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Abstract – The phenomenon of burst synchronization is analyzed in binary and ternary motifs
consisting of Rulkov map neurons coupled via delayed inhibitory synapses. We determine the
particular roles and the interplay between the intrinsic neuron and synaptic parameters, as well
as the network topology. The developed method, resting on exactly obtaining the curves that
guide the neuron orbits in the phase plane, enabled us to identify the motif-specific mechanisms
of how the synchronized rhythms emerge, even in the presence of strong delay. It is explained why
the location of the parameter space domain optimal for burst synchronization gets shifted with
different motif architectures. Further, it is suggested how for each motif a distinct cooperative
rhythm may be singled out, that is absent on any of the other considered motifs.

Copyright c© EPLA, 2010

Introduction. – The recent research has provided
compelling evidence that the structure of complex
networks rests on repetition of elementary building
blocks, network motifs [1], whose connectivity patterns
are significantly over-represented when compared to a
randomized network configuration with the same nodal
degree distribution. Moreover, in neural networks [2,3],
such small circuits seem to act in an independent
manner [4], as implied by the generally stronger intra-
than inter-motif synaptic weights. Due to findings
in several brain areas [5,6] and in CPGs [7], the setup
attracting considerable interest has been the one where the
participant neurons are endogenous bursters. They engage
in coordinated activity, that may be studied embracing
the concept of chaotic phase synchronization [8]. One of
its manifestations is burst synchronization [9–11], which
involves matching between the respective times of onset
and termination of bursts.
The establishing of synchronous rhythms is guided

by the synergetic action of the intrinsic and synaptic
parameters, as well as the network topology [10,12]. In
that respect, it is plausible to consider the reciprocal
inhibition, widespread in the common motifs, and to
include the possibility of transmission delays, whose range
may cover both the cases of activity in local networks,
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exhibiting no or small delay, and the simplification of
cooperative activity between the more distributed brain
regions (larger delay), like in the cortico-thalamo-cortical
loop [13]. Given the present body of work on the effects of
inhibitory synapses and the transmission delay in synchro-
nization phenomena [12,14,15], our study focuses on two
points. First, it concerns the exact roles and the interplay
between the intrinsic and the synaptic parameters, e.g. the
basic relationship between the transmission delay and the
synaptic weight, and second, the possibility of anticipat-
ing the domains of parameter space where different types
of coordinated activity are most likely to occur.
Though phenomenological, the Rulkov map neuron

model [16,17], accompanied with the sufficiently detailed
model of the delayed chemical synapse, provides an
appropriate setting to explore the first point. To do so,
we develop the phase plane approach [18], that essen-
tially presents the analysis of geometrical implications
derived from the theory of coupled systems with singular
perturbation [19]. It consists in monitoring the switching
dynamics between the noninteracting and the various
interacting maps, making advances in understanding of
the mechanisms by which the synchronization regimes
are shaped. Further, the variation of the quantity H,
introduced to characterize the degree of burst synchro-
nization, provides an indication on how the parameters
should be adjusted to achieve better neuron coordination.
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(a)

(b) (c) (d)

Fig. 1: (Colour on-line) Schematic representation of the consid-
ered motifs, with circles denoting the neurons, and dots stand-
ing for the synapses. (a) Binary and (b) ternary inhibitory
motifs with symmetrical couplings, each assigned the weight
gc. (c) Asymmetrical inhibitory motif, where the connections
in clockwise (solid lines) and counterclockwise (dashed lines)
assume weights gc1 and gc2, respectively. (d) Ternary motif
with the pacemaker, displayed in blue (dark grey), and the
driven neurons, presented by red (light grey). Mutual couplings
between the driven neurons (solid lines) take the weights
gc, whereas the couplings from the pacemaker (dashed lines)
attain gcp.

Finally, we are interested in assessing the ways in which
changing network topology affects the formation of
novel cooperative rhythms. To this end, four network
configurations are considered, corresponding to the most
common binary and ternary inhibitory motifs [2,4], with
the details presented in fig. 1.

