ICTP Advanced School on Scientific Software Development Project: Parallel Implementation of Typical Medium Theory

Jakša Vučičević, Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia

Fields of interest: condensed matter theory, strongly correlated electronic systems

Main research topic: dynamical mean field theory

- Typical medium theory (TMT)
 - A method of solving the infinitely-dimensional disordered Hubbard model

First proposed by V. Dobrosavlievic in 2003

Typical medium theory of Anderson localization: A local order parameter approach to strong disorder effects

V. Dobrosavljević¹, A.A. Pastor¹ and Branislav K. Nikolić²

PACS. 72.15.Rn - Localization effects (Anderson or weak localization).

PACS. 71.27.+a - Strongly correlated electron systems; heavy fermions.

PACS. 71.30.+h - Metal-insulator transitions and other electronic transitions.

Abstract. — We present a self-consistent theory of Anderson localization that yields a simple algorithm to obtain typical local density of states as an order parameter, thereby reproducing the essential features of a phase-diagram of localization-delocalization quantum phase transition in the standard lattice models of disordered electron problem. Due to the local character of our theory, it can easily be combined with dynamical mean-field approaches to strongly correlated electrons, thus opening an attractive avenue for a genuine non-perturbative treatment of the interplay of strong interactions and strong disorder.

2 [cond-mat.dis-nn] 31 Jan 2003

Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, U.S.A.

² Department of Physics, Georgetown University, Washington, DC 20057-0995, U.S.A.

- ■Previous results only for the non-interacting case
 - Strong disorder drives the system into an insulating state by reducing the density of states available to electrons at the Fermi level (Anderson localization)
- ■We intend to use U>0 and obtain conductivity as a funtion of disorder, interaction strength and temperature

$$\sigma(W,U,T)$$

- Many impurities with randomized orbital energies are considered
- Iterative procedure is repeated until geometrically averaged (typical) impurity Green's function G is consistent with the hybridization function Δ
- My task was to write and parallelize this code so that it can be run in a reasonable time frame

- C++ (around 3000 lines incl. .h files)
- 2 computational nodes of 8 cores (Intel Xeon E5405 @ 2.00GHz) interconnected by Infiniband
- Intel compiler (icpc)
- Hybrid implementation (OpenMPI + Intel OpenMP)
- Example:
- 4 MPI processes
- 4 OpenMP threads per MPI process
- solving 10 impurities
- -Impurities distributed equally among MPI processes
- -Impurity Solvers parallelized using OpenMP threads solve one impurity at a time
- -Averaging performed with 8 threads by master process
- -MPI_Send and MPI_Recv used for communication

- Performance test
- Example
 - 32 impurities, U=0.1, T=0.1, W=0.3
 - Functions discretized on a grid of 2000 points
 - 41 iterations needed for reaching convergence

Number of MPI processes	Number of OpenMP threads per MPI process	Execution time [min:sec]
1	1	31:01
1	2	15:46
1	4	07:58
1	8	04:06
16	1	02:20
8	2	02:10
4	4	02:08
2	8	02:07