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We present and discuss a detailed derivation of an analytical method that systematically improves the
convergence of path integrals of a generic N-fold discretized theory. We develop an explicit procedure for
calculating a set of effective actions S�p�, for p=1,2 ,3 , . . . which have the property that they lead to the same
continuum amplitudes as the starting action, but converge to that continuum limit ever faster. Discretized
amplitudes calculated using the p-level effective action differ from the continuum limit by a term of order
1 /Np. We obtain explicit expressions for the effective actions for levels p�9. We end by analyzing the
speedup of Monte Carlo simulations of two different models: an anharmonic oscillator with quartic coupling
and a particle in a modified Pöschl-Teller potential.
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I. INTRODUCTION

In the functional formalism1,2 the general quantum-

mechanical amplitude A�a ,b ;T�= �b�e−TĤ�a� is given in
terms of a path integral which is simply the N→� limit of
the expression

AN�a,b;T� = � 1

2��N
�N/2� dq1 ¯ dqN−1e−SN. �1�

The Euclidean time interval 	0,T
 has been subdivided into
N equal time steps of length �N=T /N, with q0=a and qN
=b. SN is the naively discretized action of the theory. In this
paper we will look at theories with action of the form

S = �
0

T

dt�1

2
q̇2 + V�q�� . �2�

Note that we use units in which � and particle mass have
been set to unity. The naively discretized action is in this
case simply

SN = �
n=0

N−1 � �n
2

2�N
+ �NV�q̄n�� , �3�

where �n=qn+1−qn, and q̄n= 1
2 �qn+1+qn�. Key investigations

regarding numerical evaluation of path integrals were pre-
sented in the reviews of Barker and Henderson,3 Kalos and
Whitlock,4 and Ceperley,5 as well as in the papers by Pollock
and Ceperley6 and Barker.7 A modern and extensive refer-
ence on the subject of path integrals is given in the latest
edition of the textbook by Kleinert.8

As we can see, the very definition of path integrals makes
necessary the transition from the continuum to the dis-
cretized theory. This discretization, however, is far from
unique. In fact, the details of the discretization procedure are
extremely important both for analytical and numerical treat-
ment of path integrals. This dependence on discretization
procedure has been one of the principle impediments to cre-
ating a consistent mathematical theory of path integration.
On the numerical side, this manifests itself in the fact that
path integral simulations remain notoriously demanding of

computing time—so much so that certain path integral cal-
culations serve as benchmarks for new generations of super-
computers.

For this reason let us note that we have the freedom to
make two important choices that will not affect the final
result, i.e., the continuum amplitude we seek to calculate.
First, we have the freedom to choose the point in the interval
	qn ,qn+1
 in which to evaluate the potential V. It is well
known that different points correspond to different ordering
prescriptions in the operator formalism. The choice of the
middle point q̄n is the most common one. It corresponds to
the symmetric or Weyl ordering of operators p̂ and q̂, and so
always leads to a Hermitian expression for the Hamiltonian

Ĥ. Two other prescriptions are also often used. The left-
ordering prescription evaluates the potential at qn, the left
boundary of the above interval �in the operator formalism
this corresponds to taking the p̂’s to the left of the q̂’s in all
the products that appear in the Hamiltonian�. Similarly, one
defines the right-ordering prescription. Although they lead to
somewhat simpler-looking expressions, the left-and right
prescriptions do not in general give Hermitian Hamiltonians.
Let us note, however, that the class of theories given by Eq.
�2� has a Hamiltonian that is the sum of a p̂-dependent ki-
netic term and a q̂-dependent potential term, and so has no
ordering ambiguities. In this case different prescriptions lead
to the same continuum amplitude—the discretized ampli-
tudes do differ, but they tend to the same continuum limit.

