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Abstract

The correspondence between black holes and strings provides a way to study black holes
through the physics of highly excited strings at weak coupling. In this thesis, we inves-
tigate the scattering of highly excited strings from classical and quantum perspective.
Classically, we consider the scattering of a closed string on a Schwarzschild black hole.
At the quantum level, we consider string-string scattering amplitudes, both for open
and closed strings. We focus on the signs of chaos in the amplitudes which, due to the
string/black hole correspondence, allows us to probe the chaoticity of black holes beyond
the semi-classical regime. The large number of states of the highly excited string yields
also some analytic understanding of the statistical properties of the string dynamics. In
the S-matrix we observe a crossover from the low-energy regime in which short partitions
determine the dynamics, to the high-energy regime when long partition states dominate.
We analyze the distribution of eigenphase spacings and find decent agreement with the
predictions of random matrix theory predictions for closed strings, which further corrob-
orates the chaotic nature of the scattering.





Sažetak

Korespondencija izmedu crnih rupa i struna omogućava proučavanje crnih rupa kroz fizi-
ku visoko ekscitovanih struna u režimu slabe interakcije. U ovoj tezi istražili smo procese
rasejanja visoko ekscitovanih struna u klasičnom i kvantnom režimu. Klasično, razmotrili
smo rasejanje zatvorene strune na Švarcšildovoj crnoj rupi. Na kvantnom nivou, razma-
trali smo amplitude rasejanja struna za otvorene i za zatvorene strune. Fokusirali smo
se na znake haotičnosti u amplitudama koje zbog korespodencije izmedu crnih rupa i
struna omogućavaju ispitivanje haotičnosti crnih rupa izvan semiklasičnog režima. Veliki
broj stanja visoko ekscitovane strune takode pruža uvid u statističke osobine dinamike
struna. Na nivou S-matrice primetili smo prelaz iz niskoenergetskog režima u kome kratke
particije odreduju dinamiku u visokoenergetski režim u kome su dominantna stanja dugih
particija. Analizirali smo raspodelu svojstvenih faza i ustanovili zadovoljavajuće slaganje
sa predvidanjima teorije nasumičnih matrica u slučaju zatvorenih struna, što ukazuje na
haotičnost rasejanja koje razmatramo.
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Chapter 1

Introduction

The black holes (BHs) are among the most studied objects in modern physics. One of
the reasons is that, despite their simplicity at the classical level, quantum gravity is re-
quired to describe them fully consistently. Even though a lot can be learned from the
effective field theory approach, which provides us with the perturbative description of
gravity, to describe the most interesting features of black holes, like the singularity and
scrambling, quantum treatment is needed. Hence the rich phenomenology of black holes
provides important clues about the very nature of gravity, and any candidate for the
theory of quantum gravity shall reproduce it (e.g. deriving the area law for BH entropy
from counting the microscopic degrees of freedom). Furthermore, thanks to the AdS/CFT
correspondence (gauge/gravity duality), BH physics provides a new perspective on un-
conventional materials described by condensed matter models which admit a holographic
dual. In addition, their interesting causal structure and the related Black hole information
paradox have provided a fertile ground to apply and develop some fundamental concepts
of quantum information theory.

Recent developments in relation to the BH information paradox have resulted in the
recognition that the BHs exhibit signs of chaotic behavior [1]. This is easily understood by
thinking of the black hole evolution as a scattering process. The incoming state represents
a large number of particles which collide in a small enough region of space to form an
intermediate state which classically corresponds to a black hole. The black hole emits
Hawking radiation which represents the outgoing state. Now if we change the incoming
state by adding another particle of mass m, the BH mass will shift linearly from M to
M +m1 together with its horizon radius rs = 2M which shifts to rs + δ = rs + 2m. One
can show that the time it takes a Hawking quantum to escape from the distance r = rs+δ
is equal to 1

2πT
log

(
rs
δ

)
in the Schwarzschild coordinates, where T is the BH temperature.

Upon the slight increase of rs by 2m the escape time changes by ∆t = 2me2πTt.
Thus, a small change in the initial conditions causes an exponentially enlarged change

in the dynamics of outgoing particles the defining manifestation of chaotic behavior.
This was thoroughly investigated in the semiclassical regime, where out of time ordered
correlators were used to calculate the black hole Lyapunov exponent λ - the inverse of
the time needed for two initially close orbits to separate by a factor of e. A remarkably
simple result is obtained [1, 2, 3, 4, 5]:

λ = 2πT. (1.1)

1Here we assume that the m ≪ M ensuring that the change of the incoming state is small.
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The absence of any black hole parameters except the temperature T in the above ex-
pression suggests its universality, and indeed in [4] this value is proven to be the upper
bound to the Lyapunov exponent in a broad class of systems. Another clue comes from
the fast scrambling hypothesis, that the black holes are the fastest scramblers of infor-
mation. By definition, the scrambling time is the time it takes for a local perturbation
(or equivalently for some amount of information) to spread all over the system. Fast
scrambling thus means that the time needed to redistribute the information entering the
BH throughout its interior is shorter than for any other system of the same volume [1, 6].
These two results indicate the existence of a chaos-driving mechanism similar to the usual
one in classical mechanics, that is stretching and folding of the phase space. Nevertheless,
the Lyapunov exponent is only a crude characterization of chaotic behavior. It would
be interesting to study the BH chaos further, and in particular to explore it beyond the
semi-classical regime.

Another important and related issue is understanding the chaos in quantum field the-
ories, where the S-matrix is the ultimate observable. Although the chaos in scattering
processes is fairly well understood both in classical mechanics [7, 8, 9] and in correspond-
ing quantum/mechanical systems [10, 11], it is far from clear how the chaotic behavior
manifests in quantum field theories. From what we know for first-quantized classically
chaotic systems, one might expect that the eigenphases of the S-matrix can be charac-
terized either by the random matrix theory (RMT) statistics, or by large and abrupt
changes in the amplitude due to small changes in the kinematics (e.g. energy or the in-
coming angle)[Rosenhaus]. The same would be expected to occur in strongly coupled field
theories, but analyzing such behavior in systems with many degrees of freedom makes the
analytical investigation of chaos in quantum field theories a formidable task.

String theory, an eminent candidate for the theory of quantum gravity, provides numer-
ous insights about black holes and gravity in general. One of them is the black hole/string
correspondence, as proposed by Susskind [12] and developed by [13, 14], also-called the
Horowitz - Polchinski correspondence principle. The correspondence suggests that a string
excited to a sufficiently high level/occupation number is effectively described by a (semi-
classical) black hole. This correspondence provides a way of studying black holes through
the physics of highly excited strings (HES). The fact that the BH effective description
should emerge at weak coupling, provides a rationale to look for the signs of chaos in
the tree-level S-matrix of scattering processes including closed2 HES states. Furthermore,
from the QFT perspective, the scattering of the HES states involves exceedingly large
number of degrees of freedom, making it possible to develop chaotic behavior even in the
weak coupling limit. String theory thus enables us to explore both the BH chaos beyond
the semi-classical regime and the chaos in QFT by studying the tree-level HES amplitudes
for closed strings. Finally, most of the work done so far on string amplitudes has been
focused on the amplitudes with low excitation numbers. The BH/string correspondence
however hints at the rich structure of the HES amplitudes, making their investigation
interesting also on its own.

The structure of the thesis is as follows: after shortly discussing the motivation and
context of our work, we introduce the BH/string correspondence in some more detail
in Section 1.1, then we provide a brief introduction to chaos with the focus on chaotic

2Gravitons appear in the spectrum of closed strings, and having in mind that the classical black hole
is a bound coherent state of gravitons, we expect the BH/string correspondence to apply for the closed
HES.
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scattering in Section 1.2, and finish the Introduction by summarising the current state
of the literature on HES scattering in Section 1.3. Then, in Chapter 2 we consider the
classical scattering of the string off the black hole, which is valuable for comparison with
the quantum case. Afterwards, in Chapter 3, we calculate the scattering amplitude of
a HES state, first for an open string in Section 3.1, then in Section 3.2 we extend the
result to the closed string using the KLT relations. In Section 3.3 we discuss the useful
DDF formalism that we employ to describe the statistical properties of partitions for an
arbitrary HES state in Section 3.4. The key results on the S-matrix phenomenology and
the analysis of chaos are presented in Chapter 4, first for open strings (Section 4.1) and
then for closed strings (Section 4.2). Finally, in Chapter 5 we summarise our results and
conclusions and comment on possible directions of improving and extending our analysis.

