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SazZetak

[zucavanje jako korelisanih elektronskih sistema je vazan deo fizike kondenzovanog
stanja materije. U okviru teorije ovih sistema posebna paznja se posvecuje (inter-
aguju¢im) niskoenergetskim efektivnim modelima resetke. Oni predstavljaju kvantni
viSecCesti¢ni problem koji je jako tezak, a razvoj numerickih metoda za njegovo resenje
je aktivna oblast istrazivanja. Zbog problema konacnosti reSetke i analitickog pro-
duzenja narocito je tesko racunati dinamicke odzive. U ovom radu uvodimo teoriju
uranjanja otvorenih kvantnih klastera (eng. open quantum cluster embedding theory,
OQCET) sa ciljem ra¢unanja odziva nakon spoljasnje pobude. Uz pomo¢ inverzne
teorije linearnog odziva moguce je rekonstruisati dinamicke suceptibilnosti. Metod
omogucava tretiranje velikih resetaka, izbegava analiticko produzenje i postuje zakone
odrzanja energije i broja Cestica. U neinteragujucem i atomskom limesu, kao i u limesu
beskonacnog klastera metod daje numericki egzaktne rezulate. Uronjeni klasteri, koji
se smatraju reprezentativnim za kratkodometne korelacije, su otvoreni kvantni sistemi
opisani Lindbladovom jednacinom. Kratkodometne korelacije izracunate na klaster-
ima se koriste da zatvore jednacine kretanja fermionskog bilineara i dvostruke okupi-
ranosti na resSetki. Primenjujemo OQCET u racunanju gustina-gustina korelacione
funkcije u Habardovom modelu na kvadratnoj resetki i analiziramo rezultate. Pored-
imo rezultate sa eksperimentom na hladnim atomima i pokazujemo dobro kvalitativno
slaganje.
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Abstract

The study of strongly correlated electron systems is an important field of condensed
matter physics. The theory of these systems relies in large part on low-energy effec-
tive lattice models. These models pose a difficult quantum many-body problem. The
development of numerical methods to solve these (interacting) lattice models is an
active area of research. Due to issues of finite-size effects and analytic continuation,
the dynamical response functions are especially difficult to calculate. We introduce
the open quantum cluster embedding theory (OQCET), an embedded cluster method
aimed at computing the response of the system following an external perturbation.
This allows one to reconstruct dynamical susceptibilities in the manner of inverse
linear response theory. The method is feasible for very large lattices and avoids an-
alytical continuation. OQCET becomes numerically exact in the non-interacting,
atomic and infinite cluster size limits, and it respects the total charge and energy
conservation laws. The embedded clusters, used within the method as representa-
tive of short range correlations, are open quantum systems governed by the Lindblad
equation. The short-range correlations extracted from the clusters are used on the
lattice to close the equations of motion for the fermionic bilinear and the local double
occupancy. We apply OQCET in computation of the charge-charge correlation func-
tion in the square lattice Hubbard model and analyze the results. We compare our
theoretical results with a cold atom experiment and show good qualitative agreement.
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Chapter 1

Introduction

To accurately describe crystalline materials, one must, in principle, solve the quantum
many-body problem of the constituent electrons and the atomic nuclei. The complex-
ity of this problem scales exponentially with the number of particles, so a full solution
of the many-body problem is only feasible for very small systems of about 20 parti-
cles. In macroscopic materials we work with systems with the order of 10?® particles,
so it is necessary to develop simplified models and employ a variety of approximate
methods.

Methods such as mean field theory and density functional theory (DFT) attempt
to reduce the many-body problem to an effective single-particle picture. This proves
to be a satisfactory description for a wide range of materials, such as metals and
conventional (low temperature) superconductors. The success of the single-particle
description in metals can be ascribed to the Fermi liquid theory. In metals the Fermi
energy is quite large (in Cu, for example, it corresponds to a Fermi temperature
of ~ 80000K) so thermal excitations remain close to the Fermi level. The Pauli
exclusion principle forbids scattering into occupied states of the Fermi sea, leaving
only a small volume of phase space around the Fermi level available for scattering.
This effectively suppresses the strong electron-electron Coulomb interaction, allowing
for a weakly-interacting quasiparticle description of low energy excitations.