The second, and more important, freedom related to our
choice of discretized action has to do with the freedom to
introduce additional terms that explicitly vanish in the con-
tinuum limit. We will designate such discrete actions as ef-
fective actions. For example, the term

�
n=0

N−1

�N�n
2g�q̄n� , �4�

where g is regular when �N→0, does not change the con-
tinuum physics since it goes over into �N

2 �0
Tdt q̇2g�q�, i.e., it

vanishes as �N
2 . Although such additional terms do not

change the continuum physics, they do affect the speed of
convergence to that continuum limit.
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The aim of this paper is to give a detailed exposition of a
systematic analysis that leads to the best solution in the class
of all equivalent effective actions, e.g., the effective action
that leads to the fastest convergence of the associated dis-
crete amplitude AN to the continuum expression. The uncov-
ered speedup in the path integral algorithm is a direct conse-
quence of analytical input that has come from the study of
the relation between discretizations of differing coarseness of
the same theory. We have given a brief presentation of these
ideas in a recent paper.9

The calculations that will be presented turn out to be sim-
plest in the midpoint prescription. Before we proceed with
them, it is useful to spend the next section in a brief over-
view of known results dealing with the speed of convergence
to the continuum limit.

II. BRIEF OVERVIEW OF KNOWN RESULTS

In this section we will compare the speed of convergence
of several different prescriptions to the continuum limit. The
naive midpoint prescription satisfies

AN�a,b;T�mid = A�a,b;T� + O�1/N� , �5�

for all a and b. By naive we mean that we use the naively
discretized action given in Eq. �3�. On the other hand, in the
naive left prescription the amplitude for a→a converges
much faster

AN�a,a;T�left = A�a,a;T� + O�1/N2� . �6�

This behavior can be easily shown both analytically and nu-
merically. We note in passing that this is strongly related to
the well-known result for the partition function evaluated
using naive discretization in the left prescription,10 which
follows directly from the above amplitude by integrating
over a �to get the trace� and writing the time of propagation
T as the inverse temperature �

ZN���left = Z��� + O�1/N2� . �7�

However, going back to the language of amplitudes, it is also
easy to show that the amplitudes for different initial and final
states converge slower, i.e., for a�b we have

AN�a,b;T�left = A�a,b;T� + O�1/N� . �8�

The problems with the speed of convergence of off-
diagonal amplitudes in the left prescription can be fixed very
easily. We find that for all a and b we have

1 + e�N	V�a�−V�b�


2
AN�a,b;T�left = A�a,b;T� + O�1/N2� . �9�

Although not related to the central investigation in this
paper, let us present a proof of Eq. �9� as an illustration of the
use of the Trotter formula

eÂ+B̂ = lim
N→�

�eÂ/NeB̂/N�N. �10�

Using it we can easily show the validity of the formal ex-
pression A−N�a ,b ;T�left=AN�a ,b ;T�right. On the other hand,
from Eq. �1� we find that AN�a ,b ;T�right

=e�N�V�a�−V�b��AN�a ,b ;T�left. As a result, we see that the left-
hand side of Eq. �9� is simply the average of AN and A−N, and
so has an expansion in even powers of 1 /N.

We end this section by presenting the result obtained by
Takahashi and Imada11 and independently by Li and
Broughton.12 In these papers the authors used a generalized
form13 of the Trotter formula to increase the speed of con-
vergence of the discretized partition function. Their final re-
sult is a derivation of a formula for the effective potential
Vef f =V+ 1

24�N
2 �V��2. The authors showed that by using this

effective potential �in the left prescription� one gets

ZN���ef f = Z��� + O�1/N4� . �11�

A recent analysis of this method can be found in Jang et al.14

Let us note that the crucial step in the derivation of the above
effective potential from the generalized Trotter formula uses
the cyclic property of the trace, i.e., the above increase in the
speed of convergence only holds for the partition function
and not the amplitudes. A direct numerical simulation shows
that amplitudes calculated using this effective potential con-
verge just as fast as the amplitudes in the naive left prescrip-
tion. Said another way, it is only the integral over all the
diagonal amplitudes that has the O�1/N4� behavior and not
any individual amplitude. A recent investigation by Bond et
al.15 has uncovered an O�1/N6� behavior, however, not for
the case of a generic theory. At the end let us mention that
several related investigations dealing with speed of conver-
gence have focused on improvements in short-time
propagation16–18 or the action.19