Conventions: we use the mostly plus (−,+, . . . ,+) signature and work in c = ℏ =
kb = 1 units. Except for the Section 1.1, we also set the string tension to α′/2 = 1.

1.1 BH/string correspondence

Let us now motivate the BH/string correspondence, which states that a highly excited
string should describe a black hole in the weak coupling regime. The idea stems from the
fact that at sufficiently high occupation numbers, the Schwarzschild radius of the HES
becomes smaller than the string scale, hence the string should collapse into BH. In the
following we sum up the arguments from [12, 13, 14].

To make the argument qualitative, let us estimate both the string and the BH pa-
rameters. The mass of a string Ms and the mass of a black hole MBH in d+ 1 spacetime
dimension are

MBH ∼ rd−2s

G
, Ms ∼

N

α′
, (1.2)

where α′ is the string tension, G is the Newton’s constant and N the occupation number
(level). At the string/BH transition, we expect the string length scale to be ℓs =

√
α′ ∼ rs;

then a string of mass Ms can become a black hole of mass MBH = Ms ≡ M . Thus we
have two conditions (the equality of masses and length scales):

M2 ∼ N

α′
=

(α′)d−2

G2
(1.3)

Equating the two sides and taking into account that G ∼ g2α′ where g is the string
coupling, we obtain the condition for the BH description of the string:

Ng4 ∼ (α′)d−3 ⇒ gc ∝ N−1/4(α′)d−3 (1.4)

Therefore, to achieve the BH description at fixed α′, we can either increase the coupling
g (and decrease N), or the occupation number N (and decrease g). In the latter case the
system can be described analytically in terms of a perturbative expansion in the coupling
constant at the cost of going to large occupation numbers, at least around Nc ∼ 1/g4. In
the former case the states are simple but the system becomes strongly coupled, making it
inacessible to analytical considerations. Alternatively, in d ̸= 3 we may vary α′ at given
N and g. Then we would need to include the string loops but without going to highly
excited string states.

It is also instructive to take a look at the opposite process: if we start at weak coupling
g, and increase it at fixed N and α′, at some point rs becomes smaller than the string size
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so the metric near horizon is no longer well-defined, making the effective BH description
inapplicable.

One can use this principle to compare the entropies of a BH and a HES. The well-known
Bekenstein-Hawking area law gives SBH ∝ A ∝ r2s ∝ (GMBH)

2. On the other hand, to
estimate the HES entropy, we count the number of its states which is given by the number
of partitions at the level N . The approximation of the number of partitions for large N

gives p(n) = 1
4πN

eπ
√

2N
3 [15], yielding SHES ∝

√
N ∝ MHES. This apparent disagreement

of the entropy values is resolved by the fact that transition happens at a particular value
of the coupling g4c ∝ 1

N
, hence SBH ∝ N . Thus the BH/string correspondence implies that

at the transition, the entropies of HES and black hole are equal up to possible factors of
order unity.

1.2 Chaotic scattering

1.2.1 Basic phenomenology of chaos

The concept of chaos dates from the dawn of XX century, notably from the works of Henri
Poincare and Aleksandr Mikhailovich Lyapunov, who studied the three-body problem,
inspired by the question of the stability of the Solar system. Later it became clear that
even incredibly simple systems can exhibit chaotic behavior. The basic idea behind the
notion of chaos is that evolution of the system is highly sensitive to initial conditions.
This corresponds to the exponential divergence of the two initially close orbits in the
phase space:

|x⃗1(t)− x⃗2(t)| ∝ eλt, (1.5)

where the rate of the divergence λ is called the Lyapunov exponent. Although such local
exponential divergence of the orbits is a necessary condition for chaos, there are systems
which exhibit the behavior (1.5) in the vicinity of so-called hyperbolic points but are not
chaotic, an example being the motion of the inverse harmonic oscillator.

If the system has a bounded phase space, then the exponential divergence, giving
rise to the local stretch of the phase space must be followed by the folding of the phase
space in order to preserve its volume (Liouville theorem). This combination of stretching
and folding is the typical mechanism responsible for the chaotic dynamics of the closed
systems. One of the simplest (and yet quite illustrative) examples of such dynamics is
the baker’s map on the unit square given by:

(xn+1, yn) =

{
(2xn,

yn
2
), if 0 ≤ xn ≤ 1

2

(2xn − 1, yn+1
2

), if 1
2
≤ xn ≤ 1

}
(1.6)

which is essentially just the stretching of the left half of the square to match the bottom
half, followed by stretching the right half to cover the upper half of the square. If one
writes the coordinates in the square as x =

∑∞
n=1

c−n

2n
, y =

∑∞
n=0

cn
2n

where cn ∈ {0, 1},
one can represent the point by a bi-infinite sequence of characters . . . c−2c−1c0c1c2 . . .
often called ’word’. Then one can easily verify that applying the baker’s map p times is
equivalent to the transformation coldn → cnewn = coldn+p which is a simple leftward shift by p
characters in the given word. Hence the baker’s map is completely equivalent to the so-
called shift dynamics of the bi-infinite word. From this point the sensitivity to the initial
conditions is manifest: c|n| in the initial condition has a 1

2|n| contribution in specifying the
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Figure 1.1: The stereotypical example of classical chaotic scattering: three hard planar
disks on fixed positions in the plane provide a scattering potential for an incoming test
particle. Depending on its incoming angle and velocity, the test particle will bounce off
the disks a number of times (for periodic orbits the number is infinite) before continuing
to infinity. Both the number of bounces and the scattering angle of the outgoing orbit
depend sensitively on the incoming parameters, which encapsulates the idea of chaos.
Unlike systems with finite phase space however, the total volume in any finite part of
phase space is not preserved because of escaping orbits.

initial y coordinate, but after n steps it gives an estimate of the y coordinate within a
O(1) interval.

1.2.2 Chaos in classical scattering

The example from the previous subsection is typical in that the phase space is compact, so
the textbook stretching and folding mechanism is the main motor of chaos. In scattering
processes, on the other hand, the phase space is infinite. A typical setting for chaotic
scattering is the scattering of a test particle off three non-collinear hard disks in the plane
(Fig. 1.1).

One can specify the positions of the disks and scatter the particle off the disks with
impact parameter b. Upon specifying the incoming state one can find the scattering angle
θ which corresponds to the outgoing state. The sensitivity in the initial conditions is
now contained in the θ(b) dependence. The function θ(b) does not merely look erratic
(complicated), it admits a fractal structure; in other words the sensitivity is present at
progressively smaller scales [7]. Such abrupt changes in the outgoing state for small
changes in the incoming state correspond to the orbits in which the test particle bounces
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off the disks many times before leaving to infinity. Obviously, trajectories with n and
n+1 bounces have completely different outgoing states. the sensitivity to initial conditions
generally increases with n. This hints that chaotic behavior stems from the set of unstable
periodic orbits. Having that in mind, one can construct an array of numbers from the set
{1, 2, 3} describing the orbit, where the numbers label the disks which the particle hits
on its trajectory. Such description of the orbit is again called symbolic dynamics [7, 8, 9],
similar to the case of baker’s map. The difference is that now the symbolic dynamics does
not contain all the information about the orbit because it does not describe the escaping
orbits; nevertheless, this ’coarse-grained’ description captures the sets of long orbits which
is essential for understanding the statistical properties of the dynamics, and thus can be
used to calculate various diagnostics of chaos which are topological in nature, like the
topological entropy.

1.2.3 Chaos and quantum mechanics

While the first hint of chaos in quantum mechanics is found in the pioneering paper
by Einstein in 1917 [16], systematic study of so-called quantum chaos has started much
later, in the framework of nuclear models [17]. In quantum mechanical systems, there is
no exponential sensitivity to the initial conditions because the unitary evolution of the
wavefunction is linear. Hence what is reasonable to ask is if there is some difference
between the systems whose classical limit is chaotic and those whose classical limit is
regular, or alternatively is there a useful notion of chaos in the semi-classical limit.

