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Chapter 1

Introduction

Electron-phonon interaction is a very important topic for understanding the proper-
ties of solids, in particular their transport properties. Transport properties of metals,
semiconductors and ionic crystals are all decisively influenced by electron phonon-
interaction. In semiconductors and ionic crystals, the concept of polaron, a composite
particle that consists of an electron and the cloud of phonons bound to it, is useful
for understanding the effects of eletron-phonon interaction.

The beginnings of the polaron concept can be traced back to the works of Landau and
Pekar in the early thirties [1], but it was Fröhlich who first systematically described
and studied the polaron [2]. In years that followed, the basic properties of Fröhlich po-
laron were established, but also the number of ”species” of polarons was significantly
enlarged beyond the initial Fröhlich type. Although the basic physics is the same, dif-
ferent polaron types are needed to describe the effects of electron-phonon interaction
in real materials in which band structure, as well as the strength and range of the
interaction, can vary to a great degree. In recent decades, interest in polaron physics
is reinvigorated. The polaronic or polaron-like effects are expected to be important
for transport in organic semiconductors as well as quantum dot solids [3] on the one
hand and systems such as an impurity in a Bose-Einstein condensate on the other
hand [4]. There is even an alternative theory of high-temperature superconductivity
in cuprates based on the polaronic effects [5].

The main subject of this thesis is the mobility of a specific family of polarons in a
wide range of coupling strengths and temperatures. The description of the model
studied and its relation to other polaron models can be found in sections 1.1 and 1.2.
Standard Matsubara Green’s function techniques that were used for the calculation
of polaronic spectral properties are briefly described in section 1.3. Linear response
theory essential for the calculation of mobility is covered in section 1.4. In the final
section of the chapter, an overview of the thesis is given.
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1.1 Fröhlich and Holstein Polarons

Electron-phonon interaction is present in any solid, but its strength may vary greatly
depending on the electronic properties of the solid as well as the type of phonons
that electrons couple to. The thesis will concentrate on polar materials, such as
ionic solids and compound semiconductors. Optical phonons, as vibrations of ions
or different atoms, produce polarization field in the solid, which electrons couple to.
Transverse optical phonons in which the displacement is normal to the wave vector
do not produce strong electric fields. Acoustic phonons do not produce polarization
of the medium unless the crystal is piezoelectric, so the coupling to them is usually
small. Thus, the interaction with longitudinal optical (LO) phonons is usually the
dominant form of electron-phonon interaction in polar materials [6].

An electron moving in the polar medium induces polarization around itself and in
turn it may become self-trapped by the field of induced polarization. This basic
picture is the root of the polaron idea. Polaron is an entity consisting of an electron
and the polarization it carries around, or equivalently of an electron and the phononic
could it is bound to. Properties of a polaron such as its effective mass or the response
to the external fields are different than that of a band electron. Since there is an
interest in transport properties of materials in which electron-phonon interaction
is sufficiently strong so that the polaron picture may be valid, it is important to
understand properties of polarons [7]. More specifically, in the materials with the
strongest type of electron-phonon interactions, that of the polar LO coupling, polarons
are shown to govern the transport properties [6].

The most common model that describes polarons is the Fröhlich model. It is derived
in the free electron approximation (continuum approximation) taking into account
the interaction of the electron with one LO mode. The dispersion of the LO mode is
taken to be flat as in Einstein approximation. Hamiltonian of this model is:

HFröhlich =
p2

2mb

+
∑
q

h̄ω0b
†
qbq +

∑
q

(Vqbqe
iqr + V ∗q b

†
qe
−iqr)

Vq = −ih̄ω0

q

(4πα

V

) 1
2
( h̄

2mbω0

) 1
4 α =

e2

h̄

√
mb

2h̄ω0

( 1

ε∞
− 1

ε0

), (1.1)

where ω0 is the frequency of the LO mode, V is the system volume, mb is the electron
band mass, α is the dimensionless electron-phonon coupling constant, while ε∞ and
ε0 are the high-frequency and static dielectric constants of material, respectively.

One of the features of the Fröhlich model is that it connects interaction strength
parameter with the measurable properties of material such as the dielectric constants,
effective mass and phonon frequencies. The approximate derivation of this relation
will be presented for the strong coupling (α� 1). It will be assumed that an electron
in the material is localized on the length scale of l1. Electron’s charge distribution
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will be approximated by a uniformly charged sphere of radius l1. Additional energy
that comes from electron-phonon interaction will be found as a difference between
the self-energies of electrons in cases where the lattice polarization has an effect and
doesn’t, respectively.

The electrostatic energy of the sphere without the presence of ions is 3
5

1
4π

e2

l1
. Self-

energy of the electron with polarization fields that can adiabatically follow him, as
is the case for strong coupling, is 3

5
1

4π
e2

ε0l1
. On the other hand, the self-energy of

an electron in the high-frequency case for which ionic polarization cannot follow the
electron is 3

5
1

4π
e2

ε∞l1
, because the electron charge is screened by the amount given by the

static dielectric constant. Total interaction energy of the electron and its polarization
is equal to the difference of these two self-energies and is proportional to:

Uint = −e
2

l1

(
1

ε∞
− 1

ε0

)
. (1.2)

A rough estimate of the range of the electronic localization can be made by taking
into account the kinetic energy of the localized electron:

Ekin =
h2

2mbl21
. (1.3)

After minimizing the total energy with respect to the l1, the result is:

l1 =
e2mb

h2
(

1
ε∞
− 1

ε0

) , Etot = − e4mb

2h2
(

1
ε∞
− 1

ε0

)2 . (1.4)

Comparing the result above with the exact result for the Fröhlich model binding
energy in the strong coupling limit (−α2), the connection between coupling constant
and measurable quantities is obtained. In table 1.1 the measured Fröhlich coupling
constants for several polar materials are given. It can be seen that they lay in quite
a wide range that includes both weak and strong couplings [7].

A large amount of work has been done within the Fröhlich model and much is known -
polaron binding energies, spectral properties, mobility in limiting cases, etc. However,
the model is inadequate in dealing with strong (or not even strong) electron-phonon
interaction in at least one way. In assuming the validity of the continuum approxima-
tion, Fröhlich model assumes that the spatial extent of the electronic wave function
is at least several lattice constants, idealy greater. However, electron-phonon interac-
tion can cause length to be even shorter. The result in the strong limit gives for the
spatial extent of the electronic wave function is approximately [7]:

l1 =

√
h̄

mbα2ω0

. (1.5)
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Table 1.1: Fröhlich coupling constants for several polar materials. The table is taken
from [7].

Material α Material α

InSb 0.023 AgCl 1.84
InAs 0.052 KI 2.5
GaAs 0.068 TlBr 2.55
GaP 0.2 KBr 3.05
CdTe 0.29 Bi12SiO20 3.18
ZnSe 0.43 CdF2 3.2
CdS 0.53 KCl 3.44
α-Al2O3 1.25 CsI 3.67
AgBr 1.53 SrTiO3 3.77
α-SiO2 1.59 RbCl 3.81

In the weak limit (α � 1), the following expression is valid for the characteristic
length [7]

l2 =

√
h̄

mbω0

. (1.6)

There is a number of materials where the length (either l1 or l2) is not sufficiently
higher than lattice constant because of the strong electron-phonon interaction, the
best example being transition metal oxides and, depending on what is considered
large enough, it may include even alkali-halides. Furthermore, there are materials in
which electron band mass is sufficiently large to make l1 or l2 length small. These
include organic semiconductors and quantum dot solids [5].

Because of the need to go further beyond continuum approximation of Fröhlich, var-
ious lattice polaron models were proposed [8]. Polarons are labeled by either large
or small depending on the characteristic length of polaronic wave function [6]. In
that sense Fröhlich model can be seen as an extreme case of a large continuum po-
laron mainly valid when bandwidths are large and electron-phonon interaction not
too strong. Furthermore, standard Fröhlich Hamiltonian is derived for the long range
(unscreened) electron-phonon interaction. On the other end of a polaronic family
there is another well known model, the Holstein polaron.

Holstein model is a small lattice polaron model in which the range of the electron-
phonon interaction is assumed to be minimal, so that electron interacts only with
phonons on a site it is currently found. The short-range electron-phonon interaction
is thought to be good approximation for non-polar materials in which long-range
electrostatic forces are absent. But in general, Holstein model is an approximation
for small bandwidths and interaction ranges, quite the opposite of the Fröhlich case.
Standard Holstein Hamiltonian is written with the tight-binding approximation for
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electrons. For a single LO mode with flat dispersion it assumes the form:

HHolstein = −
∑
m,n

tnc
†
m+ncm +

∑
m

h̄ω0b
†
mbm −

∑
m

∑
q

h̄ω0g
2c†mcm(b†m + bm), (1.7)

where g2 is the dimensionless electron-phonon coupling constant, m and n are site
position vectors and tn is the transfer integral from central site to site n. Its connection
with measurable properties of a material is not as clear as in the Fröhlich case because
it is related exclusively to the microscopic details of a material. Yet it may be inferred
from the measurement of the properties strongly affected by polaronic nature of charge
carriers, with the assumption that the model itself is valid for a material in question.
Also, first principle calculations may provide estimates, as has been done for quantum
dot systems [9].

Important point to consider when describing Holstein and other lattice polaron Hamil-
tonians is that a simple strong/weak interaction classification is not entirely adequate.
While in the Fröhlich case the only relevant parameter is the coupling constant α, it
is the ratio of coupling and transfer integral that determines strong and weak inter-
action ranges for the lattice case. However, this ratio, g2h̄ω0

t
for Holstein model, can

be small or large independent of the g2 or t, so there are regions of parameters in
which a character of interaction is not entirely clear. For this reason, besides weak
(g

2h̄ω0

t
� 1) and strong (g

2h̄ω0

t
� 1) Holstein limit, there exist adiabatic t� h̄ω0 and

nonadiabatic t� h̄ω0 limits. In the adiabatic limit phonons can follow the electronic
motion. Most materials would correspond to nonadiabatic region, however there are
examples in which this is not so clear and even ones in which adiabatic condition can
be full-filled (quantum dot solids) [9].

From all the properties of Fröhlich and Holstein models, mobility estimates are the
most important for further comparison. Two limiting cases are especially illuminat-
ing.

In the limit of weak interactions, low temperatures and large electronic bandwidths,
carriers exhibit band-like behaviour. In this case electron-phonon interaction is one
possible source of scattering that limits otherwise infinite mobility to finite values.
If we are interested in a material in which electron-phonon interaction is dominant
scattering mechanism, we can expect that the scattering rate is proportional to the
number of phonons, determined by the temperature, and to the strength of interac-
tion. This is confirmed by the exact result in the weak interaction low temperature
limit of the Fröhlich model which correspond well to the range of the parameters
described1 [7]:

µ =
e

2α

(
eβh̄ω0 − 1

)
∝ 1

αnph
(1.8)

1It should be noted that this result, although 50 years old, remains controversial. In some
calculations an additional factor of 3 arrises [7]. However, this doesn’t influence our discussion.
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In the opposite limit of high temperatures, strong interaction and small bandwidths,
often used approximation is that of a diffusive motion of electrons. It is assumed that
if polaron band is narrow enough the band-like mobility is suppressed. Since one of the
consequences of strong electron-phonon interaction is band narrowing, a well known
result for the Holstein Hamiltonian, very narrow polaron bands form in this region
of parameters. Holstein proposition is that if this is true, main contribution to the
mobility comes from electron hopping from one site to the other site. This random
walk of electron is then modeled by Markovian process with a certain probability
of a nearest neighbour hop. In turn, the mobility is proportional to the hopping
probability. To make a hop, electron must overcome bonding with the phonon cloud
on the site it is currently on. In other words, there is a barrier that electron must
overcome in a hop. Result for a hopping mobility with these assumptions is of the
form [6]:

µh ∝ t2β
3
2 e−βEa , (1.9)

where Ea is the activation energy that corresponds to the height of the hopping barrier
which is of the order of the polaron binding energy. For the Holstein polaron in the
strong coupling limit this binding energy is g2h̄ω0.

The temperature dependence of the hopping mobility shows an activation behaviour
in a certain temperature range, followed by power law decrease for very high tem-
perature as opposed to exponential decrease of a band-like mobility seen in (1.8).
However, since the result is derived in the limit of high temperatures, it is unclear to
what temperature range it can be applied and whether activation behaviour is to be
expected. Also, it is an open question to what extent can the band-like mobility be
disregarded and in what range we can use one or the other theory of polaron mobility
[10], [11]. It is clear that in order to resolve these questions, a unified theory of po-
laron mobility is needed. One of the steps in that direction may be achieved by using
model Hamiltonians somewhere in between the extremes that Fröhlich and Holstein
represent.

1.2 Lattice Fröhlich Polaron

A class of polaronic models that may be suitable for the ranges of conditions not
covered by models presented in 1.1 are lattice Fröhlich polarons. The Hamiltonian of
the lattice Fröhlich polaron, written for an arbitrary phonon dispersion (ωq), is:

H = He +Hph +He−ph =

−
∑
m,n

tmnc
†
mcn +

∑
q

h̄ωqb
†
qbq −

∑
m,n

h̄ωqfm−nc
†
ncn(b†m + bm), (1.10)
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where

bm =
1√
N

∑
q

bqe
−iqm, (1.11)

and where fm−n are the coefficients of electron-phonon interaction. The case in
which they are zero except for m = n corresponds to the Holstein Hamiltonian,
while the case in which their Fourier transform is equal to the coefficients Vq in the
Fröhlich Hamiltonian can be viewed as a Fröhlich polaron on a lattice. The model
can be derived by considering classical interaction of the electron and the LO phonon
polarization cloud, as will be shown on an 1D example [12]. It is this Hamiltonian
that the thesis will be concerned with. While some of the results will be provided
for the general Hamiltonian, it is a specific 1D variant of the model that will be
investigated numerically, namely because of the computational convenience.

The basis for derivation of the lattice Fröhlich Hamiltonian is the interaction between
the electron and the polarization that comes from LO phonons. Classically, this
interaction has the form:

Vint(rel) = −
∑
m

e
pm · (rel −m)

|rel −m|3
, (1.12)

where pm is the dipole moment of a molecule at site m and rel is the electron position
vector. The following steps in the derivation of lattice Fröhlich Hamiltonian will
depend on the details of the crystall lattice and phonon polarization directions, but
they are, in principle, similar. The 1D model used for numerical investigations consists
of a linear chain with a polar molecule at each site. Atoms that molecule is built of
can oscillate in a line of a chain which corresponds to one LO phonon mode. Dipole
moment of a molecule can be assumed to be proportional to the displacement of
atoms, ξm. Thus, interaction energy is proportional to:

Vint(rel) ∝
∑
m

ξm
|rel −m|2

. (1.13)

The matrix elements of the electron-phonon interaction are given by
∫

d3relψ
∗
n′(rel)

Vint(rel)ψn(rel), where ψn(rel) is the orbital function of the electron at site n. The
matrix elements are the largest for n′ = n, since the orbital overlap between different
molecules is usually exponentially smaller. The full treatment should include the ”off-
diagonal” matrix elements, or at least nearest neighbor ones. Yet, situation for the
electron-phonon interaction is substantially different than that for the tight-binding
approximation for electronic band structure. While in the tight-binding approxima-
tion including nearest neighbors’ transfer is obligatory, as it gives the first nontrivial
term, the first and the largest contribution for the electron-phonon interaction al-
ready comes from ”diagonal” matrix elements. Including nearest neighbor overlap is
more analogous to taking the next-nearest neighbour transfer in the TBA. With this
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in mind, and using standard bosonic quantization:

ξm ∝
1√
N

∑
q

(b†qe
iqm + bqe

−iqm) ∝ b†m + bm, (1.14)

the electron-phonon part of the Hamiltonian can be written as:

He−ph = −
∑
m,n

h̄ωqfm−nc
†
ncn(b†m + bm), (1.15)

with:

fm−n ∝
1

|n−m|2
. (1.16)

The derived form of electron-phonon interaction is clearly that of a lattice Fröhlich
type. The interaction has an infinite range, and its spatial dependence corresponds
to the 1D Fröhlich lattice model2. However, the interaction with the central site is
not well defined. This is to be expected, since electron certainly does not see a dipole
field from the molecule it is ”currently” on. Finding the ratio of the interaction
of electron with the central atom and the neighboring ones would require a first
principle calculation, but without it, one must resort to inclusion of two different
coupling constants. Thus, the final form of the interaction coefficients is:

fm−n = α1δm,n +
α2C

2

|m− n|2
(1− δm,n), (1.17)

where C is the lattice constant.