III. RELATION BETWEEN DIFFERENT
DISCRETIZATIONS

The aim of this and the following section is to present a
systematic exposition of the relation between different dis-
cretizations of the same path integral. Throughout we will
work in the midpoint prescription. We start by studying the
relation between the 2N-fold and N-fold discretizations of a
given amplitude. From Eq. �1� we see that we can write the
2N-fold amplitude as

A2N�a,b;T� = � 1

2��N
�N/2� dq1 ¯ dqN−1e−S̃N, �12�

i.e., in the form of an N-fold amplitude given in terms of a

new action S̃N determined by

e−S̃N = � 2

��N
�N/2� dx1 ¯ dxNe−S2N, �13�

where S2N is nothing but the 2N-fold discretization of the
starting action. In the above formulas we have, for conve-
nience, written the 2N-fold discretized coordinates
Q0 ,Q1 , . . . ,Q2N in terms of q’s and x’s in the following way:
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Q2k=qk and Q2k−1=xk. Note that we have q0=a, qN=b, while
the N−1 remaining q’s play the role of the dynamical coor-
dinates in the N-fold discretized theory. The x’s are the N
remaining intermediate points that we integrate over in Eq.
�13�.

We wish to have S̃N belong to the same class of actions as
SN. It is not difficult to show that the naively discretized
action does not satisfy this requirement, i.e., the integration

of Eq. �13� will yield new types of terms in S̃N. In fact, the
class of actions closed to transformation �13� is of the form

SN = �
n=0

N−1 � � n
2

2�N
+ �NV�q̄n� + �N� n

2g1�q̄n� + �N� n
4g2�q̄n�

+ �N� n
6g3�q̄n� + ¯ � . �14�

The functions appearing in the above effective action also
depend on the time step �N. We choose not to display this
dependence explicitly in order to have a more compact no-
tation. What is important is that all of these functions are
regular in the �N→0 limit. Note that these effective actions
are equivalent to our starting action, i.e., they all have the
same continuum amplitudes as the starting theory. Using
Eqs. �13� and �14� one can easily derive the following inte-

gral relation which determines the functions Ṽ , g̃1 , g̃2 , . . . in

the new action S̃ in terms of the related functions in the
starting action:

exp�− �N�Ṽ�q̄n� + � n
2g̃1�q̄n� + � n

4g̃2�q̄n� + ¯ ��

= � 2

��N
�1/2�

−�

+�

dy exp�−
2

�N
y2�F�q̄n + y� , �15�

where

−
1

�N
ln F�x� =

1

2
V�qn+1 + x

2
� +

1

2
V� x + qn

2
� +

1

2
�qn+1

− x�2g1�qn+1 + x

2
� +

1

2
�x − qn�2g1� x + qn

2
�

+
1

2
�qn+1 − x�4g2�qn+1 + x

2
� +

1

2
�x

− qn�4g2� x + qn

2
� + ¯ . �16�

The above integral equation can be solved for the simple
cases of a free particle and a harmonic oscillator, and gives
the well-known results. Let us note that the integral in Eq.
�15� is in a form that is ideal for an asymptotic expansion,20

whatever the potential. The time step �N plays the role of a
small parameter �in complete parallel to the role � plays in
the usual semiclassical, or loop, expansion of quantum theo-
ries�. As is usual, the above asymptotic expansion is carried
through by first Taylor expanding F�q̄+y� around q̄ and then
by doing the remaining Gaussian integrals. We find

� 2

��N
�1/2�

−�

+�

dy exp�−
2

�N
y2�F�q̄n + y�

= �
m=0

�
F�2m��q̄n�
�2m�!! � �N

4
�m

, �17�

where we have assumed that �N	1, i.e., that N
T.
Finally, from Eqs. �15� and �17�, we get

Ṽ�q̄n� + �n
2g̃1�q̄n� + �n

4g̃2�q̄n� + ¯

= −
1

�N
ln
�

m=0

�
F�2m��q̄n�
�2m�!! � �N

4
�m� . �18�

All that remains is to calculate the F�2m��q̄n�’s using Eq. �16�
and to expand the potential and all the functions gk around
the midpoint q̄n. For this second step we make use of the
simple relations that follow from the definitions of q̄n and �n:
qn+1− q̄n= q̄n−qn=�n /2, qn+1+ q̄n=2q̄n+�n /2, and q̄n+qn
=2q̄n−�n /2. Using these relations we can expand a typical
term like �qn+1− q̄n�g1�	�qn+1+ q̄n� /2
 to obtain

�n

2
g1��q̄n +

�n

4
� =

�n

2
g1��q̄n� +

�n
2

8
g1��q̄n� + ¯ .