For a quantum scattering process, the fundamental observable is the S-matrix. In
analogy with the erratic behavior of the scattering angle θ(b) in the classical scattering, the
S-matrix for collisions at fixed energy changes abruptly with the change of the incoming
or outgoing state. These strong fluctuations indicate that the system should be well-
described by the Random Matrix Theory (RMT).

The RMT provides a statistical description of an ensemble of matrices whose elements
are random variables with a specified distribution. The idea to describe the quantum
mechanics of classically chaotic systems by RMT is the central tenet of quantum chaos
studies [18, 17] and comes originally from studying the resonances of the nuclear decays.
Bound states in nuclear physics typically represent a many-body system whose strongly
coupled nature provides a rationale to model its Hamiltonian as a Hermitian matrix with
random elements. Especially important is the Gaussian unitary random ensemble where
the probability distribution of individual matrix elements is Gaussian with the overall
constraint that the trace of the matrix is fixed, which effectively introduces correlations
among the elements and eigenvalues of the matrix, leading to the celebrated effect of
level repulsion, typical for quantum-chaotic Hamiltonians. If the system admits some
kind of symmetry, this provides an additional constraint on the matrix elements besides
hermiticity and changes the eigenvalue statistics. Wigner and Dyson have considered the
time-reversal symmetry (TRS) and showed that it gives rise to three classes:

1. Systems with integer spin particles with TRS, whose Hamiltonian is a real matrix
and hence orthogonal, are described by the Gaussian orthogonal ensemble (GOE).

2. Systems with half-integer spin particles with TRS are described by the Gaussian
symplectic ensemble (GSE).

3. Systems without TRS are described by the Gaussian unitary ensemble (GUE).
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These three ensembles predict the so-called Wigner-Dyson distribution for the eigenvalue
spacings:

P (s) = A(β)sβe−B(β)s2 (1.7)

where s is the level spacing divided by the average spacing value and β is the parameter
specifying the TRS class:

β =


1, integer spin with TRS (GOE)
2 no TRS (GUE)
4, half-integer spin with TRS (GSE)

 (1.8)

The constants A(β) = 2B(β)
β
2
+1Γ(β

2
+ 1) and B(β) =

(
Γ(β

2
+1)

Γ(β+1
2

)

)2

are obtained from the

normalization conditions
∫ 1

0
P (s)ds = 1 and

∫ 1

0
sP (s)ds = 1.

As pointed out in the work of Altland and Zirnbauer [19] in superconducting systems
there is another discrete anti-unitary symmetry – charge conjugation which exchanges
holes and particles. Together with the TRS, this provides ten classes of Gaussian ensem-
bles, with are enumerated by compact symmetric spaces in modern literature [20].

The common property of all ten distributions is that the probability of zero spacing
is suppressed, which is a consequence of the level repulsion. This is in contrast with the
systems which are classically integrable, and nearly always admit Poisson distribution of
the level spacings [17]. This can be understood from the point of degeneracy. Integrable
systems generally admit more symmetries and hence their spectra tend to be degenerate.
For a strongly coupled many-body system we generically do not expect any additional
symmetries apart from TRS and possibly charge conjugation, therefore interactions break
degeneracy and energy levels avoid each other.

As the RMT analysis is usually discussed (and was originally constructed) in the
context of systems with bounded phase space, resulting in discrete energy spectrum, it
is worth commenting on how the analysis works for scattering. The basic idea is that
the S-matrix operator is essentially the evolution operator S ∼ e−iHt with H being the
Hamiltonian, so we can connect the energies to the eigenphases φi of the S - matrix
ϵ 7→ −φ. Therefore, one should find the eigenvalues of the S-matrix and consider the
spacings between the phases of neighboring eigenvalues, which should be described by the
Wigner-Dyson distribution. For further details the reader may consult e.g. the review
[10, 11].

Bearing these ideas in mind, one would generically expect the S-matrix to be an
erratic function of incoming and outgoing states, and its eigenphases to follow the RMT
predictions.

1.3 Chaos in string scattering

The study of chaos in string theory has been initiated fairly recently, in [21], where the
authors introduce the highly excited string as a natural candidate for the analysis of
chaos and lay out the roadmap of studying the statistics of their scattering amplitudes as
a diagnostic of chaotic behavior (with some inspiration from the S-matrix in quantum field
theory discussed in [22]). In [21, 23] a detailed analysis of a HES decaying into tachyons
and photons is given. In [24] it is shown that the stst channel of this decay shows a complex
and erratic structure as a function of the scattering angle – the first indication of quantum
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chaotic scattering for strings. This was further corroborated in [25, 26, 27] where it is
shown that the distribution of poles in the scattering amplitude (again in a single channel)
is well-described by random matrix theory if the occupation numbers and the kinematics
are chosen appropriately. In particular, [26] find that in the process where a HES decays
to a tachyon and another HES, the positions of the peaks can be fit to a Wigner-Dyson
distribution with the symmetry exponent being a free (fitting) parameter. Importantly,
the authors find that HES states with many excited modes, which correspond to classical
strings with complex and ”wiggled” shapes, are in better agreement with a Gaussian
random ensemble, as opposed to the states with only a few modes excited. Interestingly,
in [27], it is found that for very higlyh excited levels, the symmetry exponent does not
correspond to the expected value (2) for a time-reversal-invariant process – an inspiring
puzzle for further work.

Finally, the work of Hashimoto, Matsuo and Yoda [28] is the first to consider in detail
not just HES decay but the four-legged scattering process (of the form HES + t −→
HES′ + t′ −→, where HES,HES′ are highly excited strings and t, t′ are tachyons, i.e.
ground states). For this process the authors do not find chaos (at least for small partitions
and modest excitations levels) although they do find complex structures in the amplitude.
This work has inspired us to look at the whole S-matrix for the same process, in order to
uncover why the expected chaotic scattering is not there (it turns out it is present, but
not equally in all channels, also mixed with regular dynamics, and limited to only certain
partitions and incoming momenta, thus it may not be obvious at first glance).

So far all work on the dynamics of highly excited strings was done for open string
amplitudes. Generalization to closed string HES is in principle straightforward as shown,
e.g. in [29]: the same formalism which is employed in [21] to construct an arbitrary open
HES vertex operator can be used also for closed string vertices. Numerically however
closed strings are much more demanding as the state space is much larger. Nevertheless,
one of the motives for our study was also to consider the dynamics of closed strings –
closed strings contain graviton excitations and are thus more relevant for comparison with
black holes.
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Chapter 2

Chaos in classical string scattering

As a warmup and also to better understand the relation of the HES scattering to the
classical black hole limit, we first consider the classical scattering of a closed string off
the Schwarzschild black hole. We focus on the axially symmetric setup of [30], where
the closed circle-shaped string is allowed to uniformly shrink and expand in its plane and
move in the direction normal to itself (Fig. 2.1). A similar setup, so-called ring string,
has been studied in a number of other contexts, e.g. gauge/string correspondence [31],
(non)integrability [32] and chaos, both in string theory [33, 34, 35, 36, 37, 38] and in field
theory [39].

We neglect the backreaction to the metric so that we have a motion of the test string
in the fixed background. The Polyakov action SP of the string in an arbitrary background
metric reads

SP =

∫
dτdσgµνη

ab∂aX
µ∂bX

ν (2.1)

where τ is the imelike and σ the spacelike coordinate of the worldsheet, Xµ(τ, σ) is the
string position, a, b ∈ {τ, σ} and gµν is the background metric. For an asymptotically
planar Schwarzschild BH of mass M the metric is given by:

ds2 = gµνdx
µdxν = −

(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dθ2 + r2 sin2 θdϕ2 (2.2)

in the usual Schwarzschild coordinates. By varying the action above one can obtain the
equations of motion and the constraint equation for the string. Now the string configu-
ration described above is described by the ansatz

t = t(τ), r = r(τ), θ = θ(τ), ϕ = σ. (2.3)

The equations of motion reduce to a system of coupled ordinary differential equations
(indeed, the appeal of this rather special and highly symmetric configuration is precisely
that one can avoid solving partial differential equations):

ṫ =
E

1− 2M
r

, (2.4)

r̈ = (r − 3M)θ̇2 − (r −M) sin2 θ, (2.5)

θ̈ = −2

r
θ̇ṙ − sin θ cos θ. (2.6)

The first equation is simply a consequence of the time translation invariance, that is
existence of the timelike Killing vector, and E is the corresponding integral of motion,
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Figure 2.1: Geometry and kinematics of the closed string-black hole scattering process as
first considered in [30]. A circular string of radius RR which winds in the x − y plane
approaches the black hole along the z-axis, staying parallel to itself. The string may
bounce backwards, pass the black hole and continue forward, or be captured and fall into
the black hole. This setup shows classical chaotic scattering. Adopted from [30].

with the meaning of energy. The equations of motion (2.4-2.6) are supplemented by the
constraint

ṙ2 + (r2 − 2Mr)(θ̇2 + sin2 θ) = E2. (2.7)

One can investigate the dynamics of this string configuration by solving the equations
(2.4-2.7) numerically. Clearly, there are only three possible asymptotic states: forward
scattering where the string escapes to +∞, backscattering, when the string bounces and
returns to −∞, and the collapse of the string into the BH.