It is useful to redefine the couplings to have one coupling constant that determines
overall interaction strength and the other that describes the relative strength of inter-
action with the central atom and all the other atoms (in a sense, the electron-phonon
interaction range). It can be done in multiple ways, but here the procedure of Alexan-
drov [12] used for a different 1D lattice Fröhlich Hamiltonian will be loosely followed.
As a measure of the interaction strength, the binding energy of the polaron in the
strong-coupling limit is used. This binding energy, as will be shown, is given by:

∆Ee−ph
h̄ω0

= −
∑
q

f 2
q = −

∑
m

f 2
m = −α2

1 − 2α2
2

N∑
j=1

1

j4
= −α2

1 − κα2
2,

fq =
1√
N

∑
m

fme
iqm.

(1.18)

2It should be noted that continuum Fröhlich polaron does not have a nice extension to the 2D or
1D case. While all the quantities calculated in the 3D Fröhlich model are regular, analogous 2D and
1D models suffer from ultraviolet divergences. Divergences are the consequences of the continuum
approximation and as such they vanish on a lattice. Furthermore, some 3D Fröhlich models that
use different phonon dispersion from the flat one also suffer from UV divergences [4]. While the
continuum Fröhlich model is simple, it is not very robust.
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For a sufficiently large number of atoms, κ ≈ π4

45
≈ 2.16. The coupling constants are

redefined as:
α1 = α cosψ

α2 =
1√
κ
α sinψ.

(1.19)

The binding energy in the strong-coupling limit becomes −α2, thus the coupling
constant α determines the overall interaction strength. The parameter ψ tells how
much the Hamiltonian is Holstein-like or Fröhlich-like. The case of ψ = 0 corresponds
to the Holstein Hamiltonian, while in the opposite extreme, ψ = π

2
, the interaction

with the central molecule is nonexistent. The ratio of the interaction coefficients for
the central molecule and the nearest neighbor is:

f0

f1

=
√
κ cotψ ≈ 1.47 cotψ (1.20)

The coefficients are equal for ψ ≈ π
3
, which can be taken as the upper limit of the

sensible values for ψ. It is not expected that the interaction with the neighboring
molecule is stronger than that with the central one.

It is this 1D lattice Fröhlich Hamiltonian class that will be investigated in detail in
the following chapters 3. However, the analytic results that will be derived are valid
for the general lattice Fröhlich case. Before the results, a brief description of the
methods used is presented.

1.3 Finite Temperature Green’s Functions

Retarded and advanced Green’s functions provide a systematic way of obtaining elec-
tronic correlations needed for the calculation of transport properties.

Gret
k (t) = −ih(t)

〈
ck(t)c†k + c†kck(t)

〉
Gadv

k (t) = ih(−t)
〈
ck(t)c†k + c†kck(t)

〉 (1.21)

In the expression above, h(t) denotes the Heaviside step function, c-operators are
electronic creation and annihilation operators and averaging is to be done over the
grand canonical ensemble.

Since the thesis is concerned with the transport properties at finite temperatures,
Matsubara formalism is used. The starting point of the formalism are the imaginary

3For numerical calculations flat phonon dispersion, ωq = ω0, is used.
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time Matsubara Green’s functions, defined as [6]:

Gk(τ) = −
〈
Tτck(τ)c†k

〉
= −

〈
Tτe

τ(H−µN)cke
−τ(H−µN)c†k

〉
,

Dk(τ) = −
〈
Tτbk(τ)b†k

〉
,

(1.22)

for the fermions and bosons, respectively, with Tτ denoting the standard fermionic
and bosonic time-ordering and b-operators being phononic creation and annihilation
operators. In the expression above, N is the total number of particles and µ is the
chemical potential.

Definitions above allow in the interaction picture for the transformation of the ther-
modynamic averages with respect to the full Hamiltonian into averages with respect
to the non-interacting part. Corresponding S-matrix can then by calculated via stan-
dard Dyson series. Additional benefit is that only connected diagrams need to be
summed.

Gk(τ) = −
〈
TτS(h̄β)cIk(τ)

(
cIk
)† 〉

0〈
S(h̄β)

〉
0

= −
〈
TτS(h̄β)cIk(τ)

(
cIk
)† 〉

0,connected

S(h̄β) =
∞∑
n=0

(−1)n

n!h̄n

∫ h̄β

0

dτ1...

∫ h̄β

0

dτn

[
TτV

I
int(τ1)...V I

int(τn)
] (1.23)

In the expressions above, 〈...〉0 denotes thermodynamic averaging with respect to
the non-interaction part, while V I

int is the interaction part of the Hamiltonian in the
interaction picture.

Perturbative calculations of the Dyson series in the thesis are made feasible for arbi-
trarily strong electron-phonon interaction by previously applying a suitable canonical
transformation that makes the interaction part of the Hamiltonian small.

Imaginary frequency Matsubara Green’s functions are defined as Fourier transforms
of the imaginary time functions:

Gk(ipn) =

∫ h̄β

0

dτeipnτGk(τ), Gk(τ) =
1

h̄β

∑
n

e−ipnτGk(ipn), pn =
(2n+ 1)π

h̄β

Dk(iωn) =

∫ h̄β

0

dτeiωnτDk(τ), Dk(τ) =
1

h̄β

∑
n

e−iωnτDk(iωn), ωn =
2nπ

h̄β
.

(1.24)

The importance of the imaginary frequency Matsubara functions lies in the fact that
they can give retarded and advanced Green’s functions in frequency domain via an-
alytic continuation:

lim
δ→0

G(ω + iδ) = Gret(ω)

lim
δ→0

G(ω − iδ) = Gadv(ω).
(1.25)
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The benefit of Matsubara formalism is that it allows for the standard diagrammatic
expansions to be used, which is not possible to do with the regular Green’s func-
tions without introducing additional diagrams. The price to be payed for this is the
additional step of analytic continuation.

It is convenient to separate Green’s functions into the non-interacting part and the
self-energy part that comes from the interaction, as given by Dyson equation:

Gret
k (ω) =

G0ret
k (ω)

1− Σret
k (ω)G0ret

k (ω)
, G0ret

k (ω) =
1

ω − Ek−Ef
h̄

+ iδ
, (1.26)

where Ek is the electron band dispersion and Ef is the Fermi energy.

From the retarded Green’s functions, another useful quantity can be derived - the
spectral function.

Λk(ω) = −2Im[Gret
k (ω)] =

−2Im[Σret
k (ω)](

ω − Ek−Ef
h̄

+ Re[Σret
k (ω)]

)2

+
(

Im[Σret
k (ω)

)2 (1.27)

The spectral function is directly related to the density of states, and it can be used for
the calculation of thermodynamic averages of any single-electron observable. Know-
ing the spectral properties of the Hamiltonian will allow for the calculation of the
transport properties as given by the linear response theory. In particular, the follow-
ing averages will be used:〈

c†k(t)ck

〉
=

∫ ∞
−∞

dω

2π
eiωtnF (ω)Λk(ω),〈

cq(t)c†q

〉
=

∫ ∞
−∞

dω

2π
e−iωt

(
1− nF

)
(ω)Λq(ω),

(1.28)

where nF denotes Fermi distribution. The expressions can be proven by expanding
averages and spectral functions in the eigenbasis of total Hamiltonian [6], a procedure
that will be shown several times in the latter text, but will be omitted here for the
sake of conciseness.

1.4 Kubo Formula for Mobility

Linear response theory provides a systematic way to describe the transport properties
of systems in conditions close to equilibrium. The great advantage of the theory is
the fact that the transport properties are connected to much more easily obtainable
equilibrium properties of the system. As such, it will be used for the calculation of
polaron mobility in conjunction with described Green’s functions approach, which
will provide the necessary equilibrium quantities.
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There are two basic assumptions of the theory [13]. The first one is that the external
field is sufficiently small so that it couples linearly to the system in question. In the
case of interest, external field is the electric field that couples linearly to the dipole
moment of the system:

H ′ = −d · E. (1.29)

Operator of the diple moment of the system is:

d =
∑
n

qrn, (1.30)

where rn is the position operator of carrier n of charge q.

The second assumption is that system is in the equilibrium before the field was
applied. More precisely, without external field (Hamiltonian H0

4), system is in equi-
librium, so that its density matrix satisfies:

ρE=0 =
e−β(H0−µN)

Tr e−β(H0−µN)
(1.31)

After the field is turned on, the system evolves under Hamiltonian H = H0 +H ′:

ih̄
dρ(t)

dt
= [H0 +H ′, ρ(t)]. (1.32)

The condition required for the validity of the approach can then be written as the
equality of the corresponding density matrices in the moment when the field is turned
on (for simplicity, this moment is labeled as t = 0):

ρ(0) = ρE=0 (1.33)

Since the interaction with the applied field is weak, the new density operator will not
differ much from the initial one. Thus if it is written:

ρ(t) = ρ(0) + f(t), (1.34)

operator f(t) will be a perturbation. Rewriting the differential equation for density
operator as an equation for f and taking only terms that are at most the first order
in f and H ′, gives:

ih̄
df(t)

dt
= [H0, f(t)] + [H ′(t), ρ(0)], (1.35)

which is equivalent to5:

ih̄
d

dt

(
ei
H0
h̄
tf(t)e−i

H0
h̄
t
)

= [H ′I(t), ρ(0)], (1.36)

4In the case considered, this would be the full lattice Fröhlich Hamiltonian.
5The equilibrium statistical operator commutes with H0.
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where H ′I is the H ′ in the interaction picture with regards to the H0 as the free
Hamiltonian. Integrating with initial condition f(0) = 0 and keeping only terms
linear in H ′I gives:

f(t) =
1

ih̄
e−i

H0
h̄
t

∫ t

0

dt′[H ′I(t
′), ρ(0)]ei

H0
h̄
t (1.37)

The response of interest is the electric current. The current operator is given by[13]:

j(r) =
q

2m

∑
n

(
pnδ(r− rn) + δ(r− rn)pn

)
, (1.38)

where pn is the momentum operator of carrier n with mass m.

Let it be supposed, for the sake of simplicity, that the applied electric field is in fixed
direction labeled by b. The component of current density measured in direction a can
be found by averaging the current operator with respect to the density matrix:

Ja(r, t) = Tr
(
ρ(t)ja(r)

)
. (1.39)

Using the integral equation derived for f(t), the cyclic property of trace, and defining

j(r, t) = ei
H0
h̄
tj(r)e−i

H0
h̄
t, gives:

Ja(r, t) = Tr
(
ρ(0)j(r)

)
+

1

ih̄

∫ t

0

dt′Tr
(
ρ(0)[ja(r, t), H ′I(t

′)]
)

(1.40)

The first part is zero because no net current can be present in an equilibrium state.

In order to get the current measured macroscopically, average over the volume of the
system should be taken. In writing the H ′, it was already assumed that the electric
field is homogeneous throughout this volume.

Ja(t) =
1

V

∫
d3rJa(r, t) = − 1

ih̄V

∫ t

0

dt′Tr
(
ρ(0)[ja(t), db(t′)]

)
Eb(t′), (1.41)

where the operator ja(t) is given by:

ja(t) =
q

m

∑
n

pan. (1.42)

Comparing with the definition of the conductivity tensor:

Ja(t) =
∑
b

∫ t

0

dt σab(t, t′)Eb(t′), (1.43)
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the following is obtained:

σab(t, t′) = − 1

ih̄V
Tr
(
ρ(0)[ja(t), db(t′)]

)
. (1.44)

Using the cyclic property of trace and the form of ρ(0), it can be shown that:

σab(t, t′) = σab(t− t′) = − 1

ih̄V
Tr
(
ρ(0)[ja(t− t′), db(0)]

)
. (1.45)

Thus, the regime in question does not have time dispersion and the optical conduc-
tivity tensor is well defined.

σab(ω) =

∫ ∞
0

dteiωtσab(t) = − 1

ih̄V

∫ ∞
0

dteiωtTr
(
ρ(0)[ja(t), db(0)]

)
(1.46)

The integrals above are to be calculated with ω = ω + iη, η → 0, which corresponds
to turning the electric field at t = 0.

To proceed further, the dipole moment operator can be related to the current operator
by the equation:

d[db(t)]

dt
= jb(t), (1.47)

which is a direct consequence of the continuity equation for the electric charge [6].
Integration gives:

db(0) = db(t)−
∫ t

0

dt′jb(t′). (1.48)

The equal-time commutation relation is also valid:

[ja(t), db(t)] = −ih̄Ncq
2

m
δab, (1.49)

where Nc is the total number of carriers. Using the last two expressions combined
with (1.46) gives:

σab(ω) = i
ncq

2

mω
δab +

1

ih̄V

∫ ∞
0

dteiωt
∫ t

0

dt′Tr
(
ρ(0)[ja(t− t′), jb(0)]

)
= i

ncq
2

mω
δab + lim

η→0

1

ih̄V

∫ ∞
0

dt′Tr
(
ρ(0)[ja(t′), jb(0)]

)∫ ∞
t′

dtei(ω+iη)t

= i
ncq

2

mω
δab +

1

h̄ωV

∫ ∞
0

dteiωtTr
(
ρ(0)[ja(t), jb(0)]

) (1.50)

The last expression is known as one of the forms of Kubo formula for optical con-
ductivity. Electrical conductivity can be obtained from it by taking the real part and
then letting ω → 0. However, a more suitable form of the Kubo formula in which
current-current commutators are replaced by correlators, will be used for calculations.
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In order to derive the alternative form of Kubo formula, the real part of expression
(1.50) is taken and then expanded in the eigenstate basis of H0:

Re σab(ω) = Re lim
η→0

1

h̄ωV

∫ ∞
0

dtei(ω+iη)t
∑
m,n

(
e−β(En−µNn)

Tr e−β(H0−µN)
− e−β(Em−µNn)

Tr e−β(H0−µN)

)
· e−i

Em−En
h̄

t〈n|ja(0)|m〉〈m|jb(0)|n〉,
(1.51)

where Em and En are energies of corresponding eigenstates. It is taken into account
in the expression above that the current operators conserve carrier number. After
doing the time integration, the expression becomes:

Re σab(ω) =
π

h̄ωV

∑
m,n

(
e−β(En−µNn)

Tr e−β(H0−µN)
− e−β(Em−µNn)

Tr e−β(H0−µN)

)
〈n|ja(0)|m〉

· 〈m|jb(0)|n〉δ
(
ω − Em − En

h̄

)
=

1

2h̄ωV

∑
m,n

( e−β(En−µNn)

Tr e−β(H0−µN)
− e−β(En+h̄ω−µNn)

Tr e−β(H0−µN)

)
·
∫ ∞
−∞

dt〈n|ja(0)|m〉〈m|jb(0)|n〉ei
(
ω−Em−En

h̄

)
t

=
1− e−βh̄ω

2h̄ωV

∑
n

∫ ∞
−∞

dteiωt
e−β(En−µNn)

Tr e−β(H0−µN)
〈n|ja(t)jb(0)|n〉.