For example, the expansion of S̃ up to �N
3 is a rather

simple exercise. We find the following functional relations:

Ṽ = V + �N
1

4
g1 +

1

32
V�� + �N

2
 3

16
g2 −

1

32
V�2

+
1

2048
V�4� +

3

128
g1�� ,

g̃1 =
1

4
g1 +

1

32
V� + �N
3

8
g2 +

1

1024
V�4� −

1

64
g1�� ,

g̃2 =
1

16
g2 +

1

6144
V�4� +

1

128
g1�. �19�

Note that in the above relations we expanded Ṽ up to �N
2 ,

g̃1 up to �N, and g̃2 up to �N
0 . We also disregarded all the

higher g̃k’s. The reason for this is that the short-time propa-
gation of a generic theory satisfies �n

2��N while the gk term
enters the action multiplied by �n

2k. In general, if we expand

the new action S̃ to �N
p we need to evaluate only Ṽ �up to

�N
p−1� and the first p−1 functions g̃k �up to �N

p−1−k�. Although

straightforward, the task of calculating S̃ to large powers of
�N is quite tedious; using the symbolic algebra package
MATHEMATICA 5.0 we have analytically solved the corre-
sponding expressions up to p�9. The memory requirements
for this calculation grow exponentially with p: the p=9 cal-
culation used just under 2 GB of computer memory.

At this point it is important to comment on what has been

achieved so far. Evaluating S̃ to � N
p and using this new action

to calculate the N-fold discretized amplitude ÃN, we find

SYSTEMATIC SPEEDUP OF PATH INTEGRALS OF A… PHYSICAL REVIEW B 72, 064302 �2005�

064302-3



ÃN�a,b;T� = A2N�a,b;T� + O��N
p � , �20�

so that, up to O�� N
p �, this amplitude is the same as the

2N-fold amplitude calculated with our starting action. In this
way we have halved the discretization from 2N to N. There-

fore, a coarser N-fold discretization using S̃N does the same
job as the 2N-fold discretization of the starting theory. In the
next section we will consider the iteration of this halving
procedure. We will derive and solve the recursive relations
that connect up the 2sN-fold and N-fold discretizations. In
particular, we will focus on the continuum limit solution
when s→�, i.e., the solution that connects up the continuum
theory with its N-fold discretization.

IV. RECURSIVE HALVING

The iterative process of halving that starts from the
2sN-fold discretization is governed by a recursive relation.
From the p=3 case given in Eq. �19�, used in the previous
section to illustrate the general discretization halving
scheme, we directly get the sought-after p=3 level system of
recursive relations

Vk+1 = Vk +
�N

2s−k−1
1

4
�g1�k +

1

32
Vk�� +

�N
2

22�s−k−1�

�
 3

16
�g2�k −

1

32
Vk�

2 +
1

2048
Vk

�4� +
3

128
�g1�k�� ,

�g1�k+1 =
1

4
�g1�k +

1

32
Vk� +

�N

2s−k−1

�
3

8
�g2�k +

1

1024
Vk

�4� −
1

64
�g1�k�� ,

�g2�k+1 =
1

16
�g2�k +

1

6144
Vk

�4� +
1

128
�g1�k�. �21�

In the above relations k=0,1 ,2 , . . . ,s−1. The zeroth iterate
corresponds to the starting action, the last iterate to the ef-
fective action that gives an equivalent N-fold discretization.
The �N /2s−k−1 terms represent the time step of the kth iterate
in the discretization halving procedure.