Model. – The dynamics of the coupled neuron i follows
a two-dimensional map

xi,n+1 =
α

1+x2i,n
+ yi,n

−
∑
j∈nn

gc,ij(xi,n− ν) 1

1+ exp(−k(xj,n−τ − θ)) ,

yi,n+1 = yi,n−µ(xi,n−σ), (1)

where the summation over the presynaptic neurons j is
motif dependent, and n denotes the iteration step. With-
out the interaction term, eq. (1) reduces to chaotic Rulkov
map that, with the appropriate choice of parameters,
yields square-wave bursts. Setting µ= 0.001, the neuron
state is defined by the fast variable xi,n and the slow vari-
able yi,n, the former of which embodies the membrane
potential, and the action of the latter is reminiscent of
that of the gating variables. A brief reminder on the
ensuing analysis for the isolated neuron, treating yi,n
as a control parameter γ within the fast subsystem, is
presented in fig. 2, and for a comprehensive review one
may consult [11,17]. Here we briefly note that the phase
point motion is guided by the fast nullclines, merged in
an S-curve, and the curves of minimal and maximal map
iterates, Ξmin and Ξmax, providing the burst envelopes.
In effect, bursting dynamics relies on the existence of
the bistability region in the fast subsystem that arises if

Fig. 2: Blowup of the bistability region of the fast subsys-
tem. Bursting is enabled if the slow variable nullcline xn = σ
intersects the branch of unstable fixed points Nu. γ increases
(decreases) whenever the phase point lies below (above) the
slow nullcline. Phase point climbing along the stable branch
Ns coincides with the interburst intervals, whereas the bursts
are delimited by the points of the saddle-node bifurcation
γ = γsn and the external crisis γ = γcr. The irregularity of the
series comes from the termination delay beyond γcr. The inset
displays a typical bursting sequence of the isolated neuron
obtained for α= 4.15 and σ=−0.9.

α> 4. One may also use α to control the irregularity of
bursts: the closer α gets to 4, the less chaotic the bursting
series becomes. With a single exception, throughout the
paper we select α= 4.15, the value providing a reasonable
balance between the bursts’ duration and the stochasticity
due to their termination delay. Unless specifically stated,
the external dc bias current σ, affecting the length of the
neuron’s duty cycle, is assumed homogeneous within a
motif (σ=−0.9).
Moving onto the interaction term, the reversal poten-

tial [5] ν =−1.8 is set so as to give the synapses the
inhibitory character, whereas the synaptic weights gc,ij
depend on the particular circuit configuration. The time
lag τ , equal over the synapses, is reflected by the delayed
arrival of the presynaptic potential influencing the gate
opening. Within the sigmoid, for the activation thresh-
old is chosen θ=−1.4, a value easily reached by the
bursting neuron. The sharpness of the synaptic response
is determined by the gain parameter k [9,14,20]. The
k� 1 case yields the fast threshold modulation model [21],
approximating well the action of the majority of chemical
synapses in the brain [18,22], while for k∼ 1 one obtains
the graded synaptic transmission model [23], appropriate
to the description of the CPGs. Hereafter, we keep k= 25
fixed, since the dynamics of a system with higher k is more
amenable to the type of analysis to follow.
Along the phase plane approach in terms of tracing the

motion of the phase point, in the following we introduce
the quantity appropriate to characterize how the level of
burst synchronization depends on the neuron and synaptic
parameters. To this end, it is convenient to transform
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Fig. 3: Quantity H for the binary motif in the (gc, τ)-plane,
with the higher values reflected by the darker shading. Though
larger delays generally favor burst synchronization, only the
interplay with gc ensures the existence of the DMS (black
region), where the two neurons are typically synchronized in
phase.

the time series of the interacting neurons’ membrane
potentials into symbolic sequences {Si,n}. We apply a
conversion rule T that ascribes Si,n = 1 if the neuron is
bursting, and −1 otherwise:

Si,n = T (xi,n) =

{
1, xi,n in the bursting range;

−1, xi,n in the silence range.

(2)
It turns out that a useful rule of thumb to determine
when a burst is triggered or terminated is to identify the
moments when xi,n crosses θ from below and from above,
respectively. Next, as a measure of burst synchronization
between the two neurons i and j, we define the quantity

Hij =
1

Nmax

〈
Nmax∑
n=1

δ(Si,n, Sj,n)

〉
, (3)

where δ represents the Kronecker symbol, and Nmax =
50000 steps is the length of the observed time series.
The angled brackets in eq. (3) refer to averaging over
100 trials with different initial conditions. H (the indices
are dropped for simplicity) can be understood as a trial-
averaged fraction of time in which the symbolic sequences
of the two neurons overlap. This means H ∈ [0, 1] holds,
whereby the larger values correspond to higher burst
synchronization. We note that the value H = 1 would not
imply that the exact synchronization has been reached,
but the values less than 1 are sufficient to rule it out.