(1.52)

Finally, the Kubo formula is rewritten in terms of current correlations:

Re σab(ω) =
1− e−βh̄ω

2h̄ωV

∫ ∞
−∞

dteiωt〈ja(t)jb(0)〉, (1.53)

where the average on the right denotes thermodynamic average with respect to H0.
From (1.53) it is not clear whether the expression on the right is indeed real. However,
this can easily be shown by expanding the operator average into the averages of the
hermitian and the antihermitian part, which are themselves odd and even functions
of time.

If the mobility is being calculated, DC limit (ω → 0) must be taken and the expression
divided by the carrier concentration and charge:

µab =
β

2Ncq

∫ ∞
−∞

dteiωt〈ja(t)jb(0)〉. (1.54)

This formula will be the starting point for polaron mobility calculations.
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1.5 Overview of the Thesis

The properties of the lattice Fröhlich models will be investigated in the thesis, with the
ultimate goal of calculating its mobilities in a wide temperature and coupling strength
range. In order for the calculation based on perturbative techniques to be made
possible, a suitable canonical transformation will be applied as described in chapter
2. The transformation is tailored in such a way that after its application, interacting
part of the Hamiltonian is small. This is possible in a wide temperature and coupling
strength range because of the variational character of the transformation. In chapter
2, equations for the variational parameters will be derived and numerical results for
free particle properties will be presented.

After the canonical transformation is applied, calculation of the polaronic spectral
properties can be done by standard techniques described in section 1.3. The calcu-
lations will be presented in chapter 3. They will ultimately lead to a self-consistent
equation for the polaronic self-energy which must be solved numerically.

However, the starting point of chapter 3 will be the Kubo formula derived in section
1.3. It will be shown that, under certain assumptions, the formula can be transformed
to an expression that is determined by the knowledge of polaronic spectral functions.
This expression will be used for numerical calculation of polaron mobility. In order
to check the validity of these calculations as well as to provide the mobility estimates
in the parameter ranges in which numerics is too costly, the limiting cases will be
investigated in chapter 4. The limits in which relatively simple expressions for the
mobility can be derived are weak coupling/low temperature and strong coupling/high
temperature limits.

Finally, numerical results for the polaron mobility and spectral properties in the
1D model will be presented in chapter 5. The comparisons will be made with the
appropriate limiting cases. The analyses will show the differences and similarities
between different Hamiltonians in the class investigated. Chapter 6 will include a
brief conclusion of the thesis.
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Chapter 2

Variational Lang-Firsov Unitary
Transformation

The subject of this chapter is the unitary transformation that will enable mobility
calculations with standard perturbation techniques. The transformation applied is a
variant of the Lang-Firsov transformation that is usually used for the Holstein polaron
in the strong coupling limit, the difference being that the applied transformation
is variational. The variational nature of the transformation makes it suitable for
describing various coupling regimes. The equations for the corresponding variational
parameters will be derived using Gibs-Bogolyuobov bound. At the end of the chapter,
numerical solutions for the 1D model of interest will be presented.

2.1 Lang-Firsov Unitary Transformation

The transformation that will be applied on the lattice Fröhlich Hamiltonian (1.10) is
an extension of the Lang-Firsov unitary transformation1, which has the form:

H ′ = e−SHeS, S =
1√
N

∑
m,n

∑
q

fm−nc
†
ncn(b†q − b−q)eiqm (2.1)

Lang-Firsov transformation is traditionally used for the description of the strong-
coupling regime of the Holstein polaron. When the kinetic part of the Hamiltonian
is negligible in comparison with electron-phonon interaction (tn → 0), Lang-Firsov
transformation exactly diagonalizes Holstein Hamiltonian [7]. The transformation is
successful because it couples electron to phononic cloud, thus taking the electronic
states to the polaronic ones [14]. However, the same picture is valid not only for Hol-

1Also known as Merrifield’s transformation [14].
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stein Hamiltonian. Lang-Firsov transformation diagonalizes the whole lattice Fröhlich
class of Hamiltonians in the strong coupling limit.

On the other hand, if the weak coupling limit is to be described, no unitary trans-
formation is needed since the perturbation techinques are directly applicable. One
way to include this fact in the transformation that aims to describe polarons in vari-
ous coupling regimes is to make a Lang-Firsov transformation dependent on a set of
variational parameters (Dm−n), so that it takes the form:

S =
1√
N

∑
m,n

∑
q

Dm−nc
†
ncn(b†q − b−q)eiqm. (2.2)

It would be expected that after the optimization of the free energy2, parameters
Dm−n will take the values fm−n in the strong-coupling limit, thus exactly diagonal-
izing the Hamiltonian. In the opposite limit, they would go to zero, so the unitary
transformation will be close to unity. The variational parameters describe the degree
to which the electron is dressed by its polaronic cloud. With both the weak and the
strong limits being covered by the same transformation, it can be expected that the
transformation will transfer a major part of the electron-phonon interaction to the
diagonal part of the transformed Hamiltonian for intermediate coupling as well [14].

The following notation will be introduced:

fq =
1√
N

∑
m

fme
iqm, Dq =

1√
N

∑
m

Dme
iqm

cm =
1√
N

∑
k

cke
−ikm, θm = e

∑
qDq(b†q−b−q)eiqm .

(2.3)

Fourier coefficients of the electron-phonon interaction must satisfy the hermiticity
condition, fq = f ∗−q. Similarly, Dq = D∗−q holds for the variatonal parameters as
the unitarity condition. For convenience, it will be taken that the Bravais lattice
corresponding to the crystal lattice in question has inversion symmetry, and thus
fq = f−q. Then, optimal variatonal parameters will also incorporate this symmetry,
Dq = D−q. Direct consequence is that both fq and Dq are real. Also, by definition,
θ†mθm = I.

Electronic and phononic operators are transformed with the help of the Baker-
Campbell-Hausdorff formula:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (2.4)

2Extension from the ground state energy that is optimized in the zero temperature case.

18



and standard commutation relations. The result is:

cm → e−Scme
S = θmcm

bq → e−Sbqe
S = bq +

∑
k

Dqc
†
k−qck

(2.5)

The transformed Hamiltonian is then:

H ′ = H ′e +H ′ph +H ′e−ph

H ′e = −
∑
k1,k2

∑
m,n

(
1

N
tmnθ

†
mθne

i(k1m−k2n))c†k1
ck2

H ′ph =
∑
q

h̄ωqb
†
qbq +

∑
k,q

h̄ωqDqc
†
k−qck(b†q + b−q) +

∑
k,q

h̄ωqD
2
qc
†
kck

−
∑
q,k,k′

h̄ωqD
2
qc
†
k+qc

†
k′−qckck′

H ′e−ph = −
∑
k,q

h̄ωqfqc
†
k−qck(b†q + b−q)− 2

∑
k,q

fqDqc
†
kck

+ 2
∑
q,k,k′

h̄ωqfqDqc
†
k−qc

†
k′+qckck′

(2.6)

The last terms in expressions for H ′ph and H ′e−ph are two-particle interactions. Po-
laronic properties are important for materials where electronic concentration in the
conduction band is small (semiconductors, ionic solids), so they are usually described
in a single-electron model [15]. The same will be done in this thesis. As a conse-
quence, the aforementioned terms are exactly zero in the Hilbert space spanned by
the single-electron (or single-polaron) states. Alternatively, it could have been ex-
plicitly stated when Hamiltonian was initially written that it corresponds to a single
electron system3. In that case, the transformed Hamiltonian would have to be pro-
jected to the single-electron subspace. The final result would be the same, two-particle
terms would vanish.

In order to separate the diagonal part of the H ′e, the following identity will be used:

θ†mθn = (θ†mθn − 〈θ†mθn〉0) + 〈θ†mθn〉0, (2.7)

where 〈...〉0 denotes phononic thermodynamic average over the free phononic part of
the Hamiltonian. The average can be calculated using the commutator [bq−b†−q, b

†
q′−

b−q′ ] = 0:

〈θ†mθn〉0 =
〈
e
∑

qDq(bq−b†−q)e−iqme
∑

q′ Dq′ (b
†
q′−b−q′ )e

iq′n
〉

0

=
∏
q

〈
eDq[b†q(eiqn−eiqm)−bq(e−iqn−e−iqm)]

〉
0

= e−
1
2

∑
qD

2
q|eiqn−eiqm|2(2nq+1).

(2.8)

3Fröhlich Hamiltonian, as written in 1.1, clearly describes single-electron system.
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Additionally, for the last step, average 〈eµb†+νb〉0 = e
1
2

(2n+1)µν is used. It can be
proven by carefully expanding the exponential and averaging term by term, as shown
in appendix A.

Using the consequence of translation symmetry, tmn = tm−n, inversion symmetry, and
redefining the energy reference point so that t0 = 0, the diagonal part of H ′e becomes:

1

N

∑
m,n

tmne
i(k1m−k2n)〈θ†mθn〉0 = δk1,k2

∑
R+

2tR cos (k1R)e−
∑

qD
2
q(1−cosqR)(2nq+1).

(2.9)
R+ denotes one half of the crystal sites (the other half are inversion images of the
selected ones).

Transformed Hamiltonian becomes:

H ′ = H0 + V1 + V2

H0 =
∑
k

c†kck

[∑
R+

−2tR cos (kR)e−
∑

qD
2
q(1−cosqR)(2nq+1)

+
∑
q

h̄ωq(D2
q − 2fqDq)

]
+
∑
q

h̄ωqb
†
qbq

V1 = −
∑
k,q

h̄ωq(fq −Dq)c†k−qck(b†q + b−q)

V2 = −
∑
k1,k2

[ 1

N

∑
m,n

tm−n(θ†mθn − 〈θ†mθn〉0)ei(k1m−k2n)
]
c†k1
ck2

(2.10)

2.2 Gibbs-Bogolyubov Bound and Equations for

Variational Parameters

In order to find the equations for variational parameters, Gibbs-Bogolyubov theo-
rem will be used. The theorem provides an upper bound for the free energy of the
system. Free energy is the relevant quantity to optimize, since the mean number
of phonons, and thus the effect of electron-phonon interaction, depend strongly on
temperature. The theorem itself states that the following inequality is valid for two
bound, hermitian operators (Hamiltonians), H and H0:

F (H) = − 1

β
ln Tr

(
e−βH

)
≤ − 1

β
ln Tr

(
e−βH0

)
+ 〈H −H0〉H0 . (2.11)

The importance of the inequality is that it can be employed to give an upper bound
on the system’s free energy only by calculating the averages over the non-interacting
part of the Hamiltonian. This bound can then be used as a functional which can be
optimized to provide variational parameters. In the case considered, the Hamiltonian
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is already conveniently separated for the use of Gibbs-Bogolyubov inequality:

F (D) = − 1

β
ln Tr

(
e−βH(D)

)
≤ − 1

β
ln Tr

(
e−βH0(D)

)
+ 〈V1 + V2〉H0(D) (2.12)

Thermodynamic averages over phononic degrees of freedom give 〈V1 + V2〉H0(D) = 0,
so that the free-energy functional that will be used for optimization is:

F(D) = − 1

β
ln Tr

(
e−βH0(D)

)
. (2.13)

Calculating the trace of the diagonal Hamiltonian is straightforward. In the following
expressions for F(D), phononic part of the trace will be omitted since it does not
depend on the variational coefficients. The expression for polaronic part is:

Fpl(D) = − 1

β
ln
∑
k

e−βEk ,

Ek = −
∑
R+

JR(D) coskR +
∑
q

h̄ωq(D2
q − 2fqDq),

JR(D) = 2tRe
−

∑
qD

2
q(1−cosqR)(2nq+1).

(2.14)

Ek is the polaron band dispersion or renormalized electron band dispersion. From the
last equation it can be deduced that the electron-phonon interaction, besides binding
the electron (overall energy shift)4, also narrows the band.

Transforming the k-sum into an integral over the first Brillouine zone gives:

Fpl(D) =
∑
q

h̄ωq(D2
q − 2fqDq)− 1

β
ln
[ V

(2π)3

∫
FBZ

d3keβ
∑

R+ JR(D) coskR
]
. (2.15)

For convenience, further calculations will be done for cubic lattice with nearest neigh-
bour hopping only. The integral is in this case expressible through modified Bessel
functions:

Fpl(D) =
∑
q

h̄ωq(D2
q − 2fqDq)− 1

β
ln
(
I0(βJCx)I0(βJCy)I0(βJCz)

)
, (2.16)

where Cx, Cy and Cz are lattice vectors of tree nearest neighbors in positive directions
of x, y and z axes, respectively. Cubic symmetry is manifested as:

JCx(D) = JCy(D) = JCz(D) = JC(D). (2.17)

4Note that the binding energy in the strong-coupling limit will go to
∑

q f
2
q, which is the result

used for the redefinition of coupling constants in chapter 1.2.
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Optimization of the free energy functional δFpl(D)
δDq

= 0, gives equations for variational
parameters:

Dq =
fq

1 + I1(βJC(D))
I0(βJC(D))

JC(D)
ωq

coth βωq

2

∑
i=x,y,z

(
1− cosqCi

) . (2.18)

All parameters are completely determined by renormalized bandwidth, JC(D), so
instead of solving the system of equations, one self-consistent equation for JC(D) can
be solved. The equation is found by combining (2.14) and (2.18):

JC(D) = 2tCe

−
∑

q

[
fq

1+
I1(βJC(D))
I0(βJC(D))

JC(D)
ωq

coth
βωq

2
∑
i=x,y,z

(
1−cosqCi

)]2

coth
βωq

2

(
1−cosqCx

)
.

(2.19)
Thus, optimal variational parameters are found starting from the Gibbs-Bogolyubov
inequality. It is easy to see that for the weak interaction, when fq → 0, also Dq → 0,
so that the unitary transformation is close to unity. For the strong interaction,
JC(D)→ 0, implying Dq → fq, which corresponds to the usuall Lang-Firsov transfor-
mation. These results were expected when the transformation was tailored and they
demonstrate the adequacy of the transformation in the weak and strong coupling
limits. In the intermediate regime, it is expected that transformation, as optimized,
makes the non-diagonal part of the Hamiltonian small. Thus, the case is set for
the application of perturbation techniques. Before that, numerical results for the
variational coefficients in 1D model will be given.

2.3 Numerical Solution for the Variational Param-

eters in 1D Model

All numerical calculations are done for the 1D lattice model discussed in 1.25:

H = −
∑
m

tCc
†
m+Ccm −

∑
m

tCc
†
m−Ccm +

∑
q

h̄ω0b
†
qbq −

∑
m,n

h̄ω0fm−nc
†
ncn(b†m + bm),

fm−n = α cosψ δm,n +
αC2 sinψ√
κ|m− n|2

(1− δm,n)

(2.20)
The parameters of the model are transfer integral tC

6, temperature, overall coupling
strength α and constant ψ that determines the nature of Hamiltonian (electron-
phonon interaction range).

5Nearest neighbor only TBA is used for the electronic part of the Hamiltonian.
6From this point on, all the energies quoted for numerical results will be given in units of h̄ω0

and momenta in units of 1
C , where C is the lattice constant.
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When solving equation (2.19), two distinct cases emerge. The first case is what will
be called transition case and the second is transition-less case. In the transition-less
case for all values of temperature and coupling constant, a single solution exists. The
values of renormalized bandwidth and free-energy functional vary smoothly in the
whole parameter range. In the transition case, there are two solutions of the equation
(2.19). One of the solutions exists only for relatively week interaction strength, and
the other for relatively strong. They coexist in a certain range of intermediate coupling
strengths. The right solution is chosen such that it gives lower value of the free-energy
functional. As a consequence, free-energy functional and renormalized bandwidth do
not vary smoothly. Typical free-energy functional dependence on coupling strength
in both cases is shown in figure 2.1.

