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Abstract 
 
We look at quantum mechanics in the functional formalism and investigate the trajectories that give 
dominant contribution to transition amplitudes. This is done by restricting the sampled trajectories to an 
area of width δ(t) for a chosen t, and by calculating the relative error r with respect to the exact amplitude. 
The Monte Carlo simulations presented were for the case of the anharmonic oscillator with quartic 
interaction for a wide range of relevant parameters. We found a simple dependence of δ(t) and, in 
particular, the dependence of this width on the relative error r and anharmonicity g. 
 



Introduction 
 
Quantum mechanics has several different but equivalent formulations [1, 2]. The usual approach that has 
been developed in the early days of quantum mechanics is the operator formalism. In this formalism the 
state of a quantum system in a moment t is written as a vector in abstract Hilbert space t,Ψ . Although 
there are different ways to represent this vector, the coordinate representation is most often used. In this 
representation the state is given as a linear combination of basis vectors tq, , where q is the position of a 
particle in the moment t. For the simplicity, the considered system in this paper will consist of one particle 
in one spatial dimension. 
 
Within the operator formalism, the probability (transition) amplitude for the system to evolve from the state 

αα t,  to state ββ t,  is given as 

( ) ( ) αβαββα ααβαββα tttUttttA ,ˆ,,,;, −== , 

where  represents the evolution operator and describes the evolution of the system from 
the moment tα to the moment tβ. The square of the probability amplitude module is equal to the probability 
that the particle, initially in 

),(ˆ
ααβ tttU −

αα t,  at the moment tα, will be in ββ t,  at the moment tβ. For systems 

invariant under time translations (conservative systems, i.e. with conserved energy), the evolution operator 
depends only on the time of evolution and is given by 

⎟
⎠
⎞

⎜
⎝
⎛−= THiTU ˆexp)(ˆ

h
, 

where Ĥ
T

 is the Hamiltonian operator of the system. For these systems, the amplitude A depends only on  
α, β and , αβ tt −=

( ) ( )TAttA ,,,;, βαβα βα = . 
 
Some aspects of the application of the functional formalism to quantum mechanics are investigated in this 
paper. The calculation of probability amplitudes in this formalism uses all possible trajectories consistent 
with the initial and final state of the system, q(tα)=α, q(tβ)=β. Contributions of each trajectory to the 
probability amplitude are equal to ( )h/exp Si , where S is the corresponding action calculated on the 

given trajectory ( , L is the Lagrangian of the system). Formally, the transition amplitude in this 

formalism is given as the following functional integral (for details, see [3]) 

∫=
β

α

t

t

dtLS

( ) [ ] ( )[ ]
∫=

tqSi

edTA hμβα ,, , 

where [dμ] represents the measure of integration. The measure depends on the specific theory and must be 
calculated independently in each case. However, for a wide class of theories it is just equal to the product of 
coordinate’s differentials, as we will see in the next chapter. Although the standard integral symbol is used, 
functional integrals are not Riemannian integrals that we are often faced with in physics, but rather infinite 
limits of multiple integrals (the limit spoils the Riemannian property).  Instead of integration over an 
interval, functional integrals (also called path integrals) as their domain have all possible trajectories 
consistent with the initial and final conditions. In other words, we have to integrate over infinitely many 
variables q(t), which makes these calculations extremely difficult. Numerically they are calculated using 
Feynman's discretization, which is described in the next chapter. 
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All possible trajectories are not giving equal weights. The relevant ones (giving dominant contribution) are 
known to be in the vicinity of the average value of q(t) [4, 5], given by  

( )
[ ] ( ) ( )[ ]

[ ] ( )[ ]⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

∫

∫

tqSid

tqSitqd
tq

h

h

exp

exp

μ

μ
. 

In the semi-classical sector of the theory the action is much greater than Planck’s constant  and 
the above average value can be approximated by the classical solution qcl(t), 

( )h>>S

( ) ( )tqtq cl≈ . 
 
The aim of this paper is to identify trajectories with dominant contributions to probability amplitudes 
calculated in the functional formalism. If the set of trajectories is restricted to belong to an area of width 
δ(tp) around the classical solution at fixed moment tp, then the obtained probability amplitude will have 
some relative error r. The correspondence between δ(tp) and r was used as a measure of the relevance of a 
trajectories' contribution. 

