-atom QD, (c)
1916-atom QD, and (d) 3193-atom QD, type I molecular attachment.
Here, solid curves represent the Marcus theory results, while the dashed
curves are obtained from the quantum phonon treatment (eq 3).

. 3436
transfer rate formula is:

‘L’71 = h% |VC|2/°_ooodt eXp{i(Sa - Sb)t/h
= XSl + 1) —me " + (n + 1)}
j

(3)

Here, n; = 1/[exp(hw;/ksT) — 1] is the phonon occupation
number for phonon mode j at frequency wj, S; = 4;/Aw; is the
Huang—Rhys factor for the phonon mode w), and 4; is the
reorganization energy for mode w;. To calculate l]-, one first
transforms the atomic force C;;(R) (due to electron—phonon
coupling) to the force on phonon mode ), and then calculates
the relaxation on each phonon mode as a harmonic oscillator.
The calculated Huang—Rhys factors for various phonon modes
are shown in Figure § for the d = 4.3 nm quantum dot. We see
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that most of the Huang—Rhys factors are much smaller than 1.
Only a few of them approach 1. In general, the largest Huang—R-
hys factor concentrates on the few acoustic modes. If we only
keep the 14 phonon modes in eq 3 with S; > 0.01 as illustrated by
the dashed curve shown in Figure 5, the resulting rate 7' is very
close to the original value including all of the phonon modes. At
£, — &, = 0, the rate changes only 10%, while at &, — &, = —0.3
and 0.3 eV, it decreases by a factor of 10. The latter larger change
is due to the fact that for larger &, — &y, it will be easier to use the
higher frequency phonon modes to satisfy the energy conserva-
tions. Thus, those higher frequency modes become more im-
portant. For &, — &, = 0, even if we only keep the three largest S,
the result is still good (with an error of 26%). That means the
transition rate is controlled by a handful of phonon modes at least
near &, — &, = 0.

The calculated hopping rates (including all of the phonon
modes) using the quantum mechanical formula eq 3 are shown in
Figure 6 as the dashed curves. We can see that, overall, there is a
remarkable agreement between the Marcus formula result and
the quantum mechanical formula result. Near €, — &, = 0, the
quantum mechanical formula gives slightly larger hopping rates
(e.g, 8% for the 4.3 nm diameter QD), as expected from the
inclusion of quantum tunneling.

We can now discuss the likelihood of the other transport
mechanisms illustrated in Figure 1. Note that the reorganization
energies shown in Table 1 are much bigger than the electron cou-
pling constants. This means that an electron prefers to be
localized inside a single QD to gain the reorganization energy,
instead of being in an extended state to gain the electron coupling
energy. As a result, the mini-band picture”’15 of Figure la will
not hold.

The model of direct tunneling, Figure 1b, has been used in a
few previous works.”?'31* However, for a direct tunneling to
work (without the involvement of the phonon), the other side of
the barrier (the electron receiving side) should have a continuous
density of states to satisfy the energy conservation law. This is
apparently not the case in our system because the other side is
also a quantum dot with a few discrete levels (typically 0.1 eV
apart) above the CBM. There is, however, a possibility of
resonant tunneling. For that to happen, the eigen-energy differ-
ence &, — &, must be within the coupling constant V... Typically,
there are 5% size fluctuations between the QDs. Using the band
gap dependence on the QD size shown in Table 1, or previously
calculated results,>” this $% size distribution roughly corresponds
to a 50 meV change in eigen-energy &,y for the experimentally
relevant 4.3, 5.1 nm diameter QD. This is 100 times bigger than
the corresponding coupling constant V.. Thus, it is inappropriate
to use any direct tunneling model without involving phonons to
describe the charge transfer.

Another picture (Figure 1c) is the direct hopping over the
barrier height. Because of thermo fluctuation inside the QD, the
electron can jump to a level (a mobile state) inside the QD with
its energy above the potential barrier at the molecule. Next, the
electron can move from one side to another without the blocking
of the potential. The local density of states calculated at the
molecule site (Figure S3, S4) indicates that the barrier height
relative to the QD conduction band state is about Fy, = 2.4 eV (for
the d = 5.1 nm QD). The estimated hopping rate should be: 1/7,
exp(—Ey/ksT), where 1/7 is the transport rate for eigen-states
above the barrier height. To have a higher limit of this rate, we can
use 1/1,=h/ med2 (d is the diameter of the quantum dot). Note
in the above formula, 7, is the time taken by a free electron in a

Table 2. Mobility ¢, (#,) for Type I (II) Molecule Attach-
ment in a QD Supercrystal with d = 4.3 nm*