However, there are systems where interactions are more important, and the simple
picture of wave-like quasiparticles in an effective potential breaks down. As the poten-
tial energy becomes comparable to the kinetic energy, the delocalized states become
less energetically favorable. This means that a more particle-like picture incorporat-
ing interaction of localized electrons becomes necessary. We refer to materials for
which an effective single-particle description fails as strongly correlated. [!]

Examples of strongly correlated materials are usually found in compounds con-
taining transition metals, lanthanides and actinides—elements with partially filled d
and f orbitals. The stronger confinement in these orbitals means that the electrons
experience the Coulomb interaction more strongly, and as a result we see exotic be-
havior that cannot can be predicted by effective single-particle theories. Common
to many of these systems are rich phase diagrams, including metal-insulator (Mott)
transitions, ordered phases such as charge and spin density waves and unconventional
superconductivity. The disordered metallic phases prove to be no less interesting—one



often observes crossovers between standard Fermi liquid, strange, bad metallic and
pseudogap regimes. Strange metals are characterized by a resistivity linear in temper-
ature, as opposed to the quadratic dependence in good metals (as is well understood
within the Fermi liquid theory). Bad metals also have a linear temperature resistiv-
ity, but the resistivity is so high that it indicates that the effective mean free path is
shorter than the interatomic spacing (the so-called Mott-Ioffe-Regel limit) and thus
the coherent quasiparticle description of transport breaks down. Strange and bad
metal phases are often associated with the existence of a quantum critical point, a
continuous phase transition occurring at zero temperature. |1, 2]

The Bardeen-Cooper-Schrieffer (BCS) theory created a framework for understand-
ing the behavior of conventional (low-temperature) superconductors. At low temper-
atures, the electron-phonon interaction gives rise to a weak attractive interaction
between electrons, which form superconducting Cooper pairs. In the 1980s, it was
believed that BCS theory placed an upper limit to the superconducting critical tem-
perature T, at 30K . In 1986 high-T,. superconductivity was first observed in the doped
cuprate Lay . Ba,CuQO, by Bednorz and Miiller, sparking a revolution in condensed
matter research. In the following years, numerous cuprate superconductors were dis-
covered, pushing 7. well above 100K (Fig. 1.1). The BCS theory fails to describe
the superconductivity in the cuprates, and thus the phenomenon is often referred to
as "unconventional" superconductivity. Similarly poorly understood, unconventional
superconductivity was also observed in a family of iron-based compounds, x-organics
and moiré lattices. [3-9]
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Figure 1.1: Plot of T, over time. Cuprate superconductors (red) have the highest T,
followed by Fe-based (purple), conventional BCS (yellow) and heavy fermion (green)
superconductors. [3]

The cuprates have a structure formed of conducting layers of copper oxide planes
separated by buffer layers (Fig. 1.2). DFT calculations indicate that the most signifi-
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cant contributions to the electronic bands near the Fermi level come from the copper
3d,2_,2 and the in-plane oxygen p-orbitals (2p, and 2p,) [10, 11]. However, DFT in
general fails to reproduce experimental observations for these materials, especially for
the spectral properties. The question of the minimal model to describe the cuprates
and capture the mechanisms relevant for superconductivity is an open one. Most
common approaches rely on either single-band (Hubbard) models (one orbital per
unit cell), or three-orbital Emery models. The importance of other orbitals such as
Cu 3d,2, Cu 4s, apex oxygen 2p, and even states from the buffer layers cannot be
ruled out, and more complicated models are often studied. [12—15)]

Figure 1.2: The unit cell of Lay ,Sr,CuQy, the body-centered tetragonal Brillouin
zone and the 2D Brillouin zone projection. [16]