 

Trajectories Relevant for the Calculation of Path Integrals 
 
Standard Feynman discretization [1] was used in this paper for the calculation of probability amplitudes 
A(α, β, T). Time of evolution T is split into N time slices NTN /=ε . We considered the class of theories 
defined by Lagrangian of the form 

( )qVqmL −= 2

2
1

&  

For this class of theories [1], the amplitude A is given as the multiple integral limit* 
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 where α=0q , β=Nq , 
2

1
1,

+
+

+
= nn

nn
qqq . From this formula we see the exact form of the measure in 

functional integral for this wide class of theories. 
 Wick rotation of time is used to obtain convergence of the above multiple integrals. It represents 
the formal exchange of real and imaginary time axes ( τ→it ), or 90˚ counterclockwise rotation of 
integration contour in the complex-time plane. After this transformation, the amplitude A can be written as 
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The inverse Wick rotation can be performed if necessary. Usually we are interested in physical quantities 
(observables) that do not depend explicitly on time (e.g. energies), and imaginary-time amplitudes are 
sufficient for their calculation. 
 
The above integral can be solved analytically only for a small number of potentials of interest (linear 
harmonic oscillator, Coulomb potential). For this reason various analytical and/or numerical approximation 
schemes are of particular importance when dealing with functional integrals. 

                                                 
* The natural system of units is used, defined by 1== ch   
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For a fixed value of time steps N, the calculation of the discretized path integral gives the running 
amplitude value AN. The exact value for the amplitude A is obtained in the limit N→∞. N-dependence of AN 
is polynomial in 1/N [1, 3] (Figure 1), vanishing in the large N limit. The amplitude A is obtained by fitting 
several values AN to curves of the form 

L+++= 2
21

0 N
a

N
aaAN  . 

the variable N, since the method of least squares provides most reliable results for polynomial 
nctions. 

 

 
The optimal choice is to fit the values AN to a polynomial in x=1/N, introducing it as a new variable, rather 
than using 
fu

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0 20 40 60 80 100  
Figure 1: Typical dependence of AN on the number of time slices N. The graph also shows fitted 4-th order polynomial 
in 1/N (green line) and the value A= 0.1870294(3) (blue line), obtained in the limit N → ∞. Parameters of the theory are 

T=1, and the number of Monte Carlo samples is NMC=107. 

 consider scalar field theory, which is in 1D just an anharmonic oscillator with quartic 
anharmonicity, 

g=1, 
 
In this paper we

4222

!422
& , 

where g is the anharmonicity. By appropriately rescaling coordinate q and time τ one can always remove 
the parameters m and ω, setting them to 

11 qgqqmL −−= ω

1==ωm he , the only remaining parameters are α, β, . T refore g, 
. In this paper we fixed the values of α and β to 0=α , 1=βT , while parameters g and T were varied. 

tion, 
 
As mentioned in the Introduc the relevant trajectories for the calculation of path integrals are in the 
vicinity of the average value ( )tq . The calculation of average value is numerically equally demanding as 
the calculation of the path integral itself. Therefore, in this paper we limit ourselves to anharmonicities that 
will keep us in semi-classical sector of theory, allowing us to approximate expected value with the classical 

lution qcl(t). 

was re d 
e classical solution qcl(tp). For all other moments 

so
 
To determine how the obtained value of the amplitude A depends on the width δ, the integration over 
coordinate q(tp) at the fixed moment of evolution tp stricted on the interval [qcl(tp)-δ, qcl(tp)+δ] aroun

pk tt ≠  ith ntegration over coordinate was not restricted. 
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For a fixed moment of evolution tp and fixed width δ, A(tp, δ) can be obtained as before, using a polynomial 
fit in 1/N of values AN(tp, δ). The value A=A(tp, ∞) represents the exact probability amplitude and has no 
dependence on tp. The amplitude A(tp, δ) has relative error r defi d as ne

( )
A

AtA
r p −
=

δ,
. 