-16

-12

-8

-4

 0

 1  2  3  4

F

α

weak branch
strong branch

(a) tC = 0.1

-16

-12

-8

-4

 1  2  3  4

F

α

weak branch
strong branch

(b) tC = 1

-16

-12

-8

-4

 1  2  3  4

F

α

weak branch
strong branch

(c) tC = 3

Figure 2.1: Dependence of the free-energy functional on coupling strength for dif-
ferent values of transfer integrals. In graphs 2.1b and 2.1c two distinct branches exist
and transition can be seen. All the examples are given for the Holstein model (ψ = 0)
and fixed temperature (kBT = 1).

It must be emphasized that this apparent ”transition” is the consequence of the
method used. It has been rigorously proven, after some debate, that the phononic
Hamiltonians of the conituum Fröhlich-like type do not undergo phase transition [16].
This group does not include lattice models studied, but it it is very plausible that the
phase transition is absent for them as well. However, since the free-energy functional
is only the upper bound to the real free energy of the system, the results that are
obtained here do not imply the existence of the phase transition.

Transition being present or not, it is desirable that the transformation makes the
residual part of the electron-phonon interaction sufficiently small. This is shown to
be true for the Holstein Hamiltonian [14]. The ground state energy calculated by the
variational method employed here was found to be within ten percent of the value
found by the exact calculations even in the intermediate regime. There are no results
to be used for comparisons with Hamiltonians other than Holstein, but the success
of the method in the Holstein case does provide some reassurance. Renormalized
band dispersion obtained (Ek), however, is the rough first approximation to the real
polaronic band dispersion. It will be clear how the band structure evolves from the
one regime to the other after calculating polaronic spectral properties.
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In figure 2.2, temperature and coupling strength dependence of the ratio of renormal-
ized and unrenormalized bandwidth for several characteristic values of tC and ψ are
shown. Transition is seen as a sharp jump from the light yellow region to the dark
region.
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Figure 2.2: Dependence of bandwidth narrowing factor (renormalized bandwidth
divided by the interaction-less bandwidth) on coupling strength and temperature.
The dependence is shown for several values of transfer integral (interaction-less band-
width) and two models - the Holstein model and the ψ = π

4
model.
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The following can be deduced from the graphs shown and similar graphs for the
unrepresented region of parameters. Transition-less case is universal for tC < 1,
regardless of the nature of Hamiltonian (constant ψ) or temperature. Transition case
exists for tC > 1, but the sharpness and even the existence of transition depend
much on the temperature and the nature of Hamiltonian. For the Holstein model
(ψ = 0), transition is very sharp for all temperatures. As the Hamiltonian is further
from the Holstein one, transition is less and less sharp and even vanishes for lower
temperatures. Coupling strengths and temperatures for which the transition occurs
depend on the transfer integral (tC) as well as the nature of Hamiltonian. With
increasing the transfer integral stronger coupling and higher temperatures are needed
for transition. The same happens when increasing the range of interaction (increasing
ψ).

Explanation for the absence of transition for tC < 1 may be implied by the free en-
ergy dependence on coupling constant in this regime (figure 2.1). The dependence
resembles the strong coupling branch of the free energy in the case where the tran-
sition takes place. This suggests that the nature of the polaronic states in those
two regions is similar. The similarity may be due to the both states being adiabatic
in nature - when the polaron is localized (small renormalized bandwidth), phonons
follow electronic motion adiabatically.

As for the dependence of the transition on the nature of the Hamiltonian, it may
also be connected with the properties of strong coupling branch of polaronic state. If
the electron is to be localized by the interaction with phonons, for the same overall
strength of interaction, short-range interaction (ψ → 0) will be more effective in
the localization than the long range one. It may be expected that the long-range
interaction will localized electron more gradually.
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Figure 2.3: Square of interactions coefficients in the momentum space for Holstein
and ψ = π

4
models. Coupling strength is set to α = 1.

Temperature, transfer integral and interaction range dependence of coupling strength
needed for transition to occur can also be analyzed. As for the dependence on trans-
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fer integral, it is to be expected that the larger the electronic transfer between the
neighboring sites, the stronger the electron-phonon interaction must be in order for
localization to happen. Expression (2.14) can be used to analyse other dependencies.
In the strong coupling regime Dq → fq, so the bandwidth decays exponentially with
coupling strength. However, factor in the exponent,

∑
q f

2
q(1− cosqR)(2nq + 1), is

smaller for long-range interaction because of the different momentum dependence on
interaction coefficients. This dependence is shown in figure 2.3 for the Holstein case
and the case ψ = π

4
. Longer range interaction is the strongest for small momenta,

however, the factor 1 − cosqR suppresses the localization by the small momentum
part of the interaction. From (2.14) it can also be seen that the higher temperature
(higher average number of phonons in the system) has the similar effect as the higher
interaction strength.

Of particular importance is the fact that the long-range electron-phonon interaction
suppresses the transition to narrow band region. Not only that, but even when the
small bandwidth region is reached, exponential decrease of the bandwidth is milder
than in the Holstein case. The results equivalent to these were found in Quantum
Monte-Carlo calculations for a different 1D lattice polaron Hamiltonian class [17].
They are considered to open the possibility for a relatively high mobility of lattice
polarons, especially in the adiabatic region and when compared to Holstein estimates.
This will be explored in the chapters that follow.
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Chapter 3

Approximate Solutions for Kubo
Formula and Spectral Properties of
Lattice Fröhlich Polaron

In this chapter, the explicit expression for the mobility of the polaron in the models
investigated will be derived starting from Kubo formula. The Kubo formula will be
solved approximately with the assumption that the interaction part of the Hamilto-
nian is small after the unitary transformation applied in chapter 2. The expression
given will contain polaronic spectral functions. In order to obtain them, corresponding
Matsubara Green’s functions will be found via standard Dyson expansion. Analytic
continuation will then give the needed retarded Green’s functions and thus provide
the recipe for the calculation of polaronic spectra and mobility.

3.1 Approximate Solution to Kubo Formula

The starting point of mobility calculation will be the Kubo formula variant given in
equation (1.54). In order to proceed from it, the current operator for the system needs
to be known. It can be shown that appropriate current operator for an electron on
a lattice, under the condition that the interacting part of the Hamiltonian commutes
with the local electron density operator c†mcm (which is the case for Hamiltonian in
consideration), takes the following form in the site representation [18]:

j =
e0

ih̄

∑
m,n

(m− n)tm−nc
†
mcn, (3.1)
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where e0 is charge of an electron. After applying the unitary transformation given by
(2.2), the current operator becomes:

j(D) =
∑
k,q,q′

Jkc
†
qcq′θ

†
k−qθk−q′ ,

Jk =
e0

ih̄

∑
R

RtRe
ikR, θk =

1

N

∑
R

θRe
ikR.

(3.2)

Using the trace invariance with regards to unitary transformations, Kubo formula
can be completely rewritten in terms of transformed operators:

µx = − β

2Nce0

∑
k,q

∑
k′,q′

∑
k′′,q′′

∫ ∞
−∞

dtJxkJ
x
qTr
(
ρ(D)c†k′(t)cq′(t)θ

†
k−k′(t)θk−q′(t)c

†
k′′cq′′θ

†
q−k′′θq−q′′

)
,

(3.3)
where ρ(D) is statistical operator of the interacting system. Only one diagonal com-
ponent of the mobility tensor will be calculated. This is sufficient to describe the
whole mobility tensor for cubic lattices, since symmetry reduces it to a scalar in the
principal directions basis.

Thermodynamic averages as well as time evolutions in (3.3) are to be calculated with
respect to the full electron-phonon Hamiltonian. However, if the electron-phonon
interaction is small, approximations that will make calculations doable are possible.
The first such approximation is the separation of electronic and phononic evolutions.
It is valid to expect that if the interacting part is small, electronic and phononic
operators can be averaged independently:

Tr
(
ρ(D)c†k′(t)cq′(t)θ

†
k−k′(t)θk−q′(t)c

†
k′′cq′′θ

†
q−k′′θq−q′′

)
≈
〈
c†k′(t)cq′(t)c

†
k′′cq′′

〉〈
θ†k−k′(t)θk−q′(t)θ

†
q−k′′θq−q′′

〉 (3.4)

The phononic average can further be simplified by noting that since the model in ques-
tion deals with small carrier concentrations1, the impact of interaction on phononic
properties will be negligible. In fact, if this impact were to be evaluated, for example
by calculating additional phononic self-energy that comes from the interaction with
carriers, it would be proportional to carrier concentration. In light of this fact, all the
phononic quantities can be seen as the unrenormalized ones. Applied to the average
and phononic evolution in (3.4), this gives:〈

θ†m(t)θn(t)θ†l θj

〉
≈
〈
θ†m(t)θn(t)θ†l θj

〉
0

≈
〈
e
∑

qDq(bqe
−iωqt−b†−qe

iωqt)e−iqme
∑

q′ Dq′ (b
†
q′e

iωq′ t−b−q′e
−iωq′ t)eiq

′n

· e
∑

q′′ Dq′′ (bq′′−b
†
−q′′ )e

−iq′′l
e
∑

q′′′ Dq′′′ (b
†
q′′′−b−q′′′ )e

iq′′′j
〉

0

(3.5)

1It is a single-electron model.
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=
〈
e
∑

qDq[b†qe
iωqt(eiqn−eiqm)−bqe−iωqt(e−iqn−e−iqm)]e

∑
q′ Dq′ [b

†
q′ (e

iq′j−eiq′l)−bq′ (e−iq
′j−e−iq′l)]

〉
0

= e−
1
2

∑
qD

2
q|1−eiq(m−n)|2(2nq+1)e−

1
2

∑
qD

2
q|1−eiq(l−j)|2(2nq+1)

· e−
∑

qD
2
q

[
(nq+1)e−iωqt+nqe

iωqt
](

1−eiq(n−m)
)(

1−e−iq(j−l)
)
eiq(m−l)

The average is calculated similarly to the average in (2.8). Additionally, the last

step stems from the well known identity eAeB = e
1
2

[A,B]+A+B, valid for [A, [A,B]] =
[B, [A,B]] = 0.

Fermionic average in (3.4) will be expanded by the Wick’s theorem as if it were the
average over the free Hamiltonian, but the single-electron correlations that are ob-
tained that way will be calculated by using the full interacting Green’s functions. This
corresponds to the non-vertex approximation for mobility. The full calculation that
would include vertex corrections would be a task of significant complexity. However,
vertex correction for electron-phonon interaction are thought to be proportional to the
interaction strength and temperature2 [6]. This can provide a basis for disregarding
them, since the variational method employed is optimized for various temperatures
and coupling strength so that it leaves the small interacting part. Thus, by exploiting
the non-vertex approximation, the electronic average reads:〈

ck′(t)
†cq′(t)c

†
k′′cq′′

〉
≈ δk′,q′′δq′,k′′

〈
c†k′(t)cq′′

〉〈
cq′(t)c

†
k′′

〉
. (3.6)

The additional terms that come from the Wick’s theorem are disregarded, since they
are proportional to the square of electron concentration.

After some straightforward Fourier transforms in momentum space, the following
expression for mobility is obtained:

µx =
e0β

2NNch̄
2

∑
k,q

∫ ∞
−∞

dtΓxk,q(t)
〈
c†k(t)ck

〉〈
cq(t)c†q

〉
, (3.7)

where:
Γxk,q(t) =

∑
X,Y,Z

tXtYX
xY xei(qX+kY+kZ−qZ)θ0

Xθ
0
YθX,Y,Z(t),

θ0
X = e−

1
2

∑
qD

2
q|1−eiqX|2(2nq+1) =

JX(D)

2tX

θX,Y,Z(t) = e−
∑

qD
2
q

[
(nq+1)e−iωqt+nqe

iωqt
](

1−e−iqX
)(

1−eiqY
)
eiqZ .

(3.8)

As a result of applied approximations, Kubo formula is rewritten in the terms of
single electron correlators. However, since the transformation is previously applied,
the electrons are already dressed by phonons, their properties thus renormalized. The
scattering mechanism that limits the carrier mobility is the residual electron-phonon

2This is certainly not always the case, impurity scattering being the example where vertex cor-
rections are as important as the non-vertex term.
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interaction. It will come into play when calculating polaronic spectral functions.
According to (1.28) spectral functions can be used to find the needed single electron
correlators.

3.2 Matsubara Functions via Dyson Expansion

Matsubara formalism described in 1.3 will be used for perturbative calculations of
polaronic spectral properties. Dyson expansion (1.23) up to the second order gives:

Gk(τ) = −
〈
Tτc

I
k(τ)cI†k

〉
0

+
1

h̄

∫ h̄β

0

dτ1

〈
Tτc

I
k(τ)V I(τ1)cI†k

〉
0,conn

− 1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

〈
Tτc

I
k(τ)V I(τ1)V I(τ2)cI†k

〉
0,conn

.

(3.9)

For convenience, the interaction part of the Hamiltonian is rewritten as:

V = V1 + V2 = − 1

N

∑
k,q

c†k−qckBk,q,

Bk,q = Nh̄ωq(fq −Dq)(b†q + b−q) +
∑
m,n

tm−n
(
θ†mθn − 〈θ†mθn〉0

)
ei((k−q)m−kn).

(3.10)

It is easy to see by considering phononic part of the interaction Hamiltonian that the
first order contribution vanishes:

Gk(τ) = G0
k(τ)− 1

2N2h̄2

∑
k′,q′

∑
k′′,q′′

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

〈
TτBk′,q′(τ1)Bk′′,q′′(τ2)

〉
0〈

Tτck(τ)c†k′−q′(τ1)ck′(τ1)c†k′′−q′′(τ2)ck′′(τ2)c†k
〉

0,conn
.

(3.11)

Wick’s theorem is employed for the electronic average3:〈
Tτck(τ)c†k′−q′(τ1)ck′(τ1)c†k′′−q′′(τ2)ck′′(τ2)c†k

〉
0,conn

=

− δk,k′−q′δk′,k′′−q′′δk′′,kG0
k(τ − τ1)G0

k′(τ1 − τ2)G0
k(τ2)

− δk,k′′−q′′δk′′,k′−q′δk′,kG0
k(τ − τ2)G0

k′′(τ2 − τ1)G0
k(τ1)

+ δk,k′−q′δk′,kδq′′,0G
0
k(τ − τ1)G0

k(τ1)nF (k′′)

+ δk,k′′−q′′δk′′,kδq′,0G
0
k(τ − τ2)G0

k(τ2)nF (k′).

(3.12)

3Terms proportional to the electronic concentration are kept because they will later disappear
exactly. However, they could have been disregarded at this point without changes to the final result.
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Phononic average calculated for τ1 > τ2 is expanded into four terms:〈
TτBk′,q′(τ1)Bk′′,q′′(τ2)

〉
0

= N2h̄2ωq′ωq′′(fq′ −Dq′)(fq′′ −Dq′′)〈(b†q′(τ1) + b−q′(τ1))(b†q′′(τ2) + b−q′′(τ2))〉0

+
∑

m,n,l,j

tm−ntl−je
i((k′−q′)m−k′n)ei((k

′′−q′′)l−k′′j)
[
〈θ†m(τ1)θn(τ1)θ†l (τ2)θj(τ2)〉0

− 〈θ†m(τ1)θn(τ1)〉0〈θ†l (τ2)θj(τ2)〉0
]

+Nh̄ωq′(fq′ −Dq′)
∑
l,j

tl−je
i((k′′−q′′)l−k′′j)〈(b†q′(τ1) + b−q′(τ1))θ†l (τ2)θj(τ2)〉0

+Nh̄ωq′′(fq′′ −Dq′′)
∑
m,n

tm−ne
i((k′−q′)m−k′n)〈θ†m(τ1)θn(τ1)(b†q′′(τ2) + b−q′′(τ2))〉0.