Although the above system of recursive relations is non-
linear, it is in fact quite straightforward to solve if we re-
member that the system itself was derived via an expansion
in �N. Having this in mind, we first write all the functions as
expansions in powers of �N that are appropriate to the level p
we are working at. In this case, we are illustrating the pro-
cedure for p=3, so we have

Vk = Ak +
�N

2s−k−1Bk + � �N

2s−k−1�2

Ck,

�g1�k = Dk +
�N

2s−k−1Ek,

�g2�k = Fk. �22�

Putting this into the p=3 level system of recursive relations
given in Eq. �21�, we find that Ak+1=Ak. Using the initial
condition A0=V, we find that Ak=V, for all k. Using this, the
remaining equations form the following set of linear recur-
sive relations:

2Bk+1 − Bk =
Dk

2
+

V�

16
,

4Ck+1 − Ck =
Bk�

16
+

3Dk�

32
+

Ek

2
+

3Fk

4
−

V�2

8
+

V�4�

512
,

4Dk+1 − Dk =
V�

8
,

8Ek+1 − Ek =
Bk�

8
−

Dk�

8
+ 3Fk +

V�4�

128
,

16Fk+1 − Fk =
Dk�

8
+

V�4�

384
. �23�

This system is easily solved for given initial conditions.
However, what we are really interested in is the continuum
limit solution, which is obtained by setting k=s−1 in the
above expression and taking the limit s→�. By doing this
we are iterating our process of discretization halving from
the continuum theory down to N. The continuum limit solu-
tion of the p=3 level system is simply

Vp=3 = V + �N
V�

12
+ �N

2
−
V�2

24
+

V�4�

240
� ,

�g1�p=3 =
V�

24
+ �N

V�4�

480
,

�g2�p=3 =
V�4�

1920
. �24�

In the above expressions the label “p=3” reminds us that this
is the solution of the continuum limit of the recursive rela-
tions given in Eq. �21� describing discretization halving at
the p=3 level. Note that the continuum limit solution de-
pends only on the initial potential V, i.e., it is not sensitive to
initial values of the gk’s as these terms all vanish in the
continuum limit. In this way we have obtained the effective
action that gives the best N-fold discretization of the starting
theory at the p=3 level. One can similarly obtain a set of
effective actions S�p�, one for each value of p. The solution
for p=6 is given in the Appendix. Note that each solution
contains within it all the solutions for lower levels. Solutions
for larger values of p are a bit more cumbersome; however,
they are just as easy to use in simulations. Expressions up to
p=9 can be found on our web site.21

Note that one solves for the continuum limit of the level-
p system of recursive relations but once for all theories, i.e.,
once the solution is found it works for all sufficiently smooth
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potentials V. Actually, the requirement for the level p solu-
tion is that the starting potential is differentiable 2p−2 times.

The effective action satisfying the continuum limit of the
discretization halving recursion relations at level p leads to
an N-fold amplitude that is equal to the continuum amplitude
of the starting action up to an O�� N

p � term. Therefore, the
continuum limit solution satisfies

AN
�p��a,b;T� = A�a,b;T� + O�� N

p � . �25�

Expectation values can be calculated with the same pre-
cision using standard discretized estimators, provided that
the discretized time step on which those observables reside is
chosen appropriately. For example, the expectation value of
the momentum squared �p2�t�� may be calculated using the
standard estimator � n

2 if the time step from n to n+1 is short-
ened to � N

p keeping all the remaining time steps unchanged.
The validity of the presented analytical result will be il-

lustrated in the following section where we present Monte
Carlo simulations of two different models. To conclude this
section: we have constructed a general procedure for calcu-
lating effective actions S�p� for any level p. We have com-
pleted the procedure and found explicit values for the effec-
tive actions up to and including p=9. The N-fold amplitudes
of the p=9 effective action differ from the continuum ampli-
tudes by a term proportional to 1/N9.