 
We investigated the dependence δ(tp) for fixed value of relative error r. To achieve this, A(tp, δ) was 
calculated for several values of ( )Ttp ,0∈  and δ. The interval for values of δ was chosen so that the 
corresponding relative errors r were between 0.1% and 10%. Then, for a fixed tp and several values of δ, 
dependence r(δ) was studied. Finally, inversion of this dependence has enabled us to find the δ(tp) 

ependence. At the end, we investigated the dependence of the maximal width δ on the value of 
anharmonicity g. 

he basic Monte Carlo algorithm from [3] (with slight modifications) was used for the numerical 

mulations took about 60 
hours of time on 0.16 TFlops Linux cluster PARADOX at the SCL (Scientific Computing Laboratory of 
the Institute of Physics, Belgrade [7]). This paper is direct continuation of one of SLC's ongoing fields of 
research, as well as their dissemination and outreach program for young scientists. 

d

 

Numerical results 
 
T
calculations in this paper. As required in the previous chapter, the algorithm was changed (see Appendix) 
to restrict the integration over coordinate q at the fixed moment tp to the interval [qcl(tp)-δ, qcl(tp)+δ]. 
 
Simulations were run for four different values of anharmonicity g (g=0.1, g=1, g=10, g=100), two values 
of evolution time (T=1, T=10), 50 equidistant values of tp, ten values of δ independently pre-chosen for 
every set of parameters (g, T) to provide relative error r up to 10%. The typical number of Monte Carlo 
samples NMC was 107. In order to obtain A(tp, δ) as zeroth order term of polynomial in 1/N, the AN(tp, δ) 
values were fitted (Figure 2) using command line interface software gnuplot [6]. Four values of time slices 
number N were used (N=50, N=100, N=150, N=200). For each combination of parameters g and T the 
exact amplitude A was also calculated using the original algorithm, as well as by using our algorithm with 
extremely large values of width δ. This test was used to verify our algorithm. All si

0.1564

0.1565

0.1566

0.1567

0.1568

40 60 80 100 120 140 160 180 200 220  
Figure 2: Typical N-dependence of the amplitude AN (tp, δ), obtained when the integration over q(tp) was restricted on 
the interval [q(tp)-δ, q(tp)+δ]. Graph also shows fitted quadratic polynomial in 1/N (green line) and its zeroth order term 
(blue line), equal to A(tp, δ). Exact value of the functional integral is A=0.159438(2). Parameters of the theory are g=10, 
T=1, tp=0.3, δ=1, and NMC=9.6 ·106. Relative error is r=1.9%. 
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To determine the width δ* corresponding to the fixed relative error r* for a fixed moment tp, A(tp, δ) has to 
be calculated for several values of δ, to allow us to numerically study the r(δ) dependence. The sought-after 
value of δ* was then calculated from the inverse dependence δ(r), as δ*=δ(r*). Figure 3 shows a typical r(δ) 
dependence. It is obvious that r tends to zero when δ→∞ [in that case, integration over coordinates is not 
restricted and the obtained result must be equal to the exact amplitude A(tp, ∞)=A]. The value of A(tp, δ) 
decreases as the value of δ decreases (because the interval of integration shrinks and the number of 
trajectories that lie in that area also decreases; consequently the sum of their contributions is smaller and 
smaller). This is only true for theories in Euclidean space-time, which is obtained after Wick rotation. 
Therefore, the value of r increases as the value of δ decreases, a  r(δ) is monotonic decreasing function. 

r δ=0

nd
From Figure 3 (right) we see that r(δ) is linear on a log-normal scale. We conclude that, for the considered 
interval of δ, 

δδ berr −= 0)( . 
This function satisfies all the above mentioned requirements. Fo  we would expect A(tp, 0)=0, since 
there is only one trajectory satisfying the condition q(tp)=qcl(tp) (the classical one). The probability that the 
generated q(tp) equals qcl(tp)  is negligible, so A(tp, 0)=0. We could expect that this means r(0)=1, i.e. r0=1. 
The actually fitted function does not satisfy this condition (since 10 ≠r ), from which we ca ude that n concl
the chosen function does not give a good description of r(δ) in th ity of δ=0, i.e. there exist additional 
terms to the above function. However, we are interested in th alues of δ (giving 

e vicin
e larger v 1<<r ), so the 

above formula is quite useful. Its inverse is given by 

γ
δ rrr lnln)( 0 −= . 