Binary motif. – The form of interaction considered
here allows the curve of fixed points to maintain the
S-shape and the stability features, with the map itself
shifted rightward and upward in the phase plane. Hence
the establishing of cooperative bursting rhythms can be
explained by observing the motion of the neurons’ phase
points, whose dynamics consists of switches between the
isolated and the motif-specific coupled (interacting) maps.
Without the delay, the neuron activity is prevailingly

coordinated in the regime of anti-phase synchronization,
which improves if the difference between the durations of

Fig. 4: (Colour on-line) Phase plane analysis for the inhibitory
couple in case gc = 0.2. The non-interacting and the interacting
S-curves, with the corresponding envelopes, are presented by
black and blue (dark grey) solid and dashed lines, respectively.
The main frames show the neuron waveforms in yellow (lightest
grey) and red (grey). (a) When τ is small, typically there is
anti-phase synchronization, illustrated by the inset sequence
for τ = 10, with the neurons coded in blue (dark grey) and
orange (light grey). The section between the arrows is extracted
to the main frame. (b) The increase of τ promotes in-phase
synchronization. The data obtained for τ = 90 are displayed in
the same way as in (a).

the burst and the interburst intervals becomes smaller,
depending on synaptic weights. In the approximately
ideal case when this difference is the smallest (0.19�
gc � 0.23, cf. the bottom white region in fig. 3), the
anti-phase synchronization follows the lock-and-release
mechanism [10,22], so that the given neuron, say neuron 2,
becomes active as soon as 1 terminates its burst (x1 < θ),
releasing 2 from inhibition. Translated into the phase
plane, this means that the neuron bursts according to the
isolated map, and that it spends the interburst interval
on the stable branch of the coupled map, leaving it in
the vicinity of the saddle-node, see fig. 4(a). For higher
gc, there is imperfect anti-phase synchronization, where
the neuron begins to burst by the escape mechanism [22],
moving beyond the saddle-node of the coupled map before
the other neuron ceases to burst.
Introducing the synaptic delay, such a regime is main-

tained in a broader gc interval, whereby the escape
mechanism gets “regularized”, in a sense that the begin-
ning of one neuron’s burst prompts the other neuron’s
burst to terminate with the τ steps delay. Compared
to the action of the instantaneous synapses, the bursts’
length changes negligibly, but the delay influence mani-
fests in a way that a part of the burst, 2τ steps long,
takes place on the coupled map, cf. fig. 5(a). Increas-
ing τ , this picture is preserved till the values given by
the curve τSH(gc) (see fig. 5(b)), when the section of
the burst on the coupled map reaches its external crisis.
Then the two scenarios may arise: either the phase point
drops below the external crisis or the burst continues,
so that the phase point moves from the chaotic attrac-
tor of the coupled map onto the one of the isolated map,
exhibiting a heteroclinic trajectory near the saddle fixed
point of the isolated map. Due to the first scenario, for
τ > τSH(gc), in the time series one observes the occur-
rence of short, phase-synchronized bursts approximately
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Fig. 5: (Colour on-line) (a) Typical waveform of a long burst,
obtained for gc = 0.2 and τ = 65, is embedded in the phase
plane, with the ensuing time sequence shown in the inset. When
the neuron begins the burst (black bullet), the other neuron,
still bursting, is in site of the empty bullet, but its phase point
is “seen” with a τ step delay (grey bullet). The blue (dark grey)
bullet on the coupled map presents its external crisis. (b) The
τSH(gc) curve (dash-dotted line) marks the approximate lower
boundary for the occurrence of short bursts, whereas above
τL(gc) (solid line) the number of long bursts diminishes.
(c) A display of a typical short burst, extracted from the same
series as the long burst, using the form of presentation adopted
from (a). (d) Contours show constant fraction of short bursts
within the time series, plotted in the (gc, τ) parameter plane.
The contours were obtained averaging over 200 independent
runs.

τ steps long, which follow the “release” mechanism [22] of
bursting, so dubbed as the neuron jumps off the coupled
map at the moment it “sees” the other neuron falling
below θ (fig. 5(c)). Along the short bursts, the time series
still contain the sequences of long bursts as remnants
of the regime of anti-phase synchronization. The burst
length fluctuations reduce considerably when the delay
reaches τL(gc) (see fig. 5(b)), since the sequential occur-
rence of long bursts becomes less likely. This curve is deter-
mined so as to characterize the turning point when the
parts of burst on the isolated and the coupled map are
equal to 2τ steps each, which makes the last sustainable
waveform of long bursts for the given gc. In reference to
fig. 3, the area τSH(gc)< τ < τL(gc) coincides with the
moderate values of H, whereas the curve τL(gc) roughly
presents the lower edge of the domain of maximal synchro-
nization (DMS), where the neurons are typically synchro-
nized in phase. Within the DMS, the long bursts do not
completely disappear. However, the increase of τ causes
the fraction of short bursts within the series to grow (see
fig. 5(d)) on account of the long ones, becoming the largest
in the region almost overlapping with the DMS. Nonethe-
less, moving toward the inner area of the latter, for rising
τ it is seen that the onset of short bursts, except by

Fig. 6: For the symmetrical ternary motif, the variation of H
for an arbitrary pair of neurons is considered.

the release mechanism, increasingly occurs by the escape
mechanism, as shown in fig. 4(b).