5% QD size uniform connection My U

fluctuation fluctuation (ecm®/V/S) (em®/V/S)
no no 822 x 1072 2.16
yes no 4.80 x 1072 126
yes yes 1.02 x 102 0.26

“The experimental value for the case of 4.5 nm QD array'® is 3 x
102 cm?/V/S. The Marcus theory is used to describe the transition rate.
If the quantum mechanical formula is used, the calculated mobilities will
increase for about 5—8%.

vacuum to spread from a localized area of size d (with a Gaussian
wave function) to a localized area of size 2d. For d = 5.1 nm, we
have 7y = 0.2 ps. If we take the effective mass of the electron in the
conduction band of CdSe, instead of free electron, we have 7, &
0.02 ps. Given E,, = 2.4 eV, we find that even when this maximum
1/7, is used, the calculated rate is about 4 x 10>’ psfl. This
value is much smaller than the multiphonon absorption/emis-
sion hopping rate described by the Marcus theory as shown in
Figure 6. Thus, we can safely ignore this over-the-barrier trans-
port channel. In addition, the temperature dependence for these
two pictures is dramatically different. While the over-the-barrier
picture has an activation energy of 2.4 eV, the hopping picture
within Marcus theory leads to an activation energy of a few tens
meV. Temperature-dependent experimental measurements can
be performed to verify our prediction.

From the above discussion, we conclude that the Marcus
theory described multiphonon-assisted process is the most likely
charge transfer mechanism between the two QDs. Under this
picture, we next like to calculate the carrier mobility in a QD
supercrystal®® and to compare the result with the experiment. To
do that, we use the second largest quantum dot of 4.3 nm in
diameter, which is close to the dot size of 4.5 nm in one
experiment.'® Using a simple cubic QD supercrystal, we calculate
the carrier mobilities in the low carrier density limit in three
different situations (see the Supporting Information for calcula-
tion details): (1) there is no QD size fluctuation; (2) there is 5%
QD size fluctuation as described in the experiment; (3) on top of
the 5% QD size fluctuation, we assume that the QD —molecule
attachment is not as good as described by either type I or type II
attachments, and instead there are some loose attachments,
which results in a uniform distribution of the electron coupling
constant square |Vc|2 varying between 0 and the values listed in
Table 1. The 5% size fluctuation leads to an &, fluctuation of ~35
meV described by the £(d) curve (fitted to our calculated values)
due to quantum confinement effect. However, there is another
potential source for the fluctuation of &, due to the single particle
self-energy. The self-energy term in the GW formalism can be
approximated as 1/(e20R) — 1/(e5"R) in a QD,* where eoe
and £ are the dielectric constants of the bulk CdSe crystal and
effective medium of the QD supercrystal, and R is the QD radius.
Judged from the material density of the QD supercrystal, we can
assume Eig ~ 0.562311( = 3.4. This self-energy term is then about
0.1 eV for the 4.3 nm diameter QD. As a result, the 5% size
fluctuation will introduce an additional 5 meV fluctuation in &,
which is however much smaller than the quantum confinement
effect fluctuation. The final results after statistical averaging are
listed in Table 2. As one can see, when the 5% fluctuation is
introduced, the mobility decreases by a factor of 1.7. When the
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loose attachment is assumed, the mobility is further reduced by a
factor of 5. The calculated mobility agrees rather well with the
experimental results if the type I attachment is used. On the other
hand, if the type I attachment is used, the calculated mobility can
be 10 times larger than the experimental value. Overall, such
agreement on the mobility is rather good, as mobility calculation
can often differ from experimental results by orders of magni-
tudes. From our calculation, we can also conclude that, although
there might be some type II attachments, the majority of the
attachments might be similar to type I like. This is understand-
able given the complicated situations in the local chemical
environments and random QD orientations in the supercrystal.
Our result also indicates that between two neighboring QDs,
there are probably only a few Sn,Ss molecules connecting them,
because our one molecule connection result agrees quite well
with the experiment.

In the above discussion, we have only considered the hopping
from the S-state CBM of one QD to the S-state CBM of another
QD. Strictly speaking, however, it is possible for the electron to
hop from the S-state of one QD to the P-state (CBM+1) of
another QD. The S—P splitting in the QD size range considered
here is around 100—150 meV. According to Figure 6, this will
lead to 100 or more times reduction in the hopping rate. Thus,
unless the size fluctuation is so large as to compensate this energy
difference, the S to P transition can be safely ignored. Also, note
that we have only calculated the mobility in the low carrier
density case using the linear equation method described in the
Supporting Information. If the carrier density is high, and state
filling and Coulomb blockade effects are strong,‘m’41 then
Monte Carlo simulations are needed to describe the carrier
mobility like the one described in ref 41. The P and even D levels
can then become important.*>*'

The prediction on the quantum dot size dependence for the
carrier mobility can be estimated from the hopping rate depen-
dence shown in Figure 6 at €, = &, or be calculated directly from
eq 2 using the numbers shown in Table 1. The temperature
dependence can also be calculated from eq 2. Because the £, — &,
under 5% size distribution is rather similar to A (or sometimes
twice of it), then the temperature dependence for the carrier
mobility judged from eq 2 is rather similar to exp(—A/kT).