Solving the above equations numerically,1 we find strong sensitivity of the future
asymptotic state on the initial conditions, the expected sign of chaos, as the system is
nonintegrable (E being the only integral of motion). This is illustrated in Fig. 2.2.

In the work of Frolov and Larsen it was shown that as one increases E through
E ≈ 5.67M , dynamics abruptly changes from regular to chaotic. The existence of minimal
E is not surprising, because at low energies string just falls into the BH, while for higher
energies it can shrink multiple times before it skips over the back hole. In the chaotic
regime, they find the fractal set of unstable orbits (strange repeller).

A more thorough investigation of chaos in the dynamics of closed strings in the back-
ground of an AdS black hole, discussing the extension of Eq. (1.1) to strings with higher
winding numbers can be found in [40].

1We integrate the system of (2.5) and (2.6) to find r(τ) and θ(τ) using the Mathematica NDSolve
command. Then we check that the constraint 2.7 is satisfied (within the numerical precision) on the
solutions we find, and finally integrate (2.4) to find t(τ).
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Figure 2.2: Highly sensitive dependence of the final scattering angle θfinal on the derivative
of the angle with respect to proper time τ at initial time θ̇initial for rinitial = 10, ṙinitial = 0.2
and θinitial = arcsin(0.3). As we zoom in to smaller and smaller intervals (labeled by red
dashed lines in each subplot), we observe persistently complex dependence, as expected
for a chaotic system.
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Chapter 3

Quantum scattering of highly excited
strings

In this chapter we start the study of the main topic of this thesis, quantum scattering of
highly excited bosonic strings. We discuss tree-level scattering of two HES states, denoted
by HES and HES′, and two tachyon states, t and t′:

HES + t −→ HES′ + t′. (3.1)

In the first section we follow the formalism of [28] for open strings, and then we exploit
the KLT relations [41, 42, 43] to construct the analogous amplitude for closed strings.

3.1 Open string amplitudes

The HES represent the state with a large number of excitations {nk}, or equivalently on
a high level N =

∑
k knk, where k labels the modes and nk is the occupation number of

the k-th mode. In the lightcone quantization the general HES state has the form [29]:

|HES⟩ ∝ ξi1...iJP
(
∂X, . . . ∂NX

)
i1...iJ

|0, p⟩ (3.2)

where ξi1...iJ is the polarization tensor, P is a polynomial over the derivatives of the string
coordinates Xµ and |0, p⟩ is the tachyon state (ground state of the bosonic string) with
momentum p. Following the DDF formalism [44, 29, 45], a convenient way to think of
the HES state is as a state created in a process in which the tachyon (the state with no
excitations) absorbs J photons with momenta qi and polarizations λi one by one (FIG).
Hence, we extract the sought for amplitude by first considering the amplitude for the
process

tachyon(1)+(tachyon(2) + J photons)+tachyon(1′)+(tachyon(2′) + J ′ photons) , (3.3)

and then picking out the poles so that the (tachyon + # photons) part of the amplitude
creates an intermediate on-shell HES state 3.1.

For this procedure to describe the absorption of # photons by the tachyon one by
one, it is necessary to remove the terms which couple photons to each other. These
are proportional to λi · λj, so we must take the polarizations of different photons to be
orthogonal to each other. For the sake of simplicity, we achieve this simply by choosing
λi ≡ λ such that λ · λ = 0 and qa = −Naq where Na is a positive integer and q satisfies

12



Figure 3.1: String amplitude for the HES-tachyon scattering process (3.1). The tachyon la-
beled by its momentum p2 absorbs J photons with momenta and polarizations {−Nkq, λ}
which (after picking out appropriate poles) results in a HES state labeled by v (similarly
for the HES′). The two HES states interact with tachyons labeled by p1 and p′1. Adapted
from [28].

the condition q · λ = 0 (the essentially states that all polarizations are transverse, as they
have to be for photons). For the HES′ state we similarly take λ′ · λ′ = 0 and q′b = −N ′bq

′.
To find the tree-level amplitude we use the tachyon vertex operator : Vt(z, p) =: eipX(z) :,
employ a computational trick to replace the photon vertex operators by : eiζ∂X+ikX : and
keep only the part linear in the polarization ζ.

When the HES state is constructed as described above, we can express the tree-level
amplitude as the path integral over the product of the vertex operators:

A =
1

Vol (SL (2,R))

∫
DXe−SP

∫ ∏
i

dwiVt(wi, pi)
∏
a

dzaVp(za,−Naq, λ)
∏
b

dz′bVp(z
′
b,−N ′bq, λ)

(3.4)
where i ∈ {1, 2, 1′, 2′} runs over the tachyons, a ∈ {1, . . . , J} runs over the photons in
HES, b ∈ {1, . . . , J ′} runs over the photons in HES′ and the integration variables z and
w run over the worldsheet. The action in the path integral is the usual Polyakov action
SP = − 1

4πα′

∫
z
dz(∂X)2. Next, we choose λ′ ∝ λ and q′ ∝ q to simplify the calculation

and perform the contractions to obtain:

A =
1

Vol (SL (2,R))

∫ ∞
−∞

∏
i

dwi

∫ ∞
−∞

J∏
a

dza

∫ ∞
−∞

J ′∏
b

dz′b ×

×
∏
i<j

|wi − wj|pi·pj
∏
a,i

|za − wi|−αi
∑
i

−pi · λ
wi − za

∏
b,j

|z′b − wj|−βj
∑
j

−pj · λ′

wj − z′b
(3.5)

where we have expanded the integrand to the linear order in photon polarizations, and
introduced αi = Napi · q and βj = N ′bpj · q′. After exploiting the residual SL(2,R) gauge
invariance of the worldsheet to fix three out of four wi values, we end up with the following
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six channels of the amplitude:

A = Ast +Atu +Aus +Ats +Aut +Asu. (3.6)

It is enough to state in full the expression for one channel; the others are then obtained
by simple replacement of the momenta. We give the expression for the st channel:

Ast = A|w′
1=−∞,w2=0,w1=w,w′

2=1 =

∫ 1

0

dwwp1·p2(1−w)p1·p
′
2

J∏
a=1

Z212′

a (α, p, λ;w)
J ′∏
b=1

Z212′

b (β, p, λ′;w),

(3.7)
where we have defined the integral

Zijk
a (α, p, λ;w) =

∫ ∞
−∞

dza|za|−αi |za − w|−αj |za − 1|−αk

(
−pi · λ
−za

+
−pj · λ
w − za

+
−pk · λ
1− za

)
.

