
Sep 18, 2009

GDB TUTORIAL

Vladimir Slavnić
Scientific Computing Laboratory
Institute of Physics Belgrade, Serbia
http://www.scl.rs/

Sep 18, 2009

Debug or not?

 What is debugging?

 “The best debugging is to avoid bugs”

- good program design

- follow good programming practices

- always consider maintainability and

readability of code over getting

results fast

- maximize modularity and code re-use

 Debugging is a last resort

GDB tutorial

Sep 18, 2009

printf() or debugger?

 Using printf() (adding trace to program)

 With debugger you can:

- attach to running process

- change the value of variables at
run-time

- make program stop on specific
conditions

- list source code

- print variables type

- inspect a process that has
crashed

- ...

 Answer is obvious!

GDB tutorial

Sep 18, 2009

GDB

 Symbolic debugger – part of the Free

Software Foundation's GNU OS (copyleft)

 Can debug Java, C, C++, Assembly,
Fortran

 Runs on any Unix architecture

 Debugging standard

 There are others:

- dbx

- ups

- pgdbg

GDB tutorial

Sep 18, 2009

Basic usage: compiling

 Enable debugging with flags -g or –ggdb:

gcc –g –o test test.c

 Source code and executable one to one
mapping is made

 Symbol table

 Optimization can change things!!!

GDB tutorial

Sep 18, 2009

Basic usage: loading

 Load executable:

gdb ./test

 Symbols are loaded and we can run
program (VM)

 We see a command prompt:

(gdb)_

GDB tutorial

Sep 18, 2009

Basic usage: commands

 run - Start execution

 list [arg] - List source code around
argument

 break [arg] - Add a “break point” at arg

 delete n - Delete break point number n

 print [arg] - Print the content of arg

 continue - Continue execution after a
break

 next - Execute next line

 step - Step into next line (enters
functions)

 backtrace - History of function calls

 help – Shows help

 kill - Kill program witout quitting gdb

 quit - Quit gdb
GDB tutorial

Sep 18, 2009

 Type run and program will start (and
finish, maybe)

(gdb) run arg1 "arg2" ...

 set args – set arguments for next
running

 list - list lines of source code (10 lines
around argument are displayed):

list

list linenum

list function

list driver.c:20

 .gdbinit

Basic usage: run and list

GDB tutorial

Sep 18, 2009

Breakpoints, Watchpoints
and Catchpoints

 breakpoint - stops your program

whenever a particular point in the

program is reached

 watchpoint - stops your program

whenever the value of a variable or

expression changes

 catchpoint - stops your program

whenever a particular event occurs

GDB tutorial

Sep 18, 2009

Navigating through program

 next - Execute a single line in the
program. Skip over function calls

 step - Execute a single line in the
program. Step into functions

 continue - continue program being
debugged

 advance - continue the program up to the
given location

GDB tutorial

Sep 18, 2009

Call stack
1 #include <stdio.h>

2 void first_function(void);

3 void second_function(int);

4

5 int main(void)

6 {

7 printf("hello world\n");

8 first_function();

9 printf("goodbye goodbye\n");

10

11 return 0;

12 }

13

14 void first_function(void)

15 {

16 int imidate = 3;

17 char broiled = 'c';

18 void *where_prohibited = NULL;

19

20 second_function(imidate);

21 imidate = 10;

22 }

23 void second_function(int a)

24 {

25 int b = a;

25 }
GDB tutorial

Sep 18, 2009

Examining the stack

 backtrace - Print backtrace of all stack
frames

 frame - Select and print a stack frame

 up - Select and print stack frame that
called this one

 down - Select and print stack frame
called by this one

 info locals - Local variables of current
stack frame

 info args - Local arguments of current
stack frame

GDB tutorial

Sep 18, 2009

Setting Breakpoints

 Set a breakpoint at specific line on
current source code file:

(gdb) break 40

 Set a breakpoint at specific function:

(gdb) break my_function

 Set a breakpoint at specific line on some
source file :

(gdb) break parsing.cc:45

 Add condition to a breakpoint:

condition break_num expression

GDB tutorial

Sep 18, 2009

Removing breakpoints

 info breakpoints - get a list of
breakpoints

 delete – delete all break points

 delete n – delete breakpoint n

 clear function – delete breakpoint set on
function

 clear linenumber – delete breakpoint at
linenumber

 disable n – disable breakpoint n

 enable n <once, delete> – enable
breakpoint n

 ignore - skip a breakpoint a certain
number of times

GDB tutorial

Sep 18, 2009

Watchpoints

 Set on variables (expressions) - variable
must be in current scope

 watch – Set a watchpoint for an
expression.

 rwatch - Set a read watchpoint for an
expression.

 awatch - Set a read/write watchpoint for
an expression.