4. CONCLUSION

We have investigated the charge transport in a semiconductor
QD supercrystal connected by small molecules. We have studied
the likelihood of four different possible transport mechanisms:
the mini-band bulk Bloch state transport, the direct tunneling,
the over-the-barrier thermal transport, and the phonon-assisted
hopping. We have identified that the phonon-assisted hopping is
responsible for the charge transport in our studied system. We
have also discovered that different atomic attachment can play an
important role in the charge transport, as does the quantum dot
size. With decreasing QD size, the carrier mobility can increase
by orders of magnitudes. We have analyzed the effects of QD size
fluctuation and the fluctuation of the QD—molecular attach-
ments on the carrier mobility in a QD supercrystal. Finally, from
a theoretical point of view, we have examined the validity of the
classical Marcus theory using the quantum mechanical treatment
for the phonon. We found that Marcus theory is remarkably
accurate in this regard. Besides, the phonon-assisted charge
hopping is mostly caused by a handful of acoustic phonon modes
with the largest Huang—Rhys factors. Our predictions for the

QD size and temperature dependence on the supercrystal mobility
await experimental confirmation.
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(1) The smooth cut-off of the charge density and the patch up of the
three pieces in Figure 2:

The charge densities in the quantum dot part (both the left and right pieces) as well as the molecule
part (the central piece), as illustrated in Figure 2, are computed individually. To patch them up for the
total charge density, a mask function w(r) is introduced which varies smoothly from 0 to 1 when
I crosses the dashed line in Figure 2 from the quantum dot side to the central molecule side. More

specifically, w(F) =1/(e*“™ +1), otherwise w(F) is 0 in the quantum dot part and 1 in the molecule

part. Here, d =|F T, |is the shortest distance between T and the red dashed line. In the calculations,
aand b are taken as 12.8A™ and 0.469A, respectively. The result is insensitive to the exact values of a
and b. The total charge density is then calculated as £(T) =W(F) Pueer (M) + L —W()) oo (F) . It is worth

mentioning that in order to yield the correct total charge, one might need to rescale the center charge

density Perer () very slightly.



(2) The details of the surface molecule attachment calculations:

The attachment between the molecule Sn,Sg and a flat CdSe (1010) surface is modeled by a three-
layer slab adsorbed with the molecules. An orthorhombic supercell with dimension of 14.69 x 12.72 x
33.03 A% is used in the calculations, in which the slab is periodic in the x-y plane with a 10 A vacuum
region along the z direction. The separation between the neighboring molecules is 10 A so that the
interactions between the molecules can be neglected. The total energy minimizations were performed

L2 in local density approximation®, as implemented in the

using density functional theory (DFT)
plane-wave based VASP code® °. Ultrasoft pseudopotentials® with a kinetic energy cutoff of 400eV
were used to ensure the total energy convergence. Several initial molecule attachment configurations
are tested, followed by atomic relaxations. The two lowest energy attachments after the atomic

relaxations are shown in Figure 3.

(3) Electron-phonon coupling:

The electron-phonon coupling is calculated by the charge patching method. There are two terms in

the single particle Hamiltonian derivative 8H /6R . The first term is the change of the nonlocal
potential in Eq.(1), which is calculated using the conventional method as in a total energy plane wave
code. The second term is the change of the local potential, especially the Hartree potential. This is due
to two parts; one is the displacement of the nuclei charge, which is represented by the local part of the
pseudopotential. Another part is due to the change of valence electron charge density, and
consequently the change of the Hartree potential. We have used the CPM’ to calculate the change of
the charge density when an atom is moved. Note, only the charge motifs near the atom R need to be
changed. This makes the method extremely efficient. This method has been used to calculate the

8-10

electron-phonon coupling in organic polymer systems™ . Here, in inorganic nanocrystals, we found

that it is necessary to screen the long range part of the potential change AV () due to the atomic

displacement at R . This is because, in CPM, the charge density is not calculated self-consistently; as
a result, the long range electric field is not screened. We have thus multiplied a fixed spherical

screening function f(|F —R|[) on top of AV (F) (caused by a single atom displacement at R), here

f (x) is a function which is close to 1 when X is near zero, and roughly 1/¢ when x is large, and ¢ is



the bulk dielectric constant. In practice, the f (x) ’s for Cd displacement and Se displacement are also

different. We obtain this mask function from bulk system calculations where direct DFT calculations
have been carried out. f(x) is computed as the ratio of the AV (r) obtained from CPM and DFT

methods. We then use this mask function in the calculation of quantum dot systems.