V. NUMERICAL RESULTS AND ALGORITHMS

In this section we illustrate the generic results obtained in
the previous sections by analyzing the speedup for different
values of p in the case of Monte Carlo simulations of two
different models. The first model we looked at is the anhar-
monic oscillator with quartic coupling

V�q� =
1

2
q2 +




4!
q4. �26�

In Fig. 1 we illustrate how the discretized amplitudes AN
�p�

tend to the continuum limit for levels p=1 �naively dis-
cretized starting action�, 2, 4, and 9. The top plot gives an
overall view of how the discretized amplitudes for a=0,
b=1, and T=1 calculated using higher level effective actions
systematically outperform the ones at lower level. In particu-
lar, we see how they outperform the amplitude calculated
using the naively discretized action. In the bottom plot we
show a detail of the top plot which makes it easier to quali-
tatively track the differences between amplitudes calculated
with effective actions at levels p=2, 4, and 9. In agreement
with Eq. �25�, the curve fitted to the p-level data is a poly-
nomial in 1/N of the form

AN
�p� = A�p� +

B�p�

Np +
C�p�

Np+1 + ¯ . �27�

As derived, all the A�p� are �within error bars� equal to each
other and represent the continuum amplitude A�a ,b ;T� we
seek. The continuum value is represented in the plots by a
dashed line. In all cases the fits were done for data with N

1. The reason that the N=1 points were omitted is that for
T=1 we have �1=1, i.e., these points do not satisfy the con-

dition for asymptotic expansion �N	1. However, the N=1
amplitudes are quite interesting because they are algebraic
expressions with no integrations. From the above plot we see
that the N=1 amplitudes calculated with higher level effec-
tive actions give better and better approximations to the am-
plitude. We have seen this behavior for other potentials as
well.

For T	1 the N=1 amplitudes calculated using effective
actions derived in the previous section represent very good
algebraic approximations for the case of a general theory—
larger levels p give better approximations. From Fig. 1 we
see that these approximations work rather well even for the
marginal point T=1. For T
1 we do need to do some inte-
grals numerically in order to get the required amplitudes. For
high-level effective actions it is enough to use N= 	T
+1,
i.e., to do only 	T
 integrations numerically.

A quantitative measure of how well the derived effective
actions perform can be seen in Fig. 2. We see explicitly that
the p-level data differ from the continuum amplitudes as
polynomials starting with 1/Np. Because of this, the devia-
tions from the continuum limit �AN

�p�−A� become exceedingly
small for larger values of p, making it necessary to use ever-
larger values of NMC so that the Monte Carlo statistical error
does not mask these extremely small deviations. For p=6 we
see that although we used an extremely large number of
Monte Carlo samples �NMC=3.68�1011� the statistical er-
rors become of the same order as the deviations already at
N�8. For p=9 this is the case even for N=2, i.e., we al-

FIG. 1. �Color online� �top� Plot of discrete amplitudes AN
�p� as a

function of N for p=1, 2, 4, and 9 for an anharmonic oscillator with
quartic coupling 
=10, time of propagation T=1 from a=0 to b
=1, NMC=9.2�107. �bottom� Detail of the same plot comparing
amplitudes for p=2, 4, and 9. In both plots the dashed line repre-
sents the continuum limit amplitude.

SYSTEMATIC SPEEDUP OF PATH INTEGRALS OF A… PHYSICAL REVIEW B 72, 064302 �2005�

064302-5



ready get the continuum limit within a Monte Carlo error of
around 10−8.

To make the deviations in Fig. 2 visible for large-p levels,
we needed to run a simulation with very large NMC. This
simulation took about a week on our 160 Gflops cluster. On
the other hand, the simulation in Fig. 1 uses a much smaller
NMC and takes less than 1 h to complete. In practice, we see
that the derived effective actions give excellent agreement
with continuum limit amplitudes already for small values of
N. Simulations with such values of N take a negligible
amount of time even on a single PC.

The second model we consider is that of a particle moving
in a modified Pöschl-Teller potential—a well-known exactly
solvable model22

V�q� = −
1

2

�2��� − 1�
cosh2 �q

. �28�

Unlike the anharmonic oscillator, the Pöschl-Teller potential
has both a continuous and discrete spectrum. The discrete
eigenstates have energy

En = −
�2

2
�� − 1 − n�2, �29�

for 0�n��−1. Therefore, we see that the model has criti-
cal values of coupling �=1,2 ,3 , . . . at which it acquires new
bound states.