 

 

eter sets T=10 (Fi
tories on classi

0.05 0.1

Figure 3: Typical δ-dependence of r (relative error of A(tp, δ)) fitted to exponential function (left), also shown on log-
normal scale (right). Parameters of the theory are g=100, T=1, tp=0.7, a NMC=9.6 ·107. 
 
For param g=10, T=10 and g=100, gure 4) the dependence r(δ) does not have the above 
given exponential form. We have chosen to center the area containing the relevant trajec cal 
trajectory ( )tqcl , instead on expected value ( )tq . For large values of anharmonicity g and large times of 

volution T, quantum phenomena have dominant contribution and the approximation e ( ) ( )tqtq cl≈  is 

e found numerically that for α=β the dependence δ(tp) is symmetrical around tp=T/2, having the same 
dependence on tp and T-tp. In the considered case α=0, β=1, dependence δ(tp) is numerically found to be 
only slightly asymmetric, so the function δ(tp) still displays a similar dependence on tp and T-tp. 
 

not applicable. For these reasons those parameter sets were excluded from further consideration. I would be 
most interested if it would be possible to continue this line of investigation in the future. 
 
W
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Figure 4: Example of a graph where r(δ) does not have exponential form. Parameters of the theory are g=100, T=10, 
tp=4, and NMC=3.84 ·108. 
 
Schrödinger’s equation in imaginary time is actually the diffusion equation [8]. The average distance from 
the starting point in the diffusion processes is proportional to the square root of the time. Therefore, the 
dependence δ(t) was fitted to a polynomial in t  and tT − . The obtained numerical results were 

consistent with second- and third-order polynomials in t  and tT −  (depending on the parameters of 

the theory),  
( ) ( ) ( )tTptptTtptTptpptF −++−+−++= 5432102  

( ) ( ) ( ) ( )
( ) .98

2/3
7

2/3
65432103

tTtptTtp

tTptptTptptTtptTptpptF

−+−+

+−++−++−+−++=
 

 
The general fit results in all cases show that 54 pp ≈ , thus p4 t and - p5 t terms cancel, while the p5 T term 
can be removed (it is a constant term, like p0). For this reason, we set p4=p5=0 in the above expressions. 
The value of the coordinate q(t) is fixed at the initial and final moments. Therefore δ(0)=δ(T)=0, which 
leads to a further reduction in the number of polynomial coefficients. 
 
For large evolution time (T=10) it has been found that δ(t) can be successfully fitted to a second-order 
polynomial of the form 

( ) ( ),1 3002 tTtp
T
t

T
tpptF −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=  

obtained after applying all the mentioned requirements. Figures 5 and 6 show the dependences δ(t) fitted to 
polynomials F2(t) for different values of theory parameters and different values of fixed relative error r. 
 
For a short time evolution (T=1) we found it appropriate to use a third-order polynomial fit. We found that 
terms proportional to ( )tTt − , ( )tTt − , and ( )tTt −  always have coefficients which vanish 
within the error bars. Therefore we used 

( ) ( )( ) 2/3
20

2/3
102103 )( tTpptpptTptpptF −+−+−−++= , 

obtained by applying the requirements δ(0)=δ(T)=0. Figures 7-10 show the dependences of δ(t) fitted to the 
polynomial F3(t) for different values of theory parameters and different values of fixed relative error r. 
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Figure 5: δ(t) and the appropriate polynomial fit F2(t) for parameters g=0.1, T=10, r=2%; NMC=9.6 ·106; 
A=0.00223656(3). The coefficients of the polynomial are p0=-32.3(4), p3=-2.35(4). 
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Figure 6: δ(t) and the appropriate polynomial fit F2(t) for parameters g=1, T=10, r=6%;  NMC=9.6 ·106; 
A=0.0017461(3). The coefficients of the polynomial are p0=-25.6(4), p3=-1.88(3). 
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Figure 7: δ(t) and the appropriate polynomial fit F3(t) for parameters g=0.1, T=1, r=1%; NMC=9.6 ·106; 
A=0.19047435(4). The coefficients of the polynomial are p0=-2.38(9), p1=2.72(4), p2=2.75(4). 
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Figure 8: δ(t) and the appropriate polynomial fit F3(t) for parameters g=1, T=1, r=4%; NMC=9.6 ·106; A=0.1870296(3). 
The coefficients of the polynomial are p0=-2.07(9), p1=2.23(4), p2=2.22(4). 
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Figure 9: δ(t) and the appropriate polynomial fit F3(t) for parameters g=10, T=1, r=2%; NMC=9.6 ·106; A=0.159438(2). 
The coefficients of the polynomial are p0=-2.66(7), p1=2.63(3), p2=2.55(3). 
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Figure 10: δ(t) and the appropriate polynomial fit F3(t) for parameters g=100, T=1, r=5%; NMC=9.6 ·107; 
A=0.064738(2). The coefficients of the polynomial are p0=-2.7(1), p1=2.32(5), p2=2.15(5). 
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We have also found (Figure 11) that the coefficients p0 and p3 from second-order fit polynomials, as well as 
p0, p1, p2 from third-order fit polynomials are all linear in log r, 