Ternary motifs. – Applying the introduced methods,
we analyze the mutual synchronization on the ternary
motifs, allowing the possibilities of weight heterogeneity
and different connection topologies. First we discuss the
extension of the binary to the symmetrical ternary motif,
where it is sufficient to observe the variation of H in the
(gc, τ)-plane for an arbitrary pair of neurons (fig. 6). The
DMS here is distinguished from the one in fig. 3 insofar
as it is centered around smaller weights, gc ≈ 0.1, and,
notably, signifies the area where all three neurons become
synchronized in phase. In the phase plane, such a regime is
guided by the action of three maps, that correspond to the
isolated neuron, onefold and the twofold inhibited neuron.
In an ideal case, the three neurons should burst by the
isolated map, and the interburst intervals would coincide
with the motion along the stable branch of the twofold
interacting (2gc) map. Performing the kind of analysis
presented in fig. 5(b), one can demonstrate a change in
shape and slope of the relevant curves, which accounts
for the shift in location and the different inclination of
the DMS in case of the ternary as opposed to the binary
motif.
Now let us consider the motif with rotationally invariant

asymmetrical synapses, assigning the weights in clockwise
direction gc1, and those in counterclockwise direction gc2.
Based on this setup, one should anticipate the appearance
of rotating waves [24], here observed as a winnerless
rhythm with alternation of the bursting neuron (fig. 7(a)),
also known as the 2π3 resonance [10]. To achieve such a
rhythm, one is required to change the intrinsic parameters
α and σ, so as to reduce the burst irregularity, e.g. by
decreasing α to 4.05, and the neuron duty cycle, e.g. by
choosing σ=−1.2. Insofar as the synaptic parameters are
concerned, to maintain the waves, there should be no or
very small delay, say τ = 10. For each selection of (gc1, gc2)
the waves can propagate in either of the directions, this
being influenced by the initial conditions of the motif.
Nonetheless, one finds the areas where such influence is
manifested less, so that the rotation in the direction of
the weaker (RWS) or stronger synapses (RSS) is preferred,
cf. fig. 7(b), whereas in most of the parameter plane
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Fig. 7: (Colour on-line) Anti-phase synchronization on the
asymmetrical motif is achieved for α= 4.05. (a) The respective
neuron time series are presented by black, blue (dark grey)
and orange (light grey). The data are obtained for gc1 = 0.1,
gc2 = 0.3 and τ = 10. (b) For τ = 10, in the (gc1, gc2) parameter
plane are displayed the areas with the prevailing RWS (light
grey) or RSS (dark grey) direction of waves, whereas the largest
domain, shown white, coincides with the case where both
directions occur with similar probabilities. (c) The neuron’s
sequence, marked by the arrows in (a), is embedded in the
phase plane. The non-interacting map and the two interacting
maps corresponding to gc1 and gc2 are presented by black, blue
(dark grey) and orange (light grey) lines, respectively.

the rotation direction is strongly sensitive to the initial
conditions. The actual shape of these domains changes
with τ , as the prevailingly unidirectional areas get smaller,
giving way to the bidirectional area in between. It can
also be demonstrated that for the RWS (RSS), considering
different initial conditions, the average burst duration,
determined by the coupling strengths, is shorter (larger)
than the one for the isolated neuron [25], while in the
rest of the parameter plane this average is approximately
equal to the length obtained for the autonomous bursts.
In case when the stronger inhibited neuron fires next (RSS
direction), the phase plane (fig. 7(c)) shows a curious
interplay between the isolated map and the gc1 and
gc2 coupled maps. In effect, the bursting period is split
into three approximately equal parts, whereby the burst,
following the isolated map, comprises only a third of the
period. The interburst interval coincides with the motion
of the phase point along the stable branches of the two
interacting maps, first subjected to the weaker of the
synapses, and then the stronger one.
The final circuit we consider consists of three neurons,

two of which are symmetrically coupled, receiving the
common inhibition from the third neuron, the pacemaker.
This configuration has been identified among the most
frequently represented motifs [4,26], and is here dubbed
in reference to the study of CPGs [12,27]. Given the