After f (x) is multiplied to the local potential change AV (r), we can now calculate the electron-

phonon coupling constants: Ciyj(li) =<z//i |8H /aﬁ\y/j>. The results are shown in Figure S1 for the

smallest quantum dot where the oH /6R can also be calculated directly from self-consistent DFT
calculations. About 20 i and j are used. One can see that the overall CPM error is probably about 30%
especially when the largest electron-phonon couplings are considered. Furthermore, there is no

systematic error.
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Figure S1: A comparison between the calculated electron-phonon couplings (in a.u.) for a few atomic
displacements (near the center and near the surface) from the CPM and the direct DFT-LDA
calculations.



(4) The quantum dot size scaling of the reorganization energy 4:

The calculated 4 is plotted as a function of the inverse of the total number of atoms N in Figure S2.
A straight line relationship is observed. Such scaling feature can be understood as the following. For
each atomic movement, the electron-phonon coupling constant scales as 1/©2, where Q is the volume

of the quantum dot. This is due to the normalization of the wave functiony,. For a harmonic
oscillator with a spring constant of k, if an external force Ciyi(ﬁ) is applied to this oscillator, the

relaxation energy (reorganization energy) will be —0.5C? (R)/k oc 1/ Q. Since the number of atoms is

also proportional to Q, the overall reorganization energy 4 is proportional to 1/ Q.
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Figure S2: The calculated reorganization energies Aas a function of the inverse of the number of
atoms (1/N). The green line indicates a linear fit.



(5) Local density of state calculations:

The generalized moment method (GMM)™* is used to calculate the local density of states (LDOS) at
the molecule Sn,Sg. The results are shown in Figure S3, Figure S4 for the two different attachments,
respectively. From the LDOS, one can see where the local states start to appear. Comparing that to
the QD conduction band minimum (CBM), we can get the barrier height 4E as shown in Figure 1(C).
We found that such AE is about 2.4 eV for the large QDs. For the smaller QDs, this barrier height

drops to ~1.8 eV due to quantum confinement effect of the CBM.
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Figure S3: The local density of states at the molecule site for type I attachment. The eigen-energies of
CBM for different QD sizes (the number of atoms is indicated in the top right corner of each panel)
are shown by the green vertical lines. AE is the estimated barrier height in the over-the-barrier
activation mechanism.
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Figure S4: The local density of states at the molecule site for type 11 attachment. All the notations are
the same as in Figure S3.

(6) Mobility calculation for the supercrystal:

With hopping rates between quantum dots at hand, one can calculate the electron mobility at low

carrier density and low electric fields using the following procedure. Let z,}be the hopping rate

between two quantum dots a and b. It is known'? that the electrical transport at low electric field and
low carrier density is fully equivalent to the transport in a network of conductors where any two
neighboring guantum dots have been connected with a conductance
G,, =G, =e’n,r,. Ik, T =e’n,z,- /k,T where n_ is the equilibrium occupation of state a given by the

a“ab

Boltzmann distribution, e is the elementary charge and k is the Boltzmann constant.



We construct the portion of the cubic supercrystal with n xn,xn, quantum dots (of the
sizeL, =L, =L, =L), wheren, =n, =n, =50, i.e. a conductor network of the same dimensions. The

equivalent conductance of such network is found by solving the linear equations for the potential of

nodes in the circuit. These equations read SV, -V))G; —oWwhere j is a neighbor of i. Periodic
i

boundary conditions for v, are applied in two directions (say y and z). For the x direction, we have
v, =0for the first y-z plane, and v, =u for the n;-th y-z plane. A linear equation is then formed to
solve for v, in the interior planes. The current | through a plane perpendicular to the x direction is
then calculated and the equivalent conductance is found as G, =1, /U . The mobility in x-direction is
then given by x4 =G, /neL, where n is the average concentration of carriers. Using the size
fluctuation, we have randomly assigned the size, hence ¢ on each QD according to the fluctuation.
We have calculated the G,, using Eq.(2). To simulate the effects of loose attachment we have also

multiplied G,, with a random number uniformly distributed among 0 and 1.
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