(3.8)
The other channels are now related to the stst channel in the following way:

Atu = A|w2=−∞,w′
2=0,w1=w,w′

1=1 = Ast|2→2′,2′→1′ , (3.9)

Aus = A|w′
2=−∞,w′

1=0,w1=w,w2=1 = Ast|2→1′,2′→2, (3.10)

Ats = Ast|2←→2′ , (3.11)

Aut = Atu|2′←→1′ , (3.12)

Asu = Aus|1′←→2, (3.13)

(3.14)

The on-shell condition needed to create HES and HES′ is that after the first j ≤ J photons
have been absorbed, the mass of the intermediate state is Mj = 2(

∑
a≤j Na − 1). Having

in mind that the total momentum of this intermediate state is p2−
∑

a≤j q, and using the

on-shell condition for tachyons −p22 = −2, we obtain:

α2 → Na, β
′
2 → N ′b (3.15)

where the second condition comes from HES′. The Zijk
a integrals can be written in terms of

the regularized hypergeometric function, whose Taylor series admit coefficients containing
the combination of Γ functions. This calculation is thoroughly described in [28], the result
for the st channel being

Ast =
∑

{ia∈{2,2′}}

∑
{jb∈{2,2′}}

{Na}∑
{ka=1}

{N ′
b}∑

{lb=1}

( J∏
a

(pia ·λ)c
(ia)
ka

)( J ′∏
b

(pjb·λ′)d
(jb)
lb

)
B
(
−1−s

2
+k,−1− t

2
+l

)
(3.16)

where l =
∑J ′

b lb, k =
∑J

a ka and the coefficients c and d are defined as:

c
(2)
k = ck(α2 + 1, α1 + 1, α′2), (3.17)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (3.18)

d
(2)
l = −cl−1(β

′
2, β1, β2 + 1), (3.19)

d
(2′)
l = cl(β

′
2 + 1, β1 + 1, β2), (3.20)

(3.21)
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using the function:

ck(α2, α1, α
′
2) =

π

sin πα2

Γ(α2 − k + α1 − 1)Γ(α′2 + k)

Γ(α1)Γ(α′2)Γ(α2 − k)Γ(k + 1)
, (3.22)

and finally the beta function is defined as usual: B(x, y) = Γ(x)Γ(y)/Γ(x+ y).
Because of the condition 3.15 the c and d coefficients diverge due to the π

sinπα2
factor

in 3.22. This divergence is just the expected behavior of the amplitude when one of the
internal momenta in the diagram are on-shell. In order to extract the sought amplitude
of the HES + t −→ HES′ + t′ process, besides the on-shell conditions 3.15, we have to
regularize amplitude.1 To achieve this we simply ommit the divergent π

sinπα2
part in the

definition 3.22 in our calculations, resulting in finite expression for the sought amplitude
(except of course for the special choices of kinematics).

Note that for generic partition
∑J

a=1Na = N the number of operations needed to
compute the amplitude 3.16 increases rapidly with the partition lengths J and J ′ due
to the increase in number of sums over ka and lb. In addition, the number of states
with fixed level N grows exponentially in

√
N . These two effects make the calculation of

the S-matrix elements in the whole subspace of N and fixed kinematics computationally
demanding, heavily limiting the levels accessible for our considerations at the level of the
S-matrix. On the other hand, in a generic quantum field theory, the number of states
does not increase with energy so rapidly, providing only a small (of order O(1)) number of
channels through which chaos can develop. Hence one would expect chaos to emerge only
at strong coupling. This implies that even though the large number of HES states makes
the problem computationally demanding, it is also the reason why even strong chaos may
be probed analytically (at least in principle) in the HES scattering.

3.1.1 Kinematics

Now we briefly discuss the kinematics we choose for calculation of the amplitude (following
[28]). A look at the expression (3.16) for Ast tells that the kinematics is highly non-unique:
there are many momenta and polarizations involved and we have many parameters to
choose. We have made no attempt to consider their influence in detail. We have varied
just a few quantities and they seem not to influence the dynamics in a qualitative way,
except for the magnitude of the incoming momentum, which is quite crucial as we shall see.
As noted above, p1 and p′1 are the momenta of the on-shell tachyons and HES is created
from the tachyons with momenta p2, and a set of J photons with momenta {−Naq} whose
polarizations are all equal to λ (similarly for the HES′ we have p′2, J

′, {N ′b}, q′ and λ′).
The momentum conservation equation now reads:

p1 + (p2 −Nq) + p′1 + (p′2 −Nq′) = 0 (3.23)

The total mass of HES (and HES′) is given by the total occupation number M =
2(N−1) = 2(N ′−1), while J and J ′ represent the total spin of HES and HES′ respectively
because the photons have identical polarizations. The tachyon momenta satisfy the on-
shell condition −p2i = − (p′i)

2 = −2. We choose to work in the center-of-mass frame and,
as we already mentioned, for simplicity we take the polarizations and photon momenta to

1This procedure is essentialy the same as in the QFT where one would remove the divergence by
multiplying the amplitude by the inverse propagator of the internal on-shell particle
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satisfy λ = −λ′, λ · λ = 0 and q′ ∝ q. In order to satisfy these conditions we parametrize
the momenta and the polarizations in the following way:

q =
1√

2(N − 1) + p2 − p cos θ
(−1, 0, 0, 1)T

q′ =
1√

2(N − 1) + p2 − p cos θ′
(1, 0, 0,−1)T

p1 = (
√

p2 − 2, p sin θ, 0, p cos θ)T

p′1 = −(
√
p2 − 2, p sin θ′ cosϕ′, sin θ′ sinϕ′, p cos θ′)T

p2 = Nq − p1 = (
√
s, 0, 0, 0)T , p′2 = N ′q′ − p′1 − (

√
s, 0, 0, 0)T

λ =
1√
2
(0, 1, i, 0)T , (3.24)

and define Mandelstam-like variables:

s = − (p1 + p2 −Nq)2 =
(√

2(N − 1) + p2 − 2 +
√

p2 − 2
)2

(3.25)

t = − (p1 + p′2 −N ′q′)
2
=

(√
2(N − 1)− p2 − 2 +

√
p2 − 2

)2

−

−2p2 (1 + cos θ cos θ′ + sin θ sin θ′ cosϕ′) (3.26)

u = − (p1 + p′1)
2
= −2p2 (1− cos θ cos θ′ − sin θ sin θ′ cosϕ′) . (3.27)

In this parametrization we obtain p2 · q = p′2 · q′ = 1 as required by the on-shell conditions
(3.15) (e.g. α2 = Nap2 · q → Na). Furthermore, the only imaginary contribution to
Ast comes from the (p · λ) factors which we calculate to be p′2 · λ′ = − sin θ′p√

2
eiϕ

′
. Hence

for ϕ′ = 0 we expect the amplitudes calculated from [3.16] to be real. For the collinear
kinematics, that is θ, θ′ ∈ {0, π}, the amplitude vanishes as can be seen from the fact
that λ is orthogonal to all momenta. In general, the amplitude is fully characterized by
the module of the momentum p, scattering angles θ, θ′ and ϕ′, and by the partitions of
the levels Na and N ′b. The amplitudes then define the elements of the S-matrix for fixed
kinematics (p, θ, θ′, ϕ′) in the basis of different partitions of the level N .

3.2 Closed string amplitudes

In the previous section we have described the scattering of HES for open bosonic strings.
While this process merits some interest on its own, if we want to make contact with black
holes or the classical scattering setup from Chapter 2, we should consider closed string
amplitudes. Although this can be achieved in a similar way as for the open case, making
use of the DDF operators, at tree-level, we can circumvent this calculation by employing
the celebrated KLT relations [41, 42, 43]. The idea behind the KLT relations is that a
closed string amplitude can be constructed from two open string amplitudes coupled by
the momentum-dependent kernel. This connection between the open and closed string
tree-level amplitudes can be seen from the fact that the closed string propagator can be
constructed by joining the two open string propagators. Schematically, an M -point closed
string amplitude AM

closed is given by:

AM
closed ∝

∑
P,P ′

A(P )MopenĀ(P ′)Mopene
iF (P,P ′) (3.28)
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where P and P ′ denote the permutations of the M external legs, A(P )Mopen is the ordered
M -point open string amplitude and F is a phase determined by the kinematics. In the
field theory limit (α′ → 0), for M = 3, one recovers that the three-point graviton vertex is
equal to the product of the two color-stripped Yang-Mills three-point vertices, an example
of the double copy relation between field theories [46].

In the case of interest for us, that is for the four-leg scattering, the KLT relation
becomes particularly simple:

ζµ1...µ4,ν1,...ν4A
µ1...µ4,ν1...ν4
closed = −π sin(πp2 · p′1)ξµ1...µ4Aµ1...µ4

open (s, t)ξ′µ1...µ4
A′ν1...ν4open (t, u). (3.29)

This enables us to construct the closed string S-matrix as a direct product of the st
and tutu contributions to the open string S-matrix. If we consider fixed kinematics and
vary the partitions, the direct product structure changes the dimensions of the S-matrix
from p(N)×p(N) for open to p(N)2×p(N)2 for closed strings, which is a big enhancement
in size having in mind the fast growth of the number of partitions p(N) with N .