Figure 3 displays how the discretized amplitudes AN
�p� tend

to the continuum limit for levels p=1, 2, 4, and 9 for the
potential with �=0.5 and �=1.5. The same plots for the case
of �=0.5 and �=2 �lying on the a critical value of �� are
given in Fig. 4. As we can see, the effective actions work just
as well as in the case of the anharmonic oscillator. Going
through a critical point like �=2 certainly affects the physi-
cal quantities calculated; however, the speedup algorithm is
not affected in any way.

With the increase of p level the complexity of the expres-
sions for the effective actions grows exponentially. There-
fore, the increase in computation time that results from using
higher p-level effective actions also grows exponentially, as
is shown in Fig. 5.

As we have seen, by increasing p we drastically improve
convergence to the continuum limit. An important conse-
quence of this is that we can obtain the same precision using
much smaller values of N, i.e., much coarser discretizations.
This is at the root of the speedup that we find. However, as
we have seen, the exponential growth in complexity of the
effective actions puts an upper bound to p levels that can be
used. From Fig. 5 we see that p=9 is still far from that upper
bound—the gain of eight orders of magnitude in the speed of
convergence far outweighs what is roughly a tenfold increase
in computation time.

We briefly comment on two Monte Carlo algorithms de-
veloped for simulations in this section. In the first algorithm
trajectories are generated by a Gaussian distribution function
obtained using a semiclassical expansion. The computing
time of this algorithm scales as N2�NMC, since it is neces-
sary to diagonalize the quadratic form in the exponential of
the distribution function. In the second algorithm we imple-
mented the bisection method,5 which scales as N�NMC.
Therefore, the bisection algorithm is the method of choice
for large values of N. On the other hand, our method allows
us to obtain very precise results using small values of N. In

FIG. 2. �Color online� The deviations from the continuum limit
�AN

�p�−A� as a function of N for p=1, 2, 4, and 6 �top to bottom�.
This particular plot is for the case of an anharmonic oscillator with
quartic coupling 
=10, time of propagation T=1 from a=0 to b
=1. The number of Monte Carlo samples used was NMC=9.2
�109 for p=1,2, NMC=9.2�1010 for p=4, and NMC=3.68�1011

for p=6. Dashed lines correspond to appropriate 1 /N polynomial
fits to the data. The solid lines give the leading 1/N behavior. The
level-p curve has an 1/Np leading behavior.

FIG. 3. �Color online� �top� Plot of discrete amplitudes AN
�p� as a

function of N for p=1, 2, 4, and 9 for a particle in a modified
Pöschl-Teller potential with parameters �=0.5, �=1.5. T=1, a=0,
b=1, NMC=9.2�107. �bottom� Detail of the same plot comparing
amplitudes for p=2, 4 and 9. In both plots the dashed line repre-
sents the continuum limit amplitude.
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that region we have found the two algorithms to be compa-
rable both in precision and running time.

In both algorithms we needed to use a random number
generator which gives a large number of uncorrelated ran-
dom numbers in a fashion suitable for parallel programming.
Our primary random number generator was the Scalable Par-
allel Random Number Generator library23,24 �SPRNG�. Fol-
lowing the good practice suggested by Ferrenberg et al.,25 we
have checked all our results using a different random number
generator. Checks were made with the Numerical Recipes’
RAN3 generator26 with a different seed for each MPI process.
Agreement was well in all cases, within a 1-� interval, im-
plying that there were no hidden systematic errors present in
either the algorithms or the random number generators.

We note in passing that the analytical derivations pre-
sented in this paper work equally well in both the Euclidean

and Minkowski formalism �with appropriate i� regulariza-
tion�, i.e., they are directly applicable to quantum systems as
well as to statistical ones. However, the Monte Carlo simu-
lations used to numerically document our analytical results
necessarily needed to be done in the Euclidean formalism.