(3.13)
Averaging of the first term is straightforward. Averaging in the second term was
already done in (3.5) and (2.8). The result of (2.8) can also be used to deal with the
last two terms. More specifically, the expression:

〈θ†mθn〉0 = e−
1
2

∑
qD

2
q|eiqn−eiqm|2(2nq+1), (3.14)

can be differentiated with respect to the suitable parameters (Dq(eiqn − eiqm) and
its conjugate are one possible choice). Combining the expressions derived by dif-
ferentiation, the averages needed for the last two terms can be obtained. However,
differentiating the operator side is not trivial and the following identity, valid for[
[A, ∂A(α)

∂α
], A
]

= 0, must be employed:

∂eA(α)

∂α
= eA(α)

(∂A(α)

∂α
− 1

2
[A,

∂A(α)

∂α
]
)

=
(∂A(α)

∂α
+

1

2
[A,

∂A(α)

∂α
]
)
eA(α) (3.15)

The identity is proven by series expansion in appendix A. Finally, the averages in the
last two terms of (3.13) are found:

〈(b†q′(τ1) + b−q′(τ1))θ†l (τ2)θj(τ2)〉0
= Dq′

[
(nq′ + 1)e−ωq′ (τ1−τ2) − nq′e

ωq′ (τ1−τ2)
]
(e−iq

′j − e−iq′l)〈θ†l θj〉0,
〈θ†m(τ1)θn(τ1)(b†q′′(τ2) + b−q′′(τ2))〉0
= −Dq′

[
(nq′ + 1)e−ωq′ (τ1−τ2) − nq′e

ωq′ (τ1−τ2)
]
(e−iq

′′n − e−iq′′m)〈θ†mθn〉0.

(3.16)

After analogous calculation for τ2 > τ1 phononic part gives:

−
〈
TτBk′,q′(τ1)Bk′′,q′′(τ2)

〉
0

= Nδq′,−q′′Dk′,k′′,q′(τ1 − τ2), (3.17)
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where:

Dk′,k′′,q′(τ) = −

[
Nh̄2ω2

q′(fq′ −Dq′)
2
[
(nq′ + 1)e−ωq′ |τ | + nq′e

ωq′ |τ |
]

+
∑

X,Y,Z

tXtYθ
0
Xθ

0
Ye

i(k′X+k′′Y−q′Z)
(
θX,Y,Z(|τ |)− 1

)
−Nh̄ωq′(fq′ −Dq′)Dq′

[
(nq′ + 1)e−ωq′ |τ | − nq′e

ωq′ |τ |
]
sgnτ

·
∑
X

tXθ
0
X

(
eik
′′X − e−ik′X

)(
1− eiq′X

)]
θX,Y,Z(τ) = e−

∑
qD

2
q

[
(nq+1)e−ωqτ+nqe

ωqτ
](

1−e−iqX
)(

1−eiqY
)
eiqZ

(3.18)

From the definition of bosonic time ordering one obtains:〈
TτBk′,q′(τ1)Bk′′,q′′(τ2)

〉
0

=
〈
TτBk′′,q′′(τ2)Bk′,q′(τ1)

〉
0
. (3.19)

This enables summation of the factors in the expansion of (3.11), that differ only up
to the exchange of dummy variables τ1 and τ2. The imaginary frequency polaronic
Matsubara function is:

Gk(ipn) = G0
k(ipn)− 1

Nh̄2

∑
k′,q′

∑
k′′,q′′

∫ h̄β

0

dτeipnτ
∫ h̄β

0

dτ1

∫ h̄β

0

dτ2δq′,−q′′Dk′,k′′,q′(τ1 − τ2)[
δk,k′−q′δk′,k′′−q′′δk′′,kG

0
k(τ − τ1)G0

k′(τ1 − τ2)G0
k(τ2)− δk,k′−q′δk′,kδq′′,0G0

k(τ − τ1)G0
k(τ1)nF (k′′)

]
= G0

k(ipn)− 1

Nh̄2

∫ h̄β

0

dτeipnτ
∫ h̄β

0

dτ1

∫ h̄β

0

dτ2[∑
q

Dk−q,k,−q(τ1 − τ2)G0
k(τ − τ1)G0

k−q(τ1 − τ2)G0
k(τ2)

−
∑
k′′

Dk,k′′,0(τ1 − τ2)G0
k(τ − τ1)G0

k(τ1)nF (k′′)
]
.

(3.20)
With the usual definition of frequency transform for bosonic Matsubara function:

Dk′,k′′,q′(τ) =
1

h̄β

∑
n

e−iωnτDk′,k′′,q′(iωn) ωn =
2nπ

h̄β
, (3.21)

the polaronic Matsubara function becomes:

Gk(ipn) = G0
k(ipn)−(G0

k(ipn))2

Nh̄2

∑
q

[ 1

h̄β

∑
m

Dk−q,k,−q(iωn−iωm)G0
k−q(ipm)−Dk,q,0(0)nF (q)

]
.

(3.22)
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Matsubara self-energy can be read from the last expression:

Σk(ipn) = − 1

Nh̄2

∑
q

[ 1

h̄β

∑
m

Dk−q,k,−q(iωn − iωm)G0
k−q(ipm)−Dk,q,0(0)nF (q)

]
.

(3.23)

3.3 Analytic Continuation and Retarded Green’s

Functions

Analytic continuation is a necessary step that will provide retarded Green’s functions
needed from known expressions for Matsubara functions. In order to keep expressions
compact, it is useful to define the following retarded and advanced phonon functions:

− ih(t)
〈
Bk′,q′(t)Bk′′,q′′ − Bk′′,q′′Bk′,q′(t)

〉
0

= Nδq′,−q′′D
ret
k′,k′′,q′(t),

ih(−t)
〈
Bk′,q′(t)Bk′′,q′′ − Bk′′,q′′Bk′,q′(t)

〉
0

= Nδq′,−q′′D
adv
k′,k′′,q′(t).

(3.24)

These functions are calculated in the same manner as the corresponding Matsubara
function Dk′,k′′,q′(τ). In fact, the whole calculation is analogous with τ exchanged
with it, the results being:

Dret
k′,k′′,q′(t) =− ih(t)

[
Nh̄2ω2

q′(fq′ −Dq′)
2(−2i sinωq′t)

+
∑

X,Y,Z

tXtYθ
0
Xθ

0
Ye

i(k′X+k′′Y−q′Z)
(
θX,Y,Z(t)− θX,Y,Z(−t)

)
−Nh̄ωq′(fq′ −Dq′)Dq′2 cosωq′t

∑
X

tXθ
0
X

(
eik
′′X − e−ik′X

)(
1− eiq′X

)]
(3.25)

Dadv
k′,k′′,q′(t) =ih(−t)

[
Nh̄2ω2

q′(fq′ −Dq′)
2(−2i sinωq′t)

+
∑

X,Y,Z

tXtYθ
0
Xθ

0
Ye

i(k′X+k′′Y−q′Z)
(
θX,Y,Z(t)− θX,Y,Z(−t)

)
−Nh̄ωq′(fq′ −Dq′)Dq′2 cosωq′t

∑
X

tXθ
0
X

(
eik
′′X − e−ik′X

)(
1− eiq′X

)]
(3.26)

Definitions allow for the application of the analytic continuation theorem on the
phononic functions:

Dk′,k′′,q′(ω + iδ) = Dret
k′,k′′,q′(ω)

Dk′,k′′,q′(ω − iδ) = Dadv
k′,k′′,q′(ω)

(3.27)
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The conditions are set for summing −
∑

mDk−q,k,−q(iωn − iωm)G0
k−q(ipm) =

−
∑

mDk−q,k,−q(ipn − ipm)G0
k−q(ipm) over Matsubara frequencies. Since the sum is

over fermionic thermal poles, the following function will be of help:

gipnk,q(z) =
1

eh̄βz + 1
Dk−q,k,−q(ipn − z)G0

k−q(z). (3.28)

As defined, residua around the fermionic thermal poles of gipnk,q are equal to the terms
of the sum needed:

Res
(
gipnk,q(z), z = ipm

)
= − 1

h̄β
Dk−q,k,−q(ipn − ipm)G0

k−q(ipm) (3.29)

All the other poles of the function gipnk,q(z) are on the real axis, since they stem from

Figure 3.1: Contour used for Matsubara summation.

the D and G. For these reasons, integration of g over the contour shown in the figure
3.1 will be used to perform the summation. The complex integral being calculated is:

I ipnk,q =

∮
C1

dz

2πi
gipnk,q(z) +

∮
C2

dz

2πi
gipnk,q(z) +

∮
C3

dz

2πi
gipnk,q(z). (3.30)

Cauchy residuum theorem gives:

I ipnk,q =
∑
m

Res
(
gipnk,q(z), z = ipm

)
− Res

(
gipnk,q(z), z = ipn

)
. (3.31)

Using (3.29), the Matsubara summation in expresion for the self-energy is done:

Σk(ipn) =
1

Nh̄2

∑
q

[
I ipnk,q −

1

h̄β
Dk−q,k,−q(0)G0

k−q(ipn) +Dk,q,0(0)nF (q)
]
. (3.32)
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The complex integral vanishes on the infinite circular boundary, and can thus be
expressed as the sum of regular integrals over the straight contour parts:

I ipnk,q =

∫ ∞
−∞

dω′

2πi
nF (ω′ + ipn + iδ)Dk−q,k,−q(−ω′ − iδ)G0

k−q(ω′ + ipn + iδ)

+

∫ −∞
∞

dω′

2πi
nF (ω′ + ipn − iδ)Dk−q,k,−q(−ω′ + iδ)G0

k−q(ω′ + ipn − iδ)

+

∫ ∞
−∞

dω′

2πi
nF (ω′ + iδ)Dk−q,k,−q(ipn − ω′ − iδ)G0

k−q(ω′ + iδ)

+

∫ −∞
∞

dω′

2πi
nF (ω′ − iδ)Dk−q,k,−q(ipn − ω′ + iδ)G0

k−q(ω′ − iδ)

(3.33)

Additional expressions needed for the analytic continuation are:

nF (ω′ + ipn ± iδ) = − 1

eh̄βω′ − 1± ih̄βδeh̄βω′
= −p.v.[n(ω′)]± iπδ(eh̄βω′ − 1)

= −p.v.[n(ω′)]± i π
h̄β
δ(ω′), nF (ω′ ± iδ) = nF (ω).

(3.34)

Taking the limit δ → 0 in (3.33) first, and then using the analytic continuation
theorem for various Matsubara functions, the following expression is obtained:

Ik,q(ω) = −
∫ ∞
−∞

dω′

2πi
n(ω′)Dadv

k−q,k,−q(−ω′)G0ret
k−q(ω′ + ω)

+

∫ +∞

−∞

dω′

2πi
n(ω′)Dret

k−q,k,−q(−ω′)G0ret
k−q(ω′ + ω)

+

∫ ∞
−∞

dω′

2πi
nF (ω′)Dret

k−q,k,−q(ω − ω′)G0ret
k−q(ω′)

−
∫ +∞

−∞

dω′

2πi
nF (ω′)Dret

k−q,k,−q(ω − ω′ + iδ)G0adv
k−q(ω′)

+
1

h̄β
Dk−q,k,−q(0)G0ret

k−q(ω)

(3.35)

Once again, it is useful to exploit the low carrier density approximation. In this ap-
proximation, Fermi level is far below the band minimum so that its position becomes
irrelevant (Fermi distribution coincides with the Boltzmann distribution). From now
on, energies are measured from the middle of the band4 instead from the Fermi level.
In addition to terms proportional to carrier concentration in (3.35) vanishing, ap-

4Any other point could have been chosen, but this choice makes the form of the band dispersion
simple for 1D case, −JC coskC.
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proximations for the expressions appearing in the formula for mobility can be made:

nF (ω − Ef
h̄

)Λk(ω − Ef
h̄

) ≈ e−βh̄(ω−
Ef
h̄

)Λk(ω − Ef
h̄

),

(1− nF (ω − Ef
h̄

))Λk(ω − Ef
h̄

) ≈ Λk(ω − Ef
h̄

),

Nc ≈
∑
k

∫ ∞
−∞

dω

2π
e−βh̄(ω−

Ef
h̄

)Λk(ω − Ef
h̄

).

(3.36)

Finally, expression for the retarded self-energy is:

Σret
k (ω−Ef

h̄
) =

1

Nh̄2

∑
q

∫ ∞
−∞

dω′

2πi
n(ω′)

[
Dret

k−q,k,−q(−ω′)−Dadv
k−q,k,−q(−ω′)

]
G0ret

k−q(ω′+ω−Ef
h̄

),

(3.37)
while the expression for mobility becomes:

µx =
e0β

2N(
∑

k

∫∞
−∞

dω
2π
e−βh̄ωΛk(ω − Ef

h̄
))∑

k,q

∫ ∞
−∞

dt

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
eit(ω1−ω2)Γxk,q(t)e−βh̄ω1Λk(ω1 −

Ef
h̄

)Λq(ω2 −
Ef
h̄

).

(3.38)
Equations (3.37) and (3.38) can be used as given for calculations of spectra and
mobilities. However, the expression for self-energy can be significantly simplified by
the introduction of greater and lesser phonon Green functions, defined as:

− i
〈
Bk′,q′(t)Bk′′,q′′

〉
0

= Nδq′,−q′′D
>
k′,k′′,q′(t)

− i
〈
Bk′′,q′′Bk′,q′(t)

〉
0

= Nδq′,−q′′D
<
k′,k′′,q′(t)

(3.39)

Similarly to the retarded and advanced phononic functions, explicit expressions for
greater and lesser Green’s functions can be found. The greater function, as will be
seen, is of particular importance. It is useful to split the greater function in two parts:

D>
k′,k′′,q′(t) = D>1

k′,k′′,q′(t) +D>2
k′,k′′,q′(t), (3.40)
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each being:

D>1
k′,k′′,q′(t) = −i

[
Nh̄2ω2

q′(fq′ −Dq′)
2
[
(nq′ + 1)e−iωq′ t + nq′e

iωq′ t
]

−Nh̄ωq′(fq′ −Dq′)Dq′
[
(nq′ + 1)e−iωq′ t − nq′e

iωq′ t
]

·
∑
X

tXθ
0
X

(
eik
′′X − e−ik′X

)(
1− eiq′X

)]
,

D>1
k′,k′′,q′(ω) = −2iπ

[
Nh̄2ω2

q′(fq′ −Dq′)
2
[
(nq′ + 1)δ(ω − ωq′) + nq′δ(ω + ωq′)

]
−Nh̄ωq′(fq′ −Dq′)Dq′

[
(nq′ + 1)δ(ω − ωq′)− nq′δ(ω + ωq′)

]
·
∑
X

tXθ
0
X

(
eik
′′X − e−ik′X

)(
1− eiq′X

)]
,

D>2
k′,k′′,q′(t) = −i

∑
X,Y,Z

tXtYθ
0
Xθ

0
Ye

i(k′X+k′′Y−q′Z)
(
θX,Y,Z(t)− 1

)
,

D>
k′,k′′,q′(ω) =

∫ ∞
−∞

dteiωtD>
k′,k′′,q′(t).

(3.41)
Expanding (3.39) in the free phonon basis, the connection between greater and lesser
functions is found:

D>
k′,k′′,q′(t) = −ieβΩ

∑
i,j

e−
(Ei−Ej)

h̄
te−βEi〈i|Bk′,q′|j〉〈j|Bk′′,q′′|i〉,

D<
k′,k′′,q′(t) = −ieβΩ

∑
i,j

e−
(Ei−Ej)

h̄
te−βEj〈i|Bk′,q′|j〉〈j|Bk′′,q′′|i〉.