3.3 The DDF formalism for HES vertex operators

So far we have managed to circumvent the problem of finding the HES vertex operator
and we have found the amplitude for HES states for a special choice of polarizations
(corresponding to our choice of λa = λ = −λ′b and qa = q ∝ −q′b). In order to specify
an arbitrary HES state, it would be useful to utilise a more systematic procedure. Here
we shortly review the construction due to Del Giudice, Di Vecchia and Fubini (DDF)
[44, 29, 45] which is inspired by the same physical idea of tachyon absorbing the photons
that we have already used, enabling us to find a general HES vertex operator.

Essentially the problem boils down to finding the covariant vertex operator represent-
ing the arbitrary physical state of the string. Naively, one would freely combine creation
operators † (αµ

k)
† for various modes k and their products, but this in general does not

satisfy the Virasoro constraints. In order to make linear combinations which satisfy the
constraints, one defines the DDF operators Ai

n =
∮

dz
2π
∂zX

i(z)einq·X(z) and calculate the
vertex operator as a radially ordered product

V (r)(w) = ξi...j : A
i
−n1

. . . Aj
−nr

eip·X(w) :, (3.30)

corresponding to the state with the level
∑

i ni = N and momentum (p−Nq)µ, with the
on-shell condition −(p−Nq)2 = 2(N − 1) satisfied provided that p · q = 1. Due to radial
ordering, the expression above actually resembles the process of tachyon with momentum
p absorbing r photons of momenta −niq (Eq. 3.2).

It is not hard to verify that the DDF operators may be interpreted as ”creation
operators” which are compatible with the Virasoro constraints. This, together with
the one-to-one correspondence with the arbitrary state in the lightcone quantization

|V ⟩lc = ξi...j
(
αi
n1

)†
. . .

(
αj
nr

)† |0, p⟩, proves that the DDF operators are sufficient to con-
struct the whole Fock space. Even though here we discussed the open string case, the
formalism is easily generalised to closed strings by introducing another set of operators
Āi

n̄ =
∮

dz̄
2π
∂z̄X

i(z̄)ein̄q·X(z̄) and replacing the open string tachyon vertex operator with
the closed string version, taking care of the anti-holomorphic sector. In the closed string
case the procedure is again sufficient to build the whole Fock space, provided the level
matching condition N̄ =

∑
i n̄i =

∑
i ni = N is satisfied.
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Figure 3.2: Illustration of the DDF procedure for obtaining an arbitrary physical open
string vertex operator. The tachyon (labeled by Vground state) absorbs the photons V

(k)
massless

one by one, resulting in intermediate excited states V
(k)
excited (k = 1, . . . r), yielding the

V
(r)
excited state in the end. Adapted from [29].

Thus the DDF construction can be used to construct an arbitrary HES state. But
as already mentioned, [21] has found through the use of the DDF formalism that the
contribution from non-orthogonal polarizations is suppressed for large N , and that the
leading term is sufficient to provide a complex structure of the HES amplitudes. Hence we
choose to analyse the HES amplitudes for the kinematics we have specified in subsection
3.1.1, Eqs. (3.24-3.27).

3.4 Statistics of the level partitions

Clearly, the number of partitions p(N) has a very fast growth with N . In order to
characterize the complexity of dynamics in the next chapter it is useful to consider the
statistics of partitions in some more detail. We close this chapter on the HES amplitudes
by finding the average occupation numbers of the given mode at level N .

Consider first the open string. We focus on ⟨nk⟩, the average occupation of the mode
k. Bearing in mind the physical interpretation of the DDF process of creating a HES
from a multiple of photons, and interpreting N =

∑
k knk as the total energy of the

indistinguishable bosons, it is easy to answer this question. We can treat it in a grand
canonical ensemble with zero chemical potential (because we work with photons):

Z =
∑

configurations

e−
Etot
T =

∑
{nk}

∏
k

Cke
− knk

T =
∏
k

Zk (3.31)

where Ck is the degeneracy of the mode k due to polarization choice, which reads Ck =(
nk+D−2−1

nk

)
= (−1)nk

(
2−D
nk

)
in D spacetime dimensions, and T is the temperature. Also

the fact that different modes do not interact allows us to define a grand partition function
for a single mode:

Zk =
∑
nk

Cke
− knk

T = (1− e−
k
T )2−D. (3.32)

Plugging in the above result into (3.31) we can find the average occupation of the mode:

⟨nk⟩ = −1

k

∂

∂T−1
logZk =

D − 2

e
k
T − 1

, (3.33)
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which is the Bose-Einstein distribution as expected. The D − 2 factor is simply due to
the number of polarizations. In order to find T we should demand that the average of
the total energy is equal to N . It is clear that the N ≫ 1 corresponds to the high energy
limit, or equivalently 1

T
≪ 1. In this limit we can analytically estimate Z:

Z =
∏
k

Zk = exp

{
(2−D)

∑
k

log
(
1− e−

k
T

)}
≈ exp

{
(D − 2)

∞∑
k,n=1

e−
kn
T

n

}
. (3.34)

We can evaluate the sum in the exponent by expanding over 1
T
≪ 1:

∞∑
k,n=1

e−
kn
T

n
=

∑
n

1

n

1

e
n
T − 1

≈
∑
n

T

n2
=

π2T

6
. (3.35)

In the high energy limit we thus have Z ≈ e
π2(D−2)T

6 , and using ⟨E⟩ = − ∂
∂T−1 logZ we find

the inverse temperature 1
T
= π

√
D−2
6N

.

We can easily generalize this to the closed string HES with
∑

k nk =
∑

k n
′

k = N . We
find the grand partition function:

Zclosed =
∑

{nk},{n′
p}

∏
k,p

CkC
′

pe
−

∑
k,p(knk+pn

′
p)

T = Z2
closed (3.36)

by using the fact that different modes do not interact neither inside nor outside of a given
sector. Therefore, in the high energy limit we get simply

Zclosed = Z2 = e
π2(D−2)T

3 . (3.37)

From the level matching condition we have ⟨E⟩ =
∑

k k(nk+n
′

k) = 2N . Using this to find

the inverse temperature we obtain 1
T
= π

√
(D−2)
6N

just as for open string HES. It is easy

to show that we again have the Bose-Einstein distribution for the occupation numbers in
both sectors.

Even though the average nk for a fixedN is useful information, it probably does not say
much about which modes are the most significant in dynamics and which could give rise
to chaotic behavior. Bose-Einstein statistics implies that the most common excitations
are those with k ∼ 1, and the partitions containing only low k excitations will hardly
contribute to chaos due to their simplicity. On the other hand, it was found [21] that in
the large N limit, most of the contribution to N comes from the k ∼

√
N modes, which

at large N give rise to complex classical string configuration, and could hopefully drive
the chaos [27], and possibly be significant for the dynamics (including S-matrix) at high
energies.

In order to describe the complexity of dynamics, it is useful to introduce the Shannon
information entropy Si = −Tr[ρ log ρ]. Based on the assumption that every state has a
priori equal probability, the density matrix at temperature T has elements ρ(ϵ) ∼ e−

ϵ
T . To

calculate the entropy for the scattering process, we replace the energies ϵi by eigenphases
ϕi of the S-matrix as discussed in subsection 1.2.3. Thus, we associate the entropy to
the scattering process at fixed kinematics and level and calculate it as the sum over the
eigenphases:

Si = −
∑
i=1

φie
φi . (3.38)
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As the dynamics becomes chaotic, we expect the information entropy to increase, reflecting
the increase in the dynamics complexity.
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Chapter 4

Chaos in the quantum scattering of
highly excited strings

In this chapter, we present and discuss our numerical investigation of the amplitudes
involving HES states for the setting described in the previous chapter. We start by
considering the phenomenology of the open string amplitudes and then move to discuss
the physically more relevant closed string amplitudes.

4.1 Phenomenology of open string scattering

Here we present the results of the calculation of the closed S-matrix for the process
(3.1) involving two HES states and the two tachyons. Because of the complexity of the
expression (3.16) for Ast the computation time grows rapidly, limiting our considerations
to N ≲ 10.1 We calculate the amplitudes for fixed kinematics and all possible partitions
specifying the two HES states and from these we obtain the S-matrix on the subspace of
fixed kinematics (which we call simply the S-matrix).