 Disable – turn off watchpoint

GDB tutorial

Sep 18, 2009

Catchpoints

 Set on events (C++ exceptions or the
loading of a shared library and others)

 catch EVENT – event can be :

throw - The throwing of a C++

exception.

catch - The catching of a C++ exception.

exec - A call to `exec'.

fork - A call to `fork'.

load - A loading of any library.

load LIBNAME - A loading of specific

library.

unload - Unloading of library.

thread_start – Starting any threads, just
after creation . . .

GDB tutorial

Sep 18, 2009

Inspecting variables 1/2

 ptype – print the data type of a variable

(gdb) ptype myvar
type = double

 print – view the value of a variable

(gdb) print i

$4 = -107

 Inspecting an array:

(gdb) p myIntArray

$46 = {0, 1, 2, 3, 4, 5}

(gdb) p myIntArray[3]@7

$54 = {3, 4, 5, 10, 1107293224,

1079194419, -1947051841}

GDB tutorial

Sep 18, 2009

Inspecting variables 2/2

 Inspecting a structure:

(gdb) p myStruct

$2 = {name = 0x40014978 “Mile mikic",

EyeColour = 1}

(gdb) print myStruct.name

$6 = 0x40014978 "Mile Mikic“

 set - Changing variable value (must be in
current context):

(gdb) set myvariable = 10.0

 All Fortran variables must be in
lowercase!!!

GDB tutorial

Sep 18, 2009

Debugging a Running
Process

 attach pid (from gdb) - attach to the
running process with pid

$ gdb

(gdb) attach 17399

Attaching to process 17399….

 $ gdb program pid (outside gdb) –

Attaching to program:
code/running_process/some-process,
process 17399

0x410c64fb in nanosleep () from
/lib/tls/libc.so.6

(gdb)

 detach – detach from process

 Change variables
GDB tutorial

Sep 18, 2009

Attach to a running process

#include <stdio.h>

#include <unistd.h>

static void PrintMessage(int i);

static void GoToSleep(void);

int main(void)

{

int i = 100000;

while (1)

{

PrintMessage(i);

GoToSleep();

i -= 1;

}

return 0;

}

void PrintMessage(int i)

{

printf("%d bottles of beer on the wall.\n", i);

}

static void GoToSleep(void)

{

sleep(3);

}
GDB tutorial

Sep 18, 2009

Segmentation Fault Example
(1/2)

#include <iostream>

using namespace std;;

void do_stuff(void) {

int *i;

i = NULL;

*i = 1;

}

int main(void) {

cout << "Hello world" <<endl;

do_stuff();

return 0;

}

GDB tutorial

Sep 18, 2009

 Common pointer pitfalls:

- dereferencing a NULL pointer

- dereferencing an uninitialized

pointer

- dereferencing a deleted pointer

- deleting an uninitialized pointer

- deleting a pointer twice

- writing beyond the bounds of an array

 Right usage

p = (char *) malloc(100);

if (p == NULL)

{ printf(``Error: Out of Memory \n'');

exit(1); }

*p = `y';

Segmentation Fault Example
(2/2)

GDB tutorial

Sep 18, 2009

Debugging Programs with
Multiple Threads

 info threads – display a summary off all
threads in program

(gdb) info threads

3 process 35 thread 27 0x34e5 in sigpause ()

2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1,
argv=0x7ffffff8)

at threadtest.c:68

 thread thread_num – make thread number
Thread_num current

GDB tutorial

Sep 18, 2009

Infinite loop example

1 : #include <stdio.h>

2 : #include <ctype.h>

3 :

4 : int main(int argc, char **argv)

5 : {

6 : char c;

7 :

8 : c = fgetc(stdin);

9 : while(c != EOF){

10:

11: if(isalnum(c))

12: printf("%c", c);

13: else

14: c = fgetc(stdin);

15: }

16:

17: return 1;

18: }

GDB tutorial

Sep 18, 2009

ddd - gdb graphical frontend

GDB tutorial

Sep 18, 2009

References:

 http://www.gnu.org/software/gdb/

 http://www.dirac.org/linux/gdb/

 http://www.delorie.com/gnu/docs/gdb/gdb_t
oc.html

GDB tutorial

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.dirac.org/linux/gdb/
http://www.dirac.org/linux/gdb/
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html
http://www.delorie.com/gnu/docs/gdb/gdb_toc.html