rDCp iii log+= . 
This result has been obtained numerically, and we have not found an analytical derivation of this rather 
simple result. Numerical values of constants Ci and Di  for different theory parameters are given in Table 1. 

 

 
Figure 11: Typical r-dependence of the fitted polynomial coefficients. The graph on the left shows r-dependence of p3, 
while the graph on the right shows the same dependence, but on the log-normal scale. To guide the eye, on both graphs 
we also show the fitted linear function in log r, C3 + D3 log r, where C3=-0.87003(1) and D3=0.377332(4). The 
parameters of the theory are g=0.1, T=10. 

 
 

 g=0.1, T=1 g=1, T=1 g=10, T=1 g=100, T=1 g=0.1, T=10 g=1, T=10 
C0 -3.70307(1) -2.92137(1) -2.11041(1) -1.540610(9) -11.41734(6) -11.42315(7) 
D0 -0.287738(3) -0.265424(3) 0.139224(3) 0.391007(3) 5.34641(2) 5.05325(3) 
C1 2.063571(4) 1.57559(1) 1.26178(1) 1.16817(2) - - 
D1 -0.142509(1) -0.204107(3) -0.349091(3) -0.383607(4) - - 
C2 1.98575(1) 1.607329(3) 1.55055(1) 1.03324(1) - - 
D2 -0.165860(3) -0.1910854(7) -0.255742(3) -0.371171(3) - - 
C3 - - - - -0.87003(1) -0.868184(7) 
D3 - - - - 0.377332(4) 0.359150(3) 

 
Table 1: Log-dependence parameters of polynomial coefficients for different sets of theory parameters. 

 
 

For the considered sets of theory parameters g and T and for fixed values of relative error r, we can 
calculate the coefficients of the polynomial function ( )tTt −,δ  using the data given in Table 1. 
These coefficients define the dependence δ(t), allowing us to find the width δ of area around the classical 
solution qcl(t) giving the amplitude with a fixed relative error r. 
 
It would be very interesting to continue this line of research in the future, particularly to use the obtained 
information about δ(t) (i.e. to incorporate this into the Monte Carlo algorithm) in order to further optimize 
the calculation. If integration is restricted to the interval [qcl(t)-δ(t), qcl(t)+δ(t)] for all moments of evolution 
t (and not as in this paper, for only one fixed moment), the amplitude will have some relative error R. The 
dependence R(r) would be also very interesting to study, since this what would be directly applied in the 
proposed optimization. The restriction of integration at only one point of evolution complicates the 
algorithm, while restriction of integration at all times greatly simplifies it. The reason for this is that we can 
avoid generating large number of trajectories lying outside the obtained area around the classical solution. 
Therefore, we can expect substantial speedup of Monte Carlo algorithms. 
 
At the end, we will present the results obtained for the dependence of the maximal width δ on the 
anharmonicity g. The observed dependences δ(t) implicate that the width δ reaches its maximal value at the 
moment t=T/2. The amplitude A(δ, T/2) was first calculated for different values of g and δ, and then the 
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dependence r(δ) was studied for fixed values of T and g. Inversion of this dependence allowed us to find 
the δ(r) function which is necessary for calculating the value of δ that corresponds to the fixed value of 
relative error r. If we apply the same procedure for several values of g, we obtain the sought-after 
dependence. 
 