We diagonalize the S-matrix to obtain its basis-independent characteristics - the eigen-
values (the eigenphases are in particular relevant for RMT statistics) and eigenvectors.
In order to see what kind of partitions dominates the dynamics, we plot the eigenvector
corresponding to the eigenvalue with the largest absolute value for various momentum in-
tensities p and angles θ, θ′ and ϕ′. We characterize the contribution of different partitions
to dynamics by magnitudes of the corresponding components of the highest eigenvector,2

and by magnitudes of the S-matrix elements in the basis of states specified by partitions.
We find that small partitions (the ones with small spin J) dominantly contribute to the
highest eigenvector at small momenta p, while for large momenta long partitions dominate
the highest eigenvector (Fig. 4.1). The crossover from the domination of small partitions
to the domination of large partitions happens at the momentum value that we denote by
pc: at p = pc partitions of all lengths contribute equally. We find pc slightly decreases
with increasing ϕ′.

This can be roughly understood in a simple way: for p ≳ pc there is enough energy to
activate most of the modes. The fact that at large energies large partitions dominantly

1In [24, 21, 26, 27] much larger N values were considered, however the calculations in these papers
were performed for the three-leg and four-leg processes including one HES state, and only for a subset of
amplitudes, allowing them to investigate higher levels.

2We order the eigenvectors by the size of their corresponding eigenvalues. The highest eigenvector is
thus the eigenvector that corresponds to the largest eigenvalue.
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Figure 4.1: Coefficients of the S-matrix eigenvector no. n in the partition basis, for n =
1, 10, 30 (blue, orange, green) and six momentum values p = 8.1, 12.1, 14.1, 15.1, 16.1, 20.1
assuming N = 9, θ = 0.23, θ′ = 0.3 and ϕ′ = 0.7. The partitions are numerated
from shortest (of the form (0, . . . 0, N, 0, . . . 0)) to longest (of the form (1, . . . 1)). The
leading eigenstate (the one with the largest eigenvalue, which dominates the final state
of the scattering process), denoted with the blue line, consists mainly of short partitions
for p = 8.1, 12.1, becomes approximately equipartitioned for momenta p = 14.1, 15.1,
which we identify with the crossover scale pc, and consists mainly of long partitions for
p = 16.1, 20.1. The eigenstates with n = 10, 30 behave in a more or less complementary
way, although for them the trends are less clear.

contribute to the dynamics can also be seen from the plot of absolute values of the S-
matrix elements (Fig. 4.2).

Now that we have the eigenvalues, we can explore whether the S-matrix follows the
RMT prediction for quantum chaotic scattering, which implies that the eigenphases be-
have essentially like eigenenergies of a bound system and thus should be described by
Gaussian random ensembles. We fit the distribution of normalized spacings to (1.7) with
β being the fitting parameter, and compare the outcome to the curve with β = 1 which one
could expect from the time-reversal-symmetric nature of our scattering problem (Fig. 4.3).
There is a significant population of eigenphase spacings far from zero (which is what we
expect from Wigner-Dyson distributions), but also a non-vanishing set of spacings close
to zero (which happens with the Poisson distribution but not with Wigner-Dyson curves
which always vanish at zero spacing, due to level repulsion). We can thus tentatively
conclude that the HES scattering exhibits a mixed state space, with both regular (Pois-
son) and chaotic (Wigner-Dyson) channels. There is however the caveat that for N ≈ 10
the set of spacings available for the accessible levels is rather small, so it is hard to make
robust statements about the distribution.

4.2 Phenomenology of closed string scattering

As we have mentioned, closed HES amplitudes are obtained from the st and tu contri-
butions to the open HES amplitudes by the use of KLT relations. Diagonalization of
the resulting S-matrices is greatly simplified by the direct product structure of the KLT

22



0 10 20 30

0

10

20

30

p = 8.1

0 10 20 30

0

10

20

30

p = 12.1

0 10 20 30

0

10

20

30

p = 14.1

0 10 20 30

0

10

20

30

p = 15.1

0 10 20 30

0

10

20

30

p = 16.1

0 10 20 30

0

10

20

30

p = 20.1

0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: The S-matrix in the partition basis for the same kinematics as in Fig. 4.1, the
color code showing the module of the (generically complex) matrix elements, from smallest
(purple) to largest (red) (normalized by the matrix element with the highest magnitude).
In accordance with the previous figure, the dominant processes for p < pc ≈ 15 involve
short partitions with few occupied levels but with large occupation numbers (upper left
corner), whereas for p < pc the opposite is true and the lower left corner of the S-matrix
is dominant.

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10 p = 8.1

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10

12
p = 12.1

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10 p = 14.1

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10
p = 15.1

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

p = 16.1

0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20 p = 20.1

β fit

β = 1

Figure 4.3: Normalized eigenphase spacing distribution for the same kinematics as in
Fig. 4.1. The blue line represents the best fit to the Wigner-Dyson distribution (1.7)
while the red line corresponds to the GOE (β = 1) prediction expected from the time-
reversal symmetry. There is a significant portion of non-zero spacings as predicted by the
RMT, but also a non-vanishing set of spacings close to zero. This suggests that dynamics
is mixed, consisting of contributions from both Poisson and Wigner-Dyson distribution.
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Figure 4.4: Coefficients of the closed string S-matrix eigenvector no. n in the partition
basis, for n = 1, 10, 100, 1000 (blue, orange, green, red) and six momentum values p =
12.1, 16.1, 17.1, 17.6, 18.1, 24.1 assuming N = 10, θ = 0.2, θ′ = 0.3 and ϕ′ = 0.2. Overall
behavior is similar as for the open string (compare to Fig. 4.1) although the much larger
state space makes visual inspection somewhat harder. Nevertheless, the crossover from
mainly short to mainly long partitions is again clear, with pc ≈ 17.5.

relations for four-leg amplitudes [43].
Just as in the case of open strings, we observe the crossover from predominantly small

to predominantly large partitions and the similar dependence of pc on the angles as for
open strings (Fig. 4.4).

The big difference from the open string case is the size of the S-matrices for given setup
(e.g. for N = 10, for the open string we obtain a square matrix with p(N) = 42 rows
and columns, while for the closed string this number is p(N)2 = 1724). Due to larger size
of the matrix we are now in better position to test the eigenphase spacing statistics and
we find (Fig. 4.6) that the RMT predictions are in decent agreement with the observed
spacing distribution (i.e., we clearly identify level repulsion).

The RMT description seems to work best for p ∼ pc while for both lower and higher
energies sharp peaks and holes in the distribution spoil the agreement with the Wigner-
Dyson distribution. This can be understood as the competition of two opposite effects.
First, as we increase the energy more and more modes are activated providing more
channels for the interaction, forming a complex structure through which chaotic behavior
may develop. On the other hand, at high energies there is ”less time” for the interaction
to occur, the strings just ”fly away from each other”, which results in the suppression
of the chaotic behavior. Hence it is indeed expected that chaos will be most evident in
some range of energies close to the pc. This situation is analogous to classical scattering,
where likewise at low energies the skeleton of periodic orbits (which defines the symbolic
dynamics) is quite simple as most orbits see just a near-harmonic potential well, at high
energies most orbits barely feel the scattering potential and continue to infinity almost
undisturbed, and at intermediate energies the competition between the bounded and
unbounded dynamics generates sensitivity to initial conditions and chaos.

We further support the above reasoning by calculating the information entropy associ-
ated with the S-matrix using 3.38. As seen from Fig. 4.7, the entropy admits a maximum
at the crossover, indicating increase in the dynamics complexity.
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Figure 4.5: The logarithm of the S-matrix for the closed string in the partition basis for
the same kinematics as in Fig. 4.4, the color code showing the module of the (generically
complex) matrix elements, from smallest (dark blue) to largest (green) (normalized by
the matrix element with the highest magnitude). In accordance with the previous figure,
we observe the crossover from short to long partitions dominating the dynamics (similar
to Fig. 4.2).
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Figure 4.6: The normalized eigenphase spacing distribution for the same kinematics as in
Fig. 4.4. The blue line represents the best fit to 1.7 while the red line corresponds to the
GOE (β = 1) predictions expected from the time-reversal symmetry. The distributions
seem to be in better agreement with the RMT predictions near the crossover (e.g. p ∈
{17.1, 17.6, 18.1}) but in general there are some deviations in terms of peaks and holes.
Distributions clearly favor non-zero spacings.
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Figure 4.7: Shannon information entropy normalized by the absolute value of the max-
imum entropy for the same kinematics as in Fig. 4.4. We observe a sharp peak in the
entropy at the crossover momentum pc ≈ 17.5. The line is just to guide the eye.