(3.42)

From these expressions, it is found that:

D>
k′,k′′,q′(ω) = eβωD<

k′,k′′,q′(ω). (3.43)

On the other side, definitions imply:

D>
k′,k′′,q′(t)−D<

k′,k′′,q′(t) = Dret
k′,k′′,q′(t)−Dadv

k′,k′′,q′(t). (3.44)

Combining the last two expressions yields:

n(ω′)
[
Dret

k−q,k,−q(−ω′)−Dadv
k−q,k,−q(−ω′)

]
= −D>

k−q,k,−q(−ω′). (3.45)
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Self-energy can now be rewritten as:

Σret
k (ω − Ef

h̄
) =

i

2πNh̄2

∑
q

∫ ∞
−∞

dω′D>
k−q,k,−q(−ω′)G0ret

k−q(ω′ + ω − Ef
h̄

)

=
i

Nh̄2

∑
q

∫ ∞
−∞

dtei(ω−
Ef
h̄

)tD>
k−q,k,−q(t)G0ret

k−q(t).

(3.46)

It is convenient to divide the self-energy in the same way as the greater phonon
function:

Σret
k (ω − Ef

h̄
) = Σ1

k(ω − Ef
h̄

) + Σ2
k(ω − Ef

h̄
), (3.47)

with corresponding parts being:

Σ1
k(ω − Ef

h̄
) =

1

Nh̄2

∑
q

[
Nh̄2ω2

q(fq −Dq)2
[
(nq + 1)Gret

k−q(ω − ωq −
Ef
h̄

)

+ nqG
ret
k−q(ω + ωq −

Ef
h̄

)
]

−Nh̄ωq(fq −Dq)Dq

[
(nq + 1)Gret

k−q(ω − ωq −
Ef
h̄

)− nqG
ret
k−q(ω + ωq −

Ef
h̄

)
]

·
∑
X

tXθ
0
X

(
eikX − e−i(k−q)X

)(
1− e−iqX

)]
,

(3.48)

Σ2
k(ω − Ef

h̄
) =

i

Nh̄2

∑
q

∫ ∞
−∞

dtei(ω−
Ef
h̄

)tD>2
k−q,k,−q(t)Gret

k−q(t). (3.49)

In the last expressions, free fermionic Green’s functions on the right are replaced by
the full ones. This is equivalent to the summation of an infinite series of diagrams
that stem from the basic diagram calculated here from the first nontrivial order in
Dyson series. Summing this series of diagrams for the self energy is known as the
self-consistent Born approximation [19]. Equations (3.47), (3.48) and (3.49), together
with Dyson equation (1.26), form a self-consistent system. It is the system that will
be solved numerically in order to obtain the polaronic spectral properties.
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Chapter 4

Polaron Mobility Estimates in
Extreme Parameter Regions

The results of the previous chapter are lengthy expressions for polaron mobility and
self-energy. Any numerical calculation based on them can carry errors, some of which,
like errors made during discretization, can be hard to estimate. For this reason,
a simple analytical or semi-analytic benchmark result is needed. One such result
is the low temperature weak coupling nonadiabatic limit for mobility. It is a well
established result for various electron-phonon Hamiltonians [6]. Additionally, a low
temperature weak coupling adiabatic estimate as well as a high temperature strong
coupling estimate for mobility will be derived in this chapter. Together, all the limits
not only provide benchmarks for evaluating the success of numerical calculations1,
but they also shed light on the nature of processes that influence polaronic mobility
and spectra. For compactness and because they are only needed for comparison with
numerical results, all the results in this chapter will be presented for the 1D model.
Extensions to the more general case are straightforward.

4.1 Low Temperature and Weak Coupling Limit

for Polaron Mobility

In the weak coupling limit, mobility can be expressed as a power series over inverse
coupling constant [6]. The results for the first nontrivial terms in the series will be
found. The starting point for approximations is equation (3.38).

1There are cases where the later two estimates will not be accurate, as will be seen. The first
limit mentioned, should, in the region of parameters it applies to, always be close to the numerical
results.
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The first approximation to be made is for the phononic factor Γxk,q(t). Since for
α� 12 and β � 1 (which implies n� 1) 3 the leading term in the expansion of Γ is
α0 and the next are proportional to positive powers of α, only the leading term will
be retained. Using the equation (3.8), the approximation proceeds as follows:

θX,Y,Z(t) ≈ 1

Γxk,q(t) =
∑

X,Y,Z

tXtYX
xY xei(qX+kY+kZ−qZ)θ0

Xθ
0
YθX,Y,Z(t),

≈ J2
C

4t2C

∑
X,Y,Z

tXtYX
xY xei(qX+kY+kZ−qZ) = −J

2
CN

2
(1− cos 2qC)δk,q

(4.1)

When coupling strength and the average number of phonons are small, it is to be
expected that the electron-phonon interaction will give only small corrections to the
self-energy. If this is the case, spectral function and its square, given by (1.27), have
the following limits 4:

Λk(ω − Ef
h̄

) =
−2Im[Σret

k (ω − Ef
h̄

)](
ω − Ek

h̄
+ Re[Σret

k (ω − Ef
h̄

)]
)2

+
(

Im[Σret
k (ω − Ef

h̄
)
)2

ImΣ→0−−−−→
ReΣ→0

2πδ
(
ω +

JC coskC

h̄

)
[
Λk(ω − Ef

h̄
)
]2 ImΣ→0−−−−→

ReΣ→0
− 2π

Im[Σret
k (−JC coskC+Ef

h̄
)]
δ
(
ω +

JC coskC

h̄

)
(4.2)

After inserting results (4.1) and (4.2) into (3.38) and performing the integrations, the
Kubo formula for mobility in the low temperature and weak coupling limit becomes:

µx =
e0C

2βJ2
C

4
∑

k e
βJC coskC

∑
k

(1− cos 2kC)eβJC coskC 1

Im[Σret
k (−JC coskC+Ef

h̄
)]

(4.3)

To obtain the mobility the imaginary part of the self-energy has to be obtained in
this limit. From (3.48), (3.49) and (2.19) it can be shown that the self-energy can
be expanded into series over positive powers of α2. The consequence is the expected
expansion of mobility into the power series over 1

α2 . Depending on the nature of

2Weak coupling region for polaron lattice Hamiltonian is actually determined by α2

tC
� 1, but

approximations made in this chapter are valid for α � 1. Weak coupling denomination is used in
broader sense than defined in 1.2.

3For the weak coupling low temperature approximations, both α � 1 and β � 1 conditions are
necessary. However, since α and n are always found in a product of form α2n, only α � 1 will be
invoked, but it will also imply the application of β � 1.

4Limits are valid under integral.

40



scattering processes accessible to the polaron in specific parameter regions, the leading
term in this expansion will be either 1

α2 or 1
α4 .

4.1.1 Non-Adiabatic Regime (JC > h̄ω0)

When the renormalized bandwidth is such that JC > h̄ω0, band is wide enough that
all the states can take part in single-phonon scatterings, either absorptions, emissions,
or both. The scatterings broaden polaronic spectral lines, thus giving rise to the finite
mobility. Imaginary part of the self-energy needed for the evaluation of (4.3) will be
found using (3.48) and (3.49) expanded up to the α2 order. This means that the full
fermionic Green’s functions on the right-hand side are replaced by the corresponding
free propagators (the first order approximation when solving the self-consistent system
for self-energy). Aditionally, for Σ2 part of the self-energy, exponent in the greater
phonon function is expanded to the first order:

D>2
k′,k′′,q′(t) = −i

∑
X,Y,Z

tXtYθ
0
Xθ

0
Ye

i(k′X+k′′Y−q′Z)
(
θX,Y,Z(t)− 1

)
,

D>2
k−q,k,−q(t) ≈ i

J2
CN

4t2C
D2

q

∑
X,Y

tXtYe
ik(X+Y)e−iqX

(
1− eiqX

)(
1− e−iqY

)[
(n+ 1)e−iωt + neiωt

]
.

(4.4)
Using this expansion and summing over the nearest neighbours, self-energy up to the
first order in α2 becomes:

Σret
k (ω − Ef

h̄
) ≈

∑
q

[
ω2

0(fq −Dq)2
[
(n+ 1)G0ret

k−q(ω − ω0 −
Ef
h̄

)

+ nG0ret
k−q(ω + ω0 −

Ef
h̄

)
]
− 2JC

[
coskC− cos (k− q)C

]
ω0(fq −Dq)Dq

·
[
(n+ 1)G0ret

k−q(ω − ω0 −
Ef
h̄

)− nG0ret
k−q(ω + ω0 −

Ef
h̄

)
]

+ J2
CD

2
q

[
(n+ 1)G0ret

k−q(ω − ω0 −
Ef
h̄

) + nG0ret
k−q(ω + ω0 −

Ef
h̄

)
]

·
[

coskC− cos (k− q)C
]2]

.

(4.5)
From the expression above, the required imaginary part is:

Im[Σret
k (−JC coskC + Ef

h̄
)] =− π

∑
q

h̄ω2
0f

2
q

[
(n+ 1)δ(−JC coskC + JC cos (k− q)C− h̄ω0)

+ nδ(−JC coskC + JC cos (k− q)C + h̄ω0)

]
.

(4.6)
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The first term in (4.6) corresponds to phonon emission - polaron in the state k with
corresponding energy −JC coskC scatters to the state with energy −JC coskC −
h̄ω0 = −JC cos (k− q)C and momentum corresponding to it, while emitting the
phonon of energy h̄ω0 and appropriate momentum. Analogously, the second term in
(4.6) corresponds to phonon absorption. After transformation of sums in (4.6) into
integrals and evaluation of these integrals, one obtains:

Im[Σret
k (−JC coskC + Ef

h̄
)] =− N

2

∑
+,−

h̄ω2
0

[
f 2
q±1

n+ 1√
J2
C − (JC coskC + h̄ω0)2

+ f 2
q±2

n√
J2
C − (JC coskC− h̄ω0)2

]
,

(4.7)

where:

q±1 = k∓ arccos
h̄ω0 + JC coskC

JC
, q±2 = k∓ arccos

−h̄ω0 − JC coskC

JC
. (4.8)

The first term in (4.7) is defined and should be included only when−JC cosk > −JC+
ω0, which corresponds to the range of initial states k for which the single-phonon
intraband emission is allowed. Similar is valid for the second term and absorption.
In order for mobility to be finite in this approximation all the states in the band
must be able to participate in at least one of the processes. It is not hard to see that
this is possible for JC > h̄ω0, as already implied. With (4.7), the self-energy, and
thus mobility, are found in the low temperature weak coupling non-adiabatic regime.
It should be noted that expressions for mobility in this regime derived after the
unitary transformation are identical (up to the change of renormalized bandwidth
with unrenormalized) to the ones that could have been derived starting from the
untransformed Hamiltonian.

From the expressions (4.3) and (4.7) several features can be deduced. Mobility depen-
dence on coupling constant is 1

α2 . The temperature dependence is roughly 1
n
, since the

absorption term dominates for small temperatures for which only the bottom of the
band is populated. This is in agreement with the polaron mobility features in weak
coupling regime described in 1.1. Because the approximations used for the derivation
of the result all naturally follow for weak couplings and low temperatures, the results
for the mobility in this parameter region are expected to be a good benchmark for
the validity of full numerical calculations.

4.1.2 Adiabatic Regime (JC < h̄ω0

2 )

When JC < h̄ω0

2
, no state in the polaron band can participate in the single-phonon

processes. First contributions to the scattering come from the two-phonon processes,

42



more specifically from the processes that include simultaneous absorption and emis-
sion of phonons.

When calculating the imaginary self-energy contribution from two-phonon processes,
both terms Σ1 and Σ2 contain two-phonon contributions. Contributions from Σ1 come
from the second order of self-consistent Born approximations. However, the spectral
line is infinitely narrow in the first order, since single-phonon processes are forbidden,
so calculating the second order simply by inserting the first order correction in (4.5)
to calculate second terms would give no contribution. This suggests that the majority
of two-phonon contributions stem from Σ2 part, specifically from the higher terms in
the expansion of the exponent in the greater phonon function.

With this in mind, the greater phonon function from (3.49) is expanded to the second
order in α2 and terms corresponding to simultaneous absorption and emission are kept
(double absorptions and emissions which also appear in the second order expansion
are forbidden processes). Self-energy is given by:

Σret
k (ω − Ef

h̄
) ≈ 1

4N

∑
q

G0ret
k−q(ω − Ef

h̄
)
∑

X,Y,Z

JXJYe
ik(X+Y)eiq(Z−X)

·
∑
q′,q′′

D2
q′D

2
q′′n(n+ 1)

(
1− e−iq′X

)(
1− eiq′Y

)
eiq
′Z
(
1− e−iq′′X

)(
1− eiq′′Y

)
eiq
′′Z

(4.9)
Taking the imaginary part and performing the integrals involving the emerging delta
function gives:

Im[Σret
k (−JC coskC + Ef

h̄
)] ≈ − JCN

8h̄| sinkC|
n(n+ 1)

∑
q

[
D4

qF
1
k,q,0 +D2

qD
2
q+2kF

1
k,q,2k

]
,

(4.10)
where:

F 1
k,q,q′ =

n.n.∑
X,Y

ei(k−q
′)XeikY

(
1−ei(q+q′)X

)(
1−e−i(q+q′)Y

)(
1−e−iqX

)(
1−eiqY

)
. (4.11)

The first term in (4.10) corresponds to the two-phonon process in which polaron is
scattered via phonon absorption and emission from the state k to the same state.
The second term corresponds to the process in which final state is −k, with the same
energy as state k. One sum over momenta remains because momenta of the two
phonons that participate in the process can be distributed arbitrarily subject to the
constraint that total phonon momentum must be either 0 (for the first term) or 2k
(for the second term).

Nearest neighbour sums are easily calculated:

F 1
k,q,0 = 8(1 + cos 2kC)(1− cosqC)2

F 1
k,q,2k = 16(1− cos (2k + q)C)(1− cosqC) + 4 cos (2k + q)C

(4.12)
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Equation (4.10) together with (4.12) determines the imaginary part of self-energy
needed for mobility calculations in (4.3). From its form it can be deduced that
the mobility in the adiabatic regime will depend on the coupling constant as 1

α4 , as
expected for the two-phonon scattering governed mobility. Temperature dependence
in the low temperature limit is still 1

n(n+1)
≈ 1

n
. The results for the mobility in

the adiabatic regime, however, are not an ideal benchmark for the comparison with
full numerical calculation to the extent that non-adiabatic regime results are. They
should be used more as an order of magnitude calculation. The reason is that the
approximations used cannot capture the contribution from Σ1 self-energy term.

4.1.3 Mixed Regime ( h̄ω0

2 < JC < h̄ω0)

In the region of bandwidths for which h̄ω0

2
< JC < h̄ω0 is valid, single-phonon pro-

cesses are allowed for some states in the band. More precisely, absorption is allowed
for the states with energies between −JC and JC − ω0 while emission is allowed
between −JC + ω0 and JC. However, since the states in the middle of the band can-
not participate in one phonon processes, the mobility calculated with single-phonon
approximation only would be infinite.

Simple solution to this problem is possible because mobility contributions from various
states in the band are independent in the weak coupling approximation, as implied
by (4.3). Self-energy estimates for the states for which single-phonon processes are
forbidden can be obtained in the two-phonon approximation given by (4.10). Self-
energy for the states that can scatter via single-phonon processes is obtained by (4.7).
Consequently, the mobility is finite. It is expected that the final result will be closer to
the adiabatic case, since the main contribution to mobility comes from the populated
bottom of the band.

4.2 High Temperature and Strong Coupling Limit

for Polaron Mobility

The basic approximation made in the strong coupling and high temperature limit is
the form of the Green’s function:

Gret(ω − Ef
h̄

) =
1

ω − E
h̄
− iImΣret(E

h̄
)

=⇒ Gret(t) = −ih(t)eImΣret(E
h̄

)te−i
E
h̄
t (4.13)

Several assumptions are contained in this expression. Firstly, flat-band dispersion is
assumed. This is approximate, since the band exponentially narrows in the strong
coupling limit as seen in 2.3. Real part of the self-energy can be combined with the
band energy in one quantity, E, which itself is arbitrary because of the low carrier
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density approximation. However, in the regime of interest, polaronic spectrum can
be complicated, as will be seen from numerical results. In addition to the main band,
additional bands do appear at energies h̄ω0 separated from the initial one, although
weaker by spectral weight. This fact is not included in the approximation and will
effect the validity of the strong coupling limit. Furthermore, the spectral line profile
is assumed to be Lorentzian. Also, the imaginary part of the self-energy does not
depend on the polaron momentum. Both of the last two assumptions will be justified
in the following calculations.