Fig. 8: (Colour on-line) Burst synchronization between the
driven neurons under the influence of the pacemaker. (a) The
pacemaker series, shown black, lies in anti-phase with the
sequences of the driven neurons, displayed by blue (dark
grey) and orange (light grey). The data are obtained for
gc = 0.1, gcp = 0.3 and τ = 10, with the stimulus on pacemaker
σp =−0.9, and on the driven neurons σ=−1.2. (b) The
superimposed sequences correspond to the driven neurons,
whereas the non-interacting map and the two interacting maps,
gc and gcp, are presented by black, blue (dark grey) and orange
(light grey) lines, respectively.

connection topology, it comes natural to assume the
stimulus heterogeneity, whereby the reason for selecting
the duty cycle of the pacemaker longer than the driven
neurons (σp >σ) will become clear below. Compared to
the binary motif, there is a qualitatively new occurrence of
burst synchronization between the driven neurons at small
τ , that arises under the action of the pacemaker. In this
regime, the pacemaker lies in anti-phase with the driven
neurons (fig. 8(a)), implying the importance of the relative
positions of the gc and gcp interacting maps in the phase
plane (fig. 8(b)). On the other hand, distinguishing from
the symmetrical three-node motif, burst synchronization
of the driven neurons is not contributed by the joint
inhibition, that is the gc+ gcp map. Herein, silence of the
driven neurons coincides with the climbing of the phase
point along the stable branch of the gcp map, whereas
bursting takes place between the envelopes defined by the
gc map. This gives an insight into how gcp and gc should be
adjusted: gcp > gc is necessary to hold, so that the motion
along the stable branch of the gcp map covers the entire
bursting interval of the pacemaker.
In light of the previous motif configurations, to consider

the effects on dynamics mediated by the stronger delay,
we examine the variation of the quantity H for the
driven neurons in the (gc, τ)-plane, keeping gcp fixed (see
fig. 9(a)). One observes a non-trivial effect of the time
delay: there is an area of high burst synchronization for
τ > 60, even in case gcp < gc. We further confirmed this by
determining H in the (gc, gcp)-plane for the two selected
delay values, τ = 10 (fig. 9(b)) and τ = 90 (fig. 9(c)). As
opposed to the former, in the latter case the area of high
synchronization makes an incursion beyond the identity
line, partly due to the burst duration of the driven neurons
being controlled by τ . Then the time series assumes very
specific form (see fig. 9(d)), that involves repetitive cycles
where, during the two bursts of the pacemaker, the driven
neurons burst three times. In an ideal case, the middle
burst of the driven neurons fits in the interburst interval of
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I. Franović and V. Miljković

Fig. 9: (Colour on-line) Extensive exploration of burst synchro-
nization for the motif with pacemaker. (a) H-dependence for
the driven neurons in the (gc, τ)-plane with gcp fixed at 0.15.
The stimulus to pacemaker σp =−0.9 is stronger than the one
on the driven neurons (σ=−1.2). (b) For τ = 10 the driven
neurons are synchronized in phase only for gcp > gc. (c) For
τ = 90 burst synchronization between the driven neurons is also
possible if gcp < gc. (d) From top to bottom are displayed the
respective waveforms of the pacemaker and the driven neurons,
obtained for τ = 90 and (gc, gcp) = (0.14, 0.08).

the pacemaker, which requires σp >σ be fulfilled. Since the
phase plane dynamics becomes more involved, it suffices to
say that in contrast to the previous cases, synchronization
in phase between the bursts takes place on the coupled
map, specifically the one for gcp.

Summary. – What we presented so far implies that
the phase plane analysis may serve as a shortcut in under-
standing the relation between the modulated dynamics
on a single neuron level and the activity of the coupled
system. This is upheld for any of the considered motifs,
but it is easiest to summarize in case of the binary one,
where the bursting series of a neuron reduces to a virtual
two-state dynamics, such that the occurrence and the
increasing number of short bursts give rise to H, the
quantity introduced to characterize the degree of burst
synchronization. In case when the asymmetry of synap-
tic weights and/or stimuli is involved, the phase plane
approach enabled us to explain how the change of parame-
ters influences the coexistence and the succession between
the different regimes of coordinated neuron activity. On
the point of topology, it stands out that along with the
rhythms shared between the motifs, one also finds a unique
rhythm, specific for each motif configuration. Whether
an analogy to this can be extended if the conductance-
based neuron models are implemented remains to be seen,
but so far it is known that the winnerless rhythm in
the asymmetrical motif [10] and burst synchronization
between the driven neurons in the pacemaker motif [12]
exist under conditions similar to ours when coupling the

Hodgkin-Huxley neurons. Thinking ahead, the research
presented may open the way toward identifying the func-
tional motifs and analyzing their interactions in larger
networks.
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