We note that st and tu parts of the open string amplitude in this case behave quite
differently, as demonstrated in Fig. 4.8. In the tu matrix structure we find stripes which
became denser after the crossover, while in the st part we do not see any obvious signs of
the crossover. The fact that these two contributions to the amplitude have very different
structures implies that one should be cautious in making conclusions about the whole
amplitude by studying one of the channels [24, 47].

The behavior of phases of the Atu matrices induces similar structure in the complete
S-matrix. As seen from Fig. 4.9, stripes in the phases of the S- matrix became denser at
the crossover.

Finally, we see no sign of the string/BH transition in our calculations, most likely
because the levels we can consider are not high enough.
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Figure 4.8: Channels Ast and Atu of the open string amplitude in the partition basis for
the same kinematics as in Fig. 4.4, the color code showing the phases of the elements,
normalized to the [−1, 1] interval. The tu part shows stripes (i.e., sets of partitions with
lengths confined to some fixed interval) of real elements whose number increases at the
crossover. The phase structure of the st part is on the other hand more or less featureless,
and exhibits no clearly visible changes at the crossover.
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Figure 4.9: S-matrices for closed strings in the partition basis for the same kinematics as
in Fig. 4.4, the color code showing the phases of the elements, normalized to the interval
[-1,1]. We identify the same striped structure as in Fig. 4.8. The number of stripes
increases at the crossover. Only a part of the S-matrix is shown in order to zoom-in into
the stripe structure; the rest of the S-matrix behaves in a similar manner.
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Chapter 5

Conclusions

In this thesis we have studied the scattering of highly excited strings both in the classical
and in the quantum regime. The chaotic nature of BHs and the BH/string correspondence
have motivated us to first investigate the signs of chaos in the classical string scattering off
the BH, and then also to look in detail at the quantum S-matrix elements for the processes
including HES. The quantum case provides a way to study the chaotic behavior of BHs
in the perturbative string theory framework and importantly provides an example of a
quantum field theory in which the signs of chaos can be probed analytically. Therefore,
even independently of the string/BH complementarity, it is instructive to look at the sings
of chaos in string scattering: (1) it is a little-studied but important aspect of string theory
(2) it is a rare example of tractable dynamics (in the regime of small string coupling g)
in a strongly nonlinear field theory (3) it provides insight into the mechanisms of chaos
in conformal field theories (CFT), as string theory is really a CFT on the worldsheet.1

Our calculations of open and closed string scattering amplitudes involving two HES
and two tachyon states enable us to draw the following conclusions regarding the phe-
nomenology of the HES scattering:

1. In both open and closed case we observe the transition from short to long par-
titions dominating the dynamics. We identify this smooth transition at energies
corresponding to the momentum pc when short and long partitions are equally con-
tributing to the dynamics.

2. For the open string we find the comparison of the S-matrix eigenphases with the
RMT predictions inconclusive because of the small dimensions of matrices we can
numerically achieve.

3. For the closed string we find clear evidence of level repulsion, the robust prediction
of the RMT. Because here the dimensions of the S-matrices we can achieve are
significantly larger, we are able to find a decent agreement of the spacing distribution
with the RMT predictions, although there are still some deviations. The deviations
may be a consequence of the mixed state space, containing both the regions with
regular and chaotic dynamics and/or due to the presence of additional symmetry.

1While recent studies of chaos and time-disordered correlators in AdS/CFT [2, 3, 48, 49] have brought
much information on chaos in holographic ”CFTs”, they typically consider the situation when either a
finite temperature T or some other operator (usually chemical potential µ) breaks conformal invariance.
In such CFTs, there is typically no chaos at all when T = µ = 0, which is very different from string
theory, i.e. the worldsheet CFT defined by the Polyakov action that we study.
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4. We see no signs of the transition to the effective BH description in our analysis. It
may well be that the levels we were able to analyse here are simply not high enough.

5. In the classical setting we consider for comparison (the closed string scattering off
the BH in the Minkowski background) we find the extreme sensitivity of the final
state to the initial conditions, in agreement with the chaotic behavior of this system
established in the literature.

We observe that the scattering of closed strings shows systematic deviations from
the GOE distribution which one would expect from the TRS of this integer-spin system.
This could be explained by the symmetry between the left- and right-moving modes of the
closed string (which has no analogy for the open string). That is, after switching partitions
corresponding to the left- and right-moving modes, we should obtain the same amplitude.
This symmetry induces additional correlation between the eigenphases and could explain
the deviation from the GOE ensemble. Being realized as a unitary operator, and because
it is an involution, this symmetry classifies eigenstates as being even or odd under the
exchange of left- and right-moving modes. Hence, in order to remove correlations due to
this symmetry, one should perform the comparison to the GOE predictions for two sets
of eigenphases separately, one for odd and other for even eigenstates. This procedure is
commonly refered to as ’unfolding’ of the spectrum in the context of the RMT. Although
performing this is simple in the basis of partitions, the KLT relations which we utilize
provides us with the closed strings S-matrix in a different basis. This can be easily
seen from Eq. (3.29): the exchange of partitions in the two open string factors does not
give the same closed amplitude as one factor is the st and other is the tu part of the
open string amplitude. This is also evident from the substitution used to factorize the
integration from the closed string worldsheet to the product of integrations forming the
open string amplitudes in the original derivation of the KLT relations [41]. Nevertheless,
this substitution only shuffles the states belonging to the subset of the states with fixed
partition length, as the partition length is counted by the polarization factors, which are
intact under the substitution. Hence, the lengths of the partitions are the same both
in the original partition basis, and in the basis obtained from the KLT direct product
structure (at least in the four-leg process).

In order to separate the states into even and odd, one should find the S-matrix in the
basis of partitions (e.g. through the use of the DDF formalism [29]). We expect improved
agreement with the GOE predictions after this separation is performed, enabling a robust
testing of the chaoticity of this process (e.g. probing the portion of the state space
admitting regular dynamics). We leave the improvements of the RMT analysis along
these lines for future work.

Furthermore, it would be of great interest to compare the classical setting from chapter
2 to the analysis of the S-matrix in chapter 4. This is a nontrivial task because the classical
setup is described by canonical variables (e.g. r(τ), pr(τ)) in a special axial-symmetric
configuration, while in the quantum case, besides the momenta and angles, we need
also the partitions to specify the process; in other words, the quantum case corresponds
to arbitrary and time-dependent shapes of the closed string (determined by the mode
expansion), unlike the classical configuration which is chosen is such a way to give a
circular string in axial-symmetric configuration.

The comparison at the level of partitions can be accomplished by exciting particular
modes in the classical string, but this would demand giving up the axial symmetry, making
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the integration of the equations of motion much more complicated. In order to mimic
the classical states, one should in principle consider the scattering of the coherent states
(in addition to taking the large N limit). One could try to find the coherent state vertex
for a single mode or for several modes (as performed in [50] through the DDF formalism
[29]), calculate the scattering amplitude and try to compare the final state of classical
and quantum setup in the collinear limit (θ = 0, θ′ ∈ {0, π}). This comparison may
be performed by calculating the amplitude for the forward scattering (θ′ = π) and for
backscattering (θ′ = π) and taking the larger amplitude to determine the final state. One
may hope that even the states which are not coherent allow for such comparison in the
setting described here (and, again, for sufficietly large N), but as we explained at the
end of subsection 3.1.1, the amplitude is exactly zero for both collinear configurations.
A less direct comparison could be performed by considering the topological entropy both
for quantum and classical scattering. For the latter, one needs to find the appropriate
symbolic dynamics for the classical case. In addition, one could search for the equivalent
of pc in the classical scattering. We hope to report on the relation of quantum and classical
cases in our future work.
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