Imaginary part of self-energy is to be calculated from self-consistent system given by
(3.48) and (3.49). The great simplification comes from the fact that Σ1 part of the
self energy is negligable in the strong coupling limit. This is easily seen by noting
that JC � 1 implies fq − Dq ∝ JC, so that both terms in Σ1 fall off exponentially
with coupling strength and temperature, as does the renormalized bandwidth. Expo-
nentially small bandwidth in Σ2 is compensated by the exponential factor θX,Y,Z(t).
Equations (3.14), (3.18) and (3.48) combined with (4.13) give:

Σret(ω − Ef
h̄

) =
1

Nh̄2

∫ ∞
−∞

dtei(ω−
Ef
h̄

)tGret(t)
∑
q

∑
X,Y,Z

tXtYθ
0
Xθ

0
Ye

i((k−q)X+kY+qZ)
(
θX,Y,Z(t)− 1

)
=

1

h̄2

∫ ∞
−∞

dtei(ω−
Ef
h̄

)tGret(t)
∑
X,Y

tXtYe
ik(X+Y)e−2

∑
qD

2
q(1−cosqX)(2n+1)

·
(
e
∑

qD
2
q

[
(n+1)e−iω0t+neiω0t

](
1−eiqX−eiqY+eiq(X+Y)

)
− 1
)
.

(4.14)
Two types of terms arise in the nearest neighbor sum, the ones with X = −Y and
the ones with X = Y. Only the terms of the first type will be kept becuase in
that case second exponential factor can compensate band narrowing exponent for
t = mT , where m ∈ Z and T = 2π

ω0
. For the therms of the second type, band

narrowing exponent cannot be compensated regardless of time, so the cotribution
from this term is always exponentially small. As an additional consequence, self-
energy becomes momentum independent, which is consistent with the approximation
already used in (4.13):

Σret(ω − Ef
h̄

) =
2t2C
h̄2

∫ ∞
−∞

dtei(ω−
Ef
h̄

)tGret(t)g(t),

g(t) = e−4Ea

[
2n+1−(n+1)e−iω0t−neiω0t

]
,

Ea =
1

2

∑
q

D2
q(1− cosqC).

(4.15)

Further simplification comes from the fact that for strong coupling and high temper-
atures, the function g(t) peaks prominently for t = mT , reaching its maximum value
of 1. Away from the points t = mT , g decays as e−Ea(2n+1)ω0t. In comparison to this,
retarded Green’s function decays as eImΣrett. It is to be expected that for strong limit
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Ea(2n+ 1)� ImΣret, since Ea ∝ α2 and self-energy should not be large because the
unitary transformation nearly diagonalizes the Hamiltonian. Consequently, Green’s
function varies slowly on the timescales on which g varies, so it can be approximated
by its value in points t = mT for the application of the mean value theorem. By
exploiting this fact, as well as periodicity of the function g, one obtains:

Σret(ω − Ef
h̄

) =
2t2C
h̄2

[
γ1G

ret(0) + γ2

∞∑
m=1

ei(ω−
Ef
h̄

)mTGret(mT )
]
,

γ1 =

∫ T
2

0

dt g(t), γ2 =

∫ T
2

−T
2

dt g(t).

(4.16)

It follows from (4.15) that Σret(ω − Ef
h̄

) is the most significant for ω − Ef
h̄

= E
h̄

, since
the sum over m vanishes for oscillating summands. After inserting the form of Gret

and taking imaginary parts, a self-consistent equation for ImΣret(E
h̄

) is obtained:

ImΣret(
E

h̄
) = −2t2C

h̄2

[
Re(γ1) + Re(γ2)

eImΣret(E
h̄

)T

1− eImΣret(E
h̄

)T

]
. (4.17)

Although (4.17) must be solved numerically, it is a single equation and can be solved
very reliably.

With the self-energy calculated, the spectral function needed for the evaluation of
mobility via (3.38) is straightforward:

Λ(ω − Ef
h̄

) =
−2ImΣret(E

h̄
)

(ω − E
h̄

)2 + (ImΣret(E
h̄

))2
=⇒ Λ(t) = eImΣret(E

h̄
)|t|e−i

E
h̄
t (4.18)

In (3.38), a spectral function is convolved with thermal factor e−βω. However, for
high temperatures for which ImΣret(E

h̄
) � 1

β
is satisfied, thermal factor varies much

slower than spectral function. Thus, its value can be approximated with the value for
ω = E

h̄
, for which the spectral function reaches its maximum. With this accounted

for, mobility in the strong coupling approximation becomes:

µx =
e0β

2N2

∫ ∞
−∞

dte2ImΣret(E
h̄

)|t|
∑
k,q

Γxk,q(t) (4.19)

The momentum sums are exactly evaluated to give:

1

N2

∑
k,q

Γxk,q(t) = −2t2CC
2g(t). (4.20)
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Using the same mean value approximation as for the self-energy in (4.15), mobility
is found to be5:

µx = −e0βt
2
CC

2γ2

[
1 + 2

e2ImΣret(E
h̄

)T

1− e2ImΣret(E
h̄

)T

]
. (4.21)

Expressions (4.17) and (4.21) completely determine the mobility in the strong cou-
pling approximation. One specific feature of mobility in the strong coupling region is
the fact that it scales as the square of the transfer integral, while the mobility in the
weak coupling region scales almost linearly with transfer integral.

Because of the assumptions made while deriving it, the strong coupling approximation
is not an ideal benchmark to which numerical results can be compared. However, it is
expected that it will be in agreement in at least some region of parameters in which all
assumptions are satisfied. It is not simple to determine this region beforehand because
the validity of approximation depends on the details of the polaronic spectrum which
will be found numerically. Furthermore, it is expected that the approximation will
provide at least an order of magnitude estimate in the whole strong-coupling region.
Lastly, the importance of the strong coupling approximation also lies in the fact that
it represents a generalization of the strong coupling estimate discussed in section 1.1
[9]. As such, by comparing the results of the approximation with the ones obtained
by the full numerical approach, the range of applicability of the estimate from chapter
1.1 and the underlying theory of small polaron transport will be investigated.

5At first glance, mobility may not seem to be real, but it is not hard to see γ2 is a real quantity,
although γ1 is not.
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Chapter 5

Numerical Results

In this chapter numerical results for the polaron mobility will be presented. In addi-
tion, mobility calculated by the weak and strong coupling approximations of chapter
4 will be provided for comparison. Before the mobility results are presented, the
intermediate results, more specifically the polaronic spectra and the current-current
correlations, will be discussed. These will provide an insight into the nature of pola-
ronic states.

5.1 Parameters of Numerical Calculation

Full numerical calculations are based on the approximate solution of the Kubo for-
mula given by equation (3.38). The self-energy function needed is calculated self-
consistently from the system given by (3.47), (3.48) (3.49), and (1.26). Calculations
for the mobility in the weak and the strong coupling limits are done according to
expressions (4.3) and (4.21), respectively.

All the calculations are done for N = 100 lattice sites. It has been found that in-
creasing the number of sites changes the mobility negligibly. Discretization in time,
or equivalently, frequency domain with variable frequency range and density of points
adjusted such that the total number of points is 213 = 8192. The range of frequencies
is tuned such that all the relevant energies are included in calculation. The range
is determined by the phononic factor D>2 which is needed for self-energy and thus
Green’s function calculation. Factor D>2 have Fourier components in multiples of
h̄ω0. The strongest Fourier component of D>2 scales as α2n with interaction strength
and temperature. The frequencies four times higher than that of the main Fourier
component of phononic factor are included. The consequence is that density of fre-
quency points decreases with increasing temperature and coupling strength. In order
for calculation to be considered valid, spectral lines must be several frequency points
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wide. In some cases, this cannot be achieved with 212 total points, and thus no re-
sult for the mobility is given. This usually happens in the low temperature region
where spectral lines are narrow. In cases where spectral lines are too narrow, the
self-consistent system for the self-energy also has difficulties converging or does not
converge. As an additional check of the consistency of numerical calculations, the
function C(t) ∝ 〈jx(t)jx(0)〉 is examined and if the correlations do not fall of in
the time range of calculation or the peaks contain too few points, the calculation is
discarded. This happens when spectral lines are too narrow or the self-consistency
calculation does not converge.

Parameter ranges investigated with full numeric calculations include transfer integrals
tC in the range of 0.1− 3, temperatures kBT in the range 0.2− 3, coupling constants
α in the range 0.7− 4.0, and the ψ parameter in the range of 0− π

3
. In all the results

presented, energies are measured in units of h̄ω0, while momenta are measured in
units of 1

C
. The difficulties with extending the range of calculations are mainly in

direction of smaller temperatures and coupling strengths. However, in the majority
of cases, the ranges investigated are sufficient to show the behavior in the regimes of
interest and to allow comparison with appropriate limits1.

5.2 Polaronic Spectra

In this chapter, calculated polaronic spectra for several representative cases are pre-
sented. In figures 5.1 and 5.2, the dependence of polaronic spectra on coupling
strength is shown for two distinct transfer integrals. The spectra are shown for
relatively low temperature, kBT = 0.4.

The features seen in spectra for narrow unrenormalized bandwidth case, tC = 0.2, are
as follows. Firstly, the band narrowing is gradual, as already implied in section 2.3
for the case where the transition in bandwidth does not occur. However, additional
feature seen is the appearance of the second band at ω0 distance from the original. In
fact, it can be seen with more careful analyses that the sequence of increasingly darker
bands at distances of ω0 do form. The bands are consequences of single-phonon and
multi-phonon scatterings and as such their spectral weight and number increases with
coupling strength. They are equivalent to vibrational energy levels of independent
molecules, as expected for low transfer integrals.

The spectra for a wide band, tC = 3, shows somewhat more complicated behaviour.
The first feature that arises is the band spliting at ω0 above the band minimum. With
increasing the coupling strength, the additional splitings arise and thus a sequence
of bands each at the distance ω0 forms, with the lowest one being more and more

1Particularly, the lower boundary of coupling constant range of 0.7 seems high, but the relevant
interaction strength is α2, so that it correspond to interaction strength of 0.5, the strength at which
first-order weak coupling approximations in phononic systems still perform well [5].
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prominent. This is in contrast with the picture acquired in section 2.3, in which a
single band of almost unrenormalized bandwidth exists until the sharp transition from
which one very narrow band arises. The rough picture is only a first approximation
and spectra here show that the apparent transition arises in a much smoother way -
by splitting the initial band into a number of narrower ones which are at the end each
narrowed strongly according to the results from section 2.3. This picture corresponds
well to previous calculations of spectra for the Holstein model [20].

In figure 5.2 one additional, interesting feature may be seen. At coupling strengths
close to the strength at which transition occurs (according to 2.3), the ground state
band is inverted - its minimum being at the momentum different from zero. This
feature may seem very implausible for the electronic system, however, it is not that
uncommon for polaronic systems. It has been shown that even in the SCBA approx-
imation, as well as in more exact treatments, although for the somewhat different
Hamiltonian of Peierls, a similar band inversion occurs in some parameter ranges.
According to [19], the inversion is likely to happen when the electron-phonon interac-
tion range increases. Similar effect can be seen for the cases investigated here - while
the inversion is either very slight or absent in the Holstein case, as the interaction
range increases, it becomes more prominent. However, it cannot be considered with
any certainty that the band inversion indeed happens in the system investigated, since
it may be a feature specific to SCBA approximation used or it may stem from the
fact that the unitary transformation used is the least reliable in parameter ranges
near the transition.

The influence of temperature on polaronic spectra is shown in figure 5.3 in comparison
with corresponding spectra in figures 5.1 and 5.2. Firstly, as expected from the results
of section 2.3, the increase of temperature acts to some extent in the same way as
the increase of coupling strength, causing the transition to occur at lower couplings,
as can be inferred from figures 5.2e, 5.3e and 5.3f. Furthermore, the temperature
strongly widens the spectral lines. In the low transfer integral case, the additional
bands that form become more prominent. One important consequence of spectral
broadening for further analyses is the fact that with high enough temperatures, a
series of narrow bands formed at high interaction strengths may merge to form a
single band as seen in 5.3e and 5.3f.

Finally, in figure 5.4, the influence of electron-phonon interaction range on polaronic
spectra is presented. It can be inferred that for qualitatively similar spectra, inter-
action strengths are different. More specifically, the higher interaction strength is
needed for longer-range interaction models in order to have the same effect as for the
Holstein model. It must be emphasized that the band minimum shift (binding en-
ergy) is roughly the same for the same value of α in both models. However, the effects
on the band structure are much stronger in the Holstein case. This is in agreement
with the results for the effect of interaction range on transition point presented in
section 2.3. It can be deduced that when the effects on band structure are considered,
longer interaction range effectively lowers the electron-phonon interaction influences
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such as band splitting and narrowing. This gives another indication that long-range
interaction will yield a more mobile polaron for the same binding energy.

(a) α = 0.7 (b) α = 1

(c) α = 1.5 (d) α = 2

(e) α = 2.5 (f) α = 3.0

Figure 5.1: Polaron band spectra for different coupling strengths and fixed tC = 0.2,
ψ = π

4
, and kBT = 0.4.
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(a) α = 0.7 (b) α = 1

(c) α = 1.5 (d) α = 2.5

(e) α = 3.5 (f) α = 4

Figure 5.2: Polaron band spectra for different coupling strengths and fixed tC = 3.0,
ψ = π

4
, and kBT = 0.4.

52



(a) tC = 0.2, α = 1.5, kBT = 1 (b) tC = 0.2, α = 1.5, kBT = 2

(c) tC = 3, α = 1.5, kBT = 1 (d) tC = 3, α = 1.5, kBT = 2

(e) tC = 3, α = 3.5, kBT = 1 (f) tC = 3, α = 3.5, kBT = 2

Figure 5.3: The effect of temperature on polaron band spectra. The spectra are
given for higher temperatures than the respective ones in figures 5.1 and 5.2. In all
the cases shown, ψ = π

4

.
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(a) ψ = 0, α = 0.7 (b) ψ = π
4 , α = 1.

(c) ψ = 0, α = 1 (d) ψ = π
4 , α = 1.5

(e) ψ = 0, α = 1.5 (f) ψ = π
4 , α = 2.5

(g) ψ = 0, α = 2 (h) ψ = π
4 , α = 3.5

Figure 5.4: Comparison of polaron spectra for different electron-phonon interaction
ranges. The spectra on the left correspond to the Holstein case with ψ = 0, while the
spectra on the right correspond to ψ = π

4
. In the figures shown tC = 1 and kBT = 0.3

is fixed.
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5.3 Current-Current Correlations

Quantity proportional to current-current correlations is shown in figure 5.5. Its de-
pendence on coupling strength and temperature is presented. From these and similar
plots, it can be deduced that there are two distinct regimes for low temperatures.

The first regime is the weak coupling regime ( α2

2tC
< 1). The main feature of correlation

function is that it is wide, with phononic ringing, recognized by peaks located at
integer multiples of 2π

ω0
, being only a secondary effect. This suggests that the polaron

is in the regime of band-like transport, where the width of the correlation function
is limited by scattering. With increasing the temperature, correlations do become
narrow, ultimately ending as a delta-like peak.

