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Motivation: In the recent experiment [1], a harmonic modulation of the atomic s-
wave scattering length induced a nonlinear dynamics of a 7Li BEC, and the resulting
resonance curve for the excited quadrupole mode was measured. By combining a
perturbative calculation with a numerical approach for solving the underlying Gross-
Pitaevskii equation, we study in detail the frequency shift of collective BEC modes
which arises due to nonlinear interaction effects [2].

BEC dynamics

⋆At zero temperature, BEC can be described by the time-dependent GP equation
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interaction defined by the s-wave scattering length a(t) and number of atoms N .

⋆GP equation can be studied using a Gaussian variational ansatz [3], yielding
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⋆Using Feshbach resonances, scattering length was harmonically modulated [1], yielding
the time-dependent interaction p(t) = p + q cos Ωt.

⋆Real-time dynamics for p = 15, q = 10, λ = 0.021 and Ω = 0.05:
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Excitation spectra

⋆Condensate dynamics depends strongly on the value of Ω, (p=0.4, q = 0.2, λ = 1):

 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

 0  5  10  15  20  25  30  35  40

t

Ω = 1, analytics
Ω = 1, numerics

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  5  10  15  20  25  30  35  40

t

Ω = 2, analytics
Ω = 2, numerics

 0

 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250  300  350  400

t

Ω = 2.04, numerics

⋆From the linear stability analysis we find equilibrium size u0 via u0 −
p
u4

0

− 1
u3

0

= 0 and

collective oscillation mode ω0 =
√

1 + 3
u4

0

+ 4p
u5

0

. For p = 0.4: u0 = 1.08183, ω0 = 2.06638.

⋆ In the corresponding Fourier spectra we observe nonlinear features - higher harmonics
generation, nonlinear mode coupling and frequency shifts:
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Poincaré-Lindstedt analysis

⋆Linearization of the variational equation for vanishing driving q = 0 yields zeroth order
collective mode ω = ω0 of oscillations around the time-independent solution u0. To
calculate the collective mode to higher orders, we rescale time as s = ωt [4]:
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⋆Far from resonances, we assume perturbative expansions in q:

u(s) = u0 + q u1(s) + q2 u2(s) + q3 u3(s) + . . . ,

ω = ω0 + q ω1 + q2ω2 + q3ω3 + . . .

⋆This leads to a hierarchical system of equations in orders of q [4]. To the 3rd order:
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Frequency shift of collective modes - spherically sym. BEC

⋆Frequency shift of the breathing mode is obtained by imposing the cancellation of secular
terms according to the Poincaré-Lindstedt method. Up to third order in q it turns out
that the 1st order correction ω1 vanishes, leading to a shift quadratic in q:

ω = ω0 + q2 Polynomial(Ω)

(Ω2 − ω2
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+ . . .

⋆Good agreement of numerical and analytical results is obtained for the frequency shift far
from resonances. On the left plot p = 0.4, q = 0.1, on the right plot p = 1, q = 0.8:
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⋆Frequency shifts of up to 10% are found for large modulation amplitudes.

Frequency shift of collective modes - axially sym. BEC

⋆Harmonic modulation of interaction leads to the simultaneous excitation of quadrupole
(ωQ) and breathing (ωB) mode, and their coupling.

⋆Good agreement of numerical and analytical results for the frequency shift of quadrupole
and breathing mode is obtained far from resonances, p = 1, q = 0.2 and λ = 0.3:
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⋆Analytical solution in the 2nd order in q exhibits poles; for the quadrupole mode poles are
at ωQ0, 2ωQ0, ωB0 − ωQ0, ωQ0 + ωB0 and ωB0 , while for the breathing mode positions of
poles are at ωQ0, ωB0, 2ωB0, ωB0 − ωQ0 and ωQ0 + ωB0.

⋆For the experimental setup [1]:
p = 15, q = 10, λ = 0.021,
ωQ0 = 0.035375, ωB0 = 2.00002,
ωQ0 << ωB0, Ω ∈ (0, 3ωQ0);
strong excitation of quadrupole mode and
significant excitation of breathing mode;
frequency shift of about 10%.
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Summary and outlook

⋆Using numerical Fourier analysis and analytical Poincaré-Lindstedt method, we calculated
the frequency shift of collective modes for a spherically and axially symmetric BEC excited
by harmonic modulation of the scattering length.

⋆To extend applicability of our analytical approach, perturbative expansion to higher order
has to be performed, or some kind of resummation of perturbative series could be applied.

⋆Clear experimental verification of such nonlinearity-induced frequency shifts may be pos-
sible using trap geometry with higher λ then the one used in Ref. [1].
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