The buffer layers serve as charge reservoirs for the copper-oxide planes. To dope
the system, one or more elements in the buffer layers are partially substituted with
elements with fewer (hole-doping) or more (electron-doping) valence electrons. An-
other common way is to reduce the overall number of oxygens. The doping is essential
for the cuprates—in many cases, the parent compound is insulating, and the super-
conducting phase is achieved only upon doping. For example, LasCuQOy4 can either
be doped by replacing La with Ba, Sr (hole dopants), Ce (electron doping), or by
reducing the number of oxygens. In all cases the highest critical temperature for the
superconductivity that is achieved is roughly the same. [17-20]

The generic cuprate doping-temperature phase diagram (Fig. 1.3) is very complex,
and can contain spin and charge density wave ordered phases, insulating and metallic
phases, and, most importantly, the superconducting dome: the critical temperature
usually grows with doping to a certain point, and beyond it, the trend reverses. The
doping at which the T, is the highest is called the "optimal doping". [3]

Unlike in conventional superconductors, the superconducting pairing amplitude
in the cuprates has d-wave symmetry, which has a very distinctive spectral signature
observed in angle-resolved photoemission spectroscopy (ARPES) experiments. A sim-
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Figure 1.3: Generic phase diagram of a hole-doped cuprate superconductor. [3]

ilar spectral signature is also seen in the adjacent pseudogap regime, characteristic of
the cuprates. Both regimes are characterized by a significant decrease in the density
of states near the Fermi level, but a true gap is present in neither—the spectrum
is gapped only in certain areas of the Brillouin zone. ARPES studies have revealed
that the Fermi surface becomes discontinuous as a function of crystal momentum k,
forming Fermi arcs which shrink further with decreasing temperature. Below the su-
perconducting temperature T, the arcs become points at the d,2_,2 nodes (Fig. 1.4).

[3, 1]
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Figure 1.4: An illustration of the cuprate Fermi surface, with temperature increasing
from left to right [10]

Unconventional superconductivity was also observed in some organic compounds,
including charge transfer salts (BEDT-TTF),X. These salts are formed from con-
ducting layers of BEDT-TTF (bis(ethylenedithio)tetrathiafulvalene) separated by in-
sulating anion layers such as X=Cuy(CN)3. Charge is transferred from the conducting
to the ionic layers, leaving the BEDT-TTF with a half-filled band. In the x phase,
the BEDT-TTF molecules are dimerized and are arranged in a triangular lattice
(Fig. 1.5). The phase diagram of k-organics (Fig. 1.6) is qualitatively similar to that



of the cuprates, with pressure taking the place of doping. This indicates that there
is a degree of universality in the strongly-correlated behaviour of these systems. [21,
29)]

Cu,(CN)g
layer

Figure 1.5: k-(BEDT-TTF),Cuy(CN); crystal structure. (a) Top-down view of the
conductive layer. (b) Side-view of the 2d layered structure. [23]
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Figure 1.6: x-(BEDT-TTF),Cu|N(CN)y|Cl phase diagram with the superconducting
phase (T, of 13K) omitted. The shaded area represents a region of coexistence of
insulating and metallic phases. |21]

The Hubbard model represents one of the simplest interacting lattice models,
characterized by an on-site electron-electron interaction U and intersite hopping terms
Jij. Despite its simplicity, the presence of an interaction makes solving the Hubbard
model a quantum many-body problem, and there are very few numerically exact
solutions. The infinite-dimensional Hubbard model is exactly solvable by dynamical
mean field theory (DMFT). In this limit, the phase diagram displays a first-order Mott
metal-insulator transition at finite temperature. This is in qualitative agreement with
the experimentally observed transition in vanadium oxide and k-organics. [23, 24].
A wide range of approximate methods have also been applied to the Hubbard model,
indicating the presence of regions with d-wave superconductivity, charge and spin
order, bad metal and other phases present in cuprates and organic superconductors



(Fig. 1.7) [25, 26]. For this reason, understanding the Hubbard model and its phase
diagram is directly relevant