VI. CONCLUSION

To conclude, we have presented an algorithm that leads to
significant speedup of numerical procedures for the calcula-
tion of path integrals of a generic theory. The increase in
speed is the result of analytical input that has emerged from
a systematic investigation of the relation between different
discretizations of the same theory. We have presented an ex-
plicit procedure for obtaining a set of effective actions S�p�

that have the same continuum limit as the starting action S,
but which approach that limit ever faster. Amplitudes calcu-
lated using the N-point discretized effective action SN

�p� sat-
isfy AN

�p��a ,b ;T�=A�a ,b ;T�+O�1/Np�, where a and b are
initial and final states, T the time of propagation, and
A�a ,b ;T� the sought-after amplitude of the continuum
theory. We have obtained and analyzed the effective actions
for p�9. In this paper we quote expressions up to p=6 �see
the Appendix�; the rest can be found on our web site.21

We illustrated the obtained generic results by analyzing
the speedup for different values of p in the case of concrete
Monte Carlo simulations of two different models: anhar-
monic oscillator with quartic coupling and particle in a modi-
fied Pöschl-Teller potential.

Extensions of the derived algorithm to M 
1 particles and
d
1 dimensions, as well as to quantum field theories, are
both in progress. In both cases the derivation of the analog of
integral Eq. �15� does not seem to present a problem. The
asymptotic expansion used to solve it is also directly gener-
alizable. However, the algebraic recursive relations that de-
termine S�p� will be more complex and may practically limit
us to smaller values of p.
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APPENDIX A: EFFECTIVE ACTION TO p=6

In this appendix we present the effective action at level
p=6. Note that this solution contains within it the effective
actions at all lower levels—all one needs to do is to truncate
the p=6 solution at the appropriate order in the �N expan-
sion. For example, the effective potential V at the p=3 level
is obtained from the p=6 level potential by disregarding
term that are �N

3 and higher. Code containing S�p� for p�9 is
available on our web site.21

FIG. 4. �Color online� Same plots as in Fig. 3 but for a modified
Pöschl-Teller potential with parameters �=0.5 and �=2.

FIG. 5. �Color online� Relative increase in computation time
that comes about from the increased complexity of expression for
higher p-level effective actions.
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Vp=6 = V + �N
V�

12
+ �N

2
−
V�2

24
+

V�4�

240
� + �N

3
−
V�2

360
−

V�V�3�

120

+
V�6�

6720
� + �N

4
V�2V�

240
−

23V�3�2

40 320
−

V�V�4�

1680
−

V�V�5�

2240

+
V�8�

241 920
� + �N

5
 V�3

5670
+

29V�V�V�3�

20 160
+

V�2V�4�

2240

−
47V�4�2

1 209 600
−

19V�3�V�5�

241 920
−

V�V�6�

30 240
−

V�V�7�

60 480

+
V�10�

10 644 480
� ,

�g1�p=6 =
V�

24
+ �N

V�4�

480
+ �N

2
−
V�2

1440
−

V�V�3�

480
+

V�6�

13 440
�

+ �N
3
−

V�3�2

4032
−

V�V�4�

5040
−

V�V�5�

6720
+

V�8�

483 840
�

+ �N
4
 V�3

60 480
+

V�V�V�3�

3360
+

V�2V�4�

13 440
−

13V�4�2

806 400

−
V�3�V�5�

26 880
−

V�V�6�

80 640
−

V�V�7�

161 280
+

V�10�

21 288 960
� ,

�g2�p=6 =
V�4�

1920
+ �N

V�6�

53 760
+ �N

2
−
V�3�2

32 256
−

V�V�4�

40 320

−
V�V�5�

53 760
+

V�8�

1 935 360
� + �N

3
−
V�4�2

345 600
−

V�3�V�5�

138 240

−
V�V�6�

483 840
−

V�V�7�

967 680
+

V�10�

85 155 840
� ,

�g3�p=6 =
V�6�

322 560
+ �N

V�8�

11 612 160
+ �N

2
−
V�4�2

4 147 200

−
V�3�V�5�

1 658 880
−

V�V�6�

5 806 080
−

V�V�7�

11 612 160

+
V�10�

510 935 040
� ,

�g4�p=6 =
V�8�

92 897 280
+ �N

V�10�

4 087 480 320
,

�g5�p=6 =
V�10�

40 874 803 200
.
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