On the other hand, figures 5.5b, 5.5d, and 5.5f show the features of distinctively dif-
ferent strong-coupling regime ( α2

2tC
> 1). The narrow phononic peaks are the main

feature of the correlations. The effects of scattering and temperature determine their
envelope. As the temperature increases, temperature envelopeme becomes more and
more narrow and at high enough temperatures all phononic peaks except the central
one vanish. Thus, in the extreme limit of high temperatures, phononic correlations
show the same behaviour independent of the electron-phonon coupling strength. It
is worth noting that the regime of delta-like correlations is reached for different tem-
peratures at different coupling strength. For very strong and very weak coupling, it
takes higher temperature to narrow the central peak or eliminate the neighbouring
peaks. Subsequently, delta-like limit is most easily reached at intermediate coupling
strengths.

The delta-like limit in correlations can be related to the hopping-like transfer, as
described in section 1.1. The narrow correlations enable the carrier hopping to be
modeled by a Markovian process, thus entering the regime of the validity of the
expression (1.9).

Lastly, it should be noted that the current-current correlations show a clear interde-
pendence with polaronic spectra shown in previous chapter, as expected. The wide
band regime corresponds to wide correlations with phonon ringing as a secondary
effect. The narrow band regime corresponds to correlations that are dominated by
numerous phononic peaks. With the temperature increased to the point for which
narrow polaronic bands merge into a single, spectraly wide band, correlations reach
the delta-like limit. Thus, when analyzing the mobility results, the analyses based on
spectra and correlations are essentially equivalent.
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Figure 5.5: Current-current correlations for different coupling strength and tem-
peratures. The plotted quantity C(t) is directly proportional to 〈jx(t)jx(0)〉. In the
figures shown tC = 1 and ψ = π

4
is fixed.
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5.4 Mobility

Results of the mobility calculations are presented in figure 5.6. Along with the data
obtained by full numerical calculations, weak and strong coupling limits are shown.
The data points missing for the full numerical calculation are the ones that did not
properly converge, as noted in 5.1. The data points missing for the strong coupling
limit are the ones for which the condition ImΣ < kBT is not satisfied, thus making
one of the approximations in the derivation completely unjustified. The mobility in
the figures (µ) is shown in units such that the following is valid for mobility in real
units (µr):

µ =
µr
e0C2

h̄

, µr ≈ 0.152
cm2

Vs

( C
1Å

)2
µ. (5.1)

General features of the mobility obtained are as follows:

• For the realistic lattice constants mobility ranges from 10−3 cm2

Vs
to 103 cm2

Vs
. This

is in agreement with the orders of magnitude for mobility measured in materials
for which the polaronic effects are assumed to be dominant [11]. However, more
detailed comparisons are not viable, at least because the model explored is
one-dimensional.

• Mobility shows monotonous decrease with temperature. However, while the
low temperature decrease is nearly exponential, as can be seen by comparing
the result with the weak limit, the high temperature decrease corresponds to a
power law with exponent between 1 and 2 2.

• Transition between the two regions of temperature dependence is smooth. Some
non-smoothness, however, can be seen for large transfer integrals. This corre-
sponds to the region in parameter space where the transition described in 2.3
occurs. It can be assumed that the non-smoothness seen is the consequence of
the unitary transformation being the least successful in this region.

• Mobility decreases with increasing the coupling strength. The decrease is
stronger in adiabatic region with tC < 0.5. In a rough approximation for
the low temperature regime, the decrease in the adiabatic region is ∝ 1

α4 ,
while in the non-adiabatic region, the 1

α2 decrease can be observed. This is
to be expected from the discussion done in chapter 4.1, regarding the nature
of allowed scattering processes (single-phonon and two-phonon ones being
dominant in the weak limit).

• Mobility increases with increasing the transfer integral. In high temperature
region, the increase is roughly ∝ t2C, while in the low temperature region, mo-
bility scales as ∝ tC. This is to be expected from limiting results (4.21), (4.3)
and (4.7).

2Power law exponent is close to 1.5 when taking into account the points for the highest temper-
atures.
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• Mobility for the long-range electron-phonon interaction is significantly higher
than for a short range one, especially in the high-temperature region and non-
adiabatic region. This result was expected from the analyses of renormalized
bandwidths and polaronic spectra, but it is now ultimately confirmed. Apart
from the weak coupling, low temperature and high transfer integral region where
it is small or nonexistent, the difference between the Holstein case and here
presented ψ = π

4
case is significant and reaches a decade for high temperature

region.

Comparison with the limiting cases derived in chapter 4 does not only confirm the
numerics but also sheds light on the properties of mobility described. The best
benchmark for the results is the comparison with very reliable low temperature and
weak coupling limit in non-adiabatic regime from chapter 4.1.1. As can bee seen from
the corresponding regions in figures 5.6e, 5.6f, 5.6g, and 5.6h, the agreement for α =
0.7 and even α = 1 is very good3. Comparison with this limit, and more specifically
expressions (4.3) and (4.7), also leads to the conclusions about temperature (µ ∝ 1

n
),

coupling strength (µ ∝ 1
α2 ), and transfer integral (µ ∝ tC) dependence of mobility

for the region in question. Thus the mobility features correspond to the band-like
transport with dominant scattering mechanisms being the single-phonon processes.

The weak adiabatic limit is not a good benchmark for the results, but it nevertheless
shows to be at least a valid estimate. For the very low transfer integrals (real adiabatic
behaviour), it becomes more exact as seen in figure 5.6b. The reason is that the terms
it omits are proportional to either (fq − Dq)2 ∝ J2

C (JC → 0) or J2
C directly. The

comparison, however, explains the temperature, coupling strength ( 1
α4 ) and transfer

integral dependence of mobility in the region, in the similar way the non-adiabatic
limit does. Mobility in the weak coupling, low temperature adiabatic limit is thus
band-like with two-phonon processes dominating the scattering.

The comparison with the high temperature, strong coupling limit is particularly re-
vealing. The derivation of the formula in that limit includes assumptions, the result
being that it is not always in agreement with the results. However, in all the cases,
for sufficiently high temperatures, strong-coupling limit and full numerical results are
seen to either be in good agreement or difference between them becoming gradually
smaller. If the full numerical results had been available for arbitrarily high tem-
peratures, it can be expected that the full agreement would be reached in all the
cases.

The strong coupling limit itself shows an activating behaviour for lower temperatures,
followed by transition to power law decay at high temperatures. The limit itself is
a generalization of the formula (1.9) [9]. Activation energy in (1.9) can be shown to

3Slight discrepancies can be attributed to the interaction strength α2 not being extremely low.
The numerical calculations become more and more resource demanding for lower temperatures and
coupling strength, but the agreement for the cases shown makes the demanding full calculations
unnecessary in the extreme limit.
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correspond exactly to Ea from (4.15). Formula (1.9) suggests activation behaviour
at lower temperatures, dominated by e−βEa factor, while the mobility maximum is
reached for kBT = 2

3
Ea ∝ α2. Its position thus moves to the right with increasing

the coupling strength, which is readily seen in figure 5.6. The high temperature
dependence is dominated by power law from (1.9), µ ∝ T−

3
2 .

(a) Key for reading the coupling strength from the mobility plots shown
below. The data connected with solid colored lines stem from full nu-
merical calculations, while the data connected with dashed black lines
are obtained by weak and strong coupling limits described in chapter 4.
In cases where the results exist for full numerical calculation as well as
the calculations done by strong and weak coupling approximations, data
points are labeled by symbol of the same shape and filling.
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Figure 5.6: Polaron mobility as a function of temperature and coupling strength
for several different transfer integrals and interaction ranges. In each figure shown,
transfer integral and interaction range are fixed.
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When compared to full numerical results, the strong coupling limit deviates signifi-
cantly in the activation region. No activation is observed for the parameters explored.
It is not until the power law decay region is reached that the results start to coincide.
However, the discrepancy can be explained by considering current-current correla-
tions or spectra, equivalently. When current-current correlations are delta-like, the
two results are in good agreement. Since the high temperatures lead eventually to
delta-like correlations, it is expected that for all cases, agreement should be reached
at sufficiently high temperature. As already noted when analyzing the correlations,
the random-walk approximations is justified for such short-time correlations. Alter-
natively, in the way the limit was derived in chapter 4.2, the spectra can show to what
extent the initial approximation of single flat band is justified. It is not a surprise
that the regions where the polaronic spectra does consist of single flat band (chapter
5.2) correspond to the delta-like correlation region. In addition, as already noted,
higher temperature makes spectral lines widen, ultimately merging the bands in a
single one.

It turns out that the region of delta-like correlation coincides with the power law
decay region for the strong limit and thus in actual results no activation is observed.
There is no principle that would exclude the activation region to be present in real
systems, it is only a question if the temperature is high enough for the strong coupling
approximation to be valid. The results of the Monte-Carlo mobility calculations for
Holstein model with tC = 1 [21] show that the activation region exists for low tem-
peratures and high coupling strengths, the region where the full numerical calculation
presented here did not converge. The numerical results show satisfactory agreement
with Monte-Carlo results from [21] in other parameter regions. Thus, it may be that
the region of parameters accesible to full numerical calculation in the Holstein case
did not include activation regions.

It is often taken that the activation is a signature of hopping-like mobility, while decay
is specific to band-like mobility [10]. However, power law decay is perfectly consistent
with hopping-like approximation. While the activation predicted by hopping like-
approximation may or may not be present, depending on the applicability of the
limit for intermediate temperatures, its absence is not a definite sign of the band-like
transport.

With the above presented analyses done, mobility features in the strong coupling
high temperature region, such as power law decay with respect to temperature and
scaling with transfer integral as t2C are explained by the strong coupling limit picture
of hoping-like transfer in a flat band.

One additional point is of importance - the dependence of strong-coupling limit re-
sult on the range of electron-phonon interaction. The expression for activation energy,
Ea = 1

2

∑
qD

2
q(1−cosqC) implies that the low momentum electron-phonon coupling

contribution is suppressed. However, the long-range models have the highest interac-
tion contribution from the low momenta, in sharp contrast with the Holstein model
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which shows no momentum dependence of the coupling coefficients (figure 2.3). The
lower activation energy has as a consequence the less prominent activation behav-
ior, since the exponential factor e−βEa is not as sharp. This can readily be seen
from mobility results in strong coupling limit and for two different models presented
(ψ = 0 and ψ = π

4
), the best example being figures 5.6e and 5.6f. Thus, longer-range

electron-phonon interaction not only suggests a significantly higher mobility in the
strong coupling limit, but it also suppresses the activation region and makes it less
prominent. Therefore it can be expected that in the experiments in which activation
region is measured and is prominent, the electron-phonon interaction is probably of
a shorter range type. Of course, mobility measurements alone cannot provide the
information about the interaction range.

In conclusion, the mobility results obtained by the full numerical calculation from the
approximate solution of the Kubo formula used show a reasonable agreement with
both weak and strong regime limits. The general features of mobility are possible to
understand in the scopes of these limits, and transition between the distinct regions
is smooth overall. The discrepancies of the results and strong limit for insufficiently
high temperatures are as expected from the analyses of current-current correlations
and spectra. The longer range electron-phonon interaction significantly increases
polaron mobility in the strong coupling region. This is as expected from the hopping
activation energy being lower for a more non-locally bound polaron. The longer range
lattice polaron models provide a possibility of higher mobility than the Holstein model
allows together with a less prominent or absent activation region.
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Chapter 6

Conclusion

The main theme of the thesis has been mobility for a family of lattice polaron models
in a wide range of coupling strengths and temperatures. Electron-phonon interac-
tion range differs between the models in the family. In order for the calculations
based on perturbative techniques to be made possible, a variant of Lang-Firsov uni-
tary transformation was applied. The transformation diagonalizes the Hamiltonian
exactly in the limit of infinite coupling strength and its applicability for small and
intermediate couplings is made possible by inserting the variational parameters in
the transformation. The equations for variational parameters as well as the polaron
properties were found by minimizing the free energy functional obtained from the
Gibbs-Bogolyubov bound. Numerical results were presented for variational param-
eters and polaron properties were found for the 1D variant of the model. Mobility
calculations are based on an approximate solution of the Kubo formula. Expressions
for the spectral properties needed are found with standard Matsubara formalism. The
resulting self-consistent equations for the self-energy were solved numerically for the
1D model and the mobility was calculated. For comparison, semi-analytic expressions
for mobility are derived in the strong and weak coupling regime. Polaronic spectra
and current-current correlations were analyzed in order to gain insight into the na-
ture of polaron transport and relation of full numerical results with corresponding
limits. Mobility results show a satisfactory agreement with the weak and strong cou-
pling cases in the extreme parameter regimes, as well as mostly smooth transition
between these regimes. Band-like exponential decrease of mobility for low tempera-
tures crosses into hopping-like power law decay at high temperatures. No activation
region is found, but its existence in the real systems cannot be excluded. When com-
paring the models with different electron-phonon interaction range, longer interaction
range results in a significantly more mobile polarons. Further work with regards to
the extension of numerical calculations to the 3D model is desirable, as well as first
principle calculations that would extract the parameters of the model and thus enable
quantitative comparisons with exprimental results.

65



Appendix A

The Proof of Expressions Used for
the Calculations of Phonon
Thermal Averages

In this appendix, proof of the following identities will be presented:

〈eµb†+νb〉0 = e
1
2

(2n+1)µν , (A.1)

∂eA(α)

∂α
= eA(α)

(∂A(α)

∂α
− 1

2
[A,

∂A(α)

∂α
]
)

=
(∂A(α)

∂α
+

1

2
[A,

∂A(α)

∂α
]
)
eA(α), (A.2)

the second one being valid under condition
[
[A, ∂A(α)

∂α
], A
]

= 0.

In order to prove the first result, the operator exponential on the right hand side will
be transformed with the help of the well known identity eAeB = e

1
2

[A,B]+A+B, appli-
cable for [A, [A,B]] = [B, [A,B]] = 0. Since the phonon creation and annihilation
operators give a scalar commutator, the identity can be applied to give:

〈eµb†+νb〉0 = 〈eµb†eνbe−
1
2
µν[b†,b]〉0 = e

1
2
µν
∑
m,n

µmνn

m!n!
〈(b†)mbn〉0. (A.3)

Only averages of expressions that conserve number of phonons are non-zero, thus
only the terms with m = n contribute to the sum in (A.3). Using the Wick’s theorem
gives:

e
1
2
µν
∑
m,n

µmνn〈(b†)mbn〉0 = e
1
2
µν
∑
m

µmνm

(m!)2
〈(b†)mbm〉0 = e

1
2
µν
∑
m

µmνm

(m!)2
〈b†b〉m0 m!

= e
1
2
µν
∑
m

µmνm

m!
nm = eµν(n+ 1

2
),

(A.4)
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which completes the first proof.

For the second result, only one of the identities will be proven, the other one be-
ing obtainable in an analogous way or by applying the BCH formula on the already
proven one. When taking the derivative of the exponential term by term, the non-
commutativity must be taken into account:

∂eA(α)

∂α
=

∂

∂α

( ∞∑
n=0

An

n!

)
=
∞∑
n=0

1

n!

n−1∑
m=0

An−m−1∂A(α)

∂α
Am. (A.5)

Operator ∂A(α)
∂α

must now be commuted to the right of all A operators in each indi-

vidual term. Every commutation leaves the term −An−2[A, ∂A(α)
∂α

] and moves ∂A(α)
∂α

operator one place to the right. In a term where ∂A(α)
∂α

is m places from the right end,
m transpositions need to be done:

∞∑
n=0

1

n!

n−1∑
m=0

An−m−1∂A(α)

∂α
Am =

∞∑
n=0

1

n!

n−1∑
m=0

(
An−1∂A(α)

∂α
−mAn−2[A,

∂A(α)

∂α
]
)

=
∞∑
n=0

1

n!

(
nAn−1∂A(α)

∂α
− (n− 1)n

2
An−2[A,

∂A(α)

∂α
]
)

= eA(α)
(∂A(α)

∂α
− 1

2
[A,

∂A(α)

∂α
]
)
,

(A.6)
thus completing the proof of the first identity in (A.2).
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