The basic Monte Carlo algorithm used in this paper is now further changed so that integration is restricted 
only at T/2. Simulations based on the changed code were run for 50 different values of anharmonicity g 
(g=0.2, 0.4,..., 10.0), 51 equidistant values of δ (δ=0.50, 0.53,..., 2.00), evolution time was T=1, and typical 
number of Monte Carlo steps was 9.2.108. These simulations took a further 45 hours of time on the SCL's 
PARADOX cluster [7]. 
 
The r(δ) dependence was already considered earlier in this paper and it was concluded that it can be 
described by the function . However, the probability amplitudes are now calculated 
restricting the integration to the area with larger values of width δ, i.e. the relative errors r were smaller (up 
to 0.1%). Thus, the introduction of new parameter in the function r(δ) was necessary in order to have good 
agreement with the obtained numerical data, 

δδ berr −= 0)(

( ) ( )( )2exp δδδ cbar ++−= . 
Quadratic term was added in the exponent of the above expression, while r0=exp(-a). We can see that this 
is indeed necessary from the Figure 12 (right), were parabolic dependence r(δ) on a log-normal scale is 
clearly visible. 
 
 

0.1 0.1

 
 
Figure 12:  Typical δ-dependence of the relative error r at t=T/2 fitted to the chosen function r(δ) (left). Same 
dependence shown on a log-normal scale (right). Coefficients of the function are a=0.179(6), b=1.10(2), c=2.151(6), 
while parameters of the theory are g=4.0, T=1, t=0.5, NMC=9.6 ·107. 
 
 
By inverting r(δ) we obtain 

( ) ( )
c

racbb
r

2
ln42 +−+−

=δ . 

 
We found that (for T=1) the dependence δ(g) can be well approximated by a quadratic function (Figure 13), 

δ(g) = m0 + m1 g + m2 g2 . 
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0.845

 
 
Figure 13: Typical quadratic g-dependence of the width δ. (Left) Fitted coefficients are m0=1.0425(1),  m1=-0.00830(5), 
m2= 0.000248(5), evolution time is T=1, while the fixed relative error is r=3%. (Right) Fitted coefficients are 
m0=0.84118(6),  m1=-0.00627(3), m2=0.000172(3), evolution time is T=1, while the fixed relative error is r=8%. 

 
We also determined that the coefficients m0, m1, m2 of the function δ(g) have no further g-dependence and 
have logarithmic dependence on the relative error r. The log-normal plot (Figure 14, right) of r-dependence 
of mi is linear, and we conclude that mi can be described by a linear function in log r, 

mi = ui + vi log r. 
The values of coefficients ui and vi are given in Table 2. 
 

 
 
Figure 14: Typical r-dependence of coefficients mi of quadratic function δ(g). r-dependence of m2 (left) is also shown 
on a log-normal scale (right). Fitted function u2+v2 log r, with u2=-0.000021(2) and v2=-0.0000766(5) is plotted on the 
graphs. 
 
 
 
 

i ui vi 
0 0.33(1) -0.201(4) 
1 -0.00113(5) 0.00204(2) 
2 -0.000021(2) -0.0000766(5) 

 
Table 2: Parameters ui and vi, defining the r-dependence of coefficients m0, m1 , m2 for evolution time  T=1. 

 
For fixed evolution time T=1, and chosen value of relative error r within the range of 0.1% to 10%, we can 
calculate the coefficients mi using the values from Table 2, i.e. we are able to determine the function δ(g). 
As indicated before, this can be used to further optimize the algorithm. 
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Summary 
 
We have investigated the trajectories giving a dominant contribution to the probability amplitudes in 
quantum mechanics. All the calculations were done on the example of the anharmonic oscillator with 
quartic interaction. The Monte Carlo algorithm from [3], developed for calculation of functional integrals 
in 1D theories, was modified to appropriately restrict the interval of integration. For small values of 
anharmonicity g and time of evolution T we found numerically that the most important trajectories lie in the 
vicinity of the classical solution qcl(t). Keeping only trajectories that are within the width δ(t) of the relevant 
area around qcl(t) leads to amplitudes with relative error r. 
 
The investigation of the dependence of δ(t) on r was the central part of this paper. We found that δ(t) is well 
approximated by a polynomial in t  and tT −  whose coefficients are linear in log r. We also 
investigated the dependence of the maximal width δ(T/2) on the anharmonicity, and found a quadratic 
behavior. The coefficients again were linear in log r. 
 
It would be very interesting to extend the derived results in a future work, by using the uncovered 
properties as a way to speeding up the Monte Carlo algorithm for functional integrals. 
 

Acknowledgments 
 
I would like to thank my mentor Antun Balaž (Institute of Physics, Belgrade) for his guidance during my 
work on the project. I would also like to thank dr Aleksandar Bogojević (Institute of Physics, Belgrade) and 
dr Aleksandar Belić (Institute of Physics, Belgrade) for the constructive advices. Finally, I would like to 
thank Petnica Science Center and Institute of Physics, Belgrade for making this project possible. 
 
 
Appendix: The code modifications 
 
For the numerical simulations in this paper some modifications were made to the basic code for the 
calculation of probability amplitudes [3]. The code is written in MPI C programming language, specialized 
for parallel processing on distributed memory multiprocessor systems. 
 
Some global variables were added: variable tp for the moment tp at which the integration is restricted, 
variable delta for width δ, variables maxdelta and mindelta for defining the range of δ that is used. 
The number of moments tp of integration were integration was restricted NPOZ, and the number of different 
values of δ NDELTA were added as preprocessor constants. 

 
#define NPOZ 50 
#define NDELTA 10 
long tp; 
double delta, maxdelta, mindelta; 
 

The range of δ values is entered on the command line and processed by the main() function, as well as 
maxcoeff, defining the number of different values N of time slices. The original parameter N is replaced 
to be the minimal value Nmin of time slices N, and used values of N are Nmin, ... maxcoeff*Nmin. 
 
For the first part of the paper the central part of the function main() was modified. It was put in a loop 
over different N values. Also, the parts of functions that generate the trajectories and calculate the 
functional integral were put in loops over δ and tp values. Loop over tp was removed from the program used 
in the last part of the paper (because it uses only tp=T/2) and the loop over g values was introduced. 
 
double step, delta; 
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long coeff; 
for(coeff = 1; coeff <= maxcoeff; ++ coeff) { 
   N = coeff * Nmin; 
   . 
   . 
   step = (maxdelta - mindelta) / NDELTA; 
 
   for (itp = 1; itp < NPOZ; ++ itp) { 
      pozicija = itp * coeff; 
      for(delta = maxdelta, idelta = 0; idelta < NDELTA; 
          delta -= step, idelta ++) { 
         . 
         . 
      } 
   } 
   . 
   . 
} 
 
The major code modification were made in function distr() which generates the trajectories. In order to 
restrict the integration over coordinate q(tp), an if-statement was added: if the generated coordinate vale at 
the moment tp does not belong to the interval [qcl(tp)-δ, qcl(tp)+δ], the function returns zero value, while if it 
does belong to the above interval, the number 1 is returned. It was also necessary to add as the function 
argument an array, cl[], containing the classical solution. 
 
int distr(double *distrpar, long *seed, double *x, double *pinv, 
          double *cl) { 
   double ran3(long *); 
   double var, rand1, rand2; 
   long i, k; 
   int ind = 1; 
   for(i = 1, var = 0; i < N; ++ i) { 
      while(!(rand1 = ran3(seed))) {} 
      while(!(rand2 = ran3(seed))) {} 
      q[i] = sqrt(- 2 * distrpar[N - 1 + i] * log(rand1)) * 
             cos(dpi * rand2); 
      var += q[i] * q[i] / (2 * distrpar[N - 1 + i]); 
   } 
   *pinv = (N - 1) * log(dpi) / 2 - logdet / 2 + var; 
   for(i = 1; i < N; ++ i) { 
      x[i] = distrpar[i]; 
      for(k = 1; k < N; ++ k) { 
         x[i] += D[i][k] * q[k]; 
      } 
      if ((i == tp) && (fabs(x[i] - cl[i]) > delta)) { 
         ind = 0; 
      } 
   } 
   return ind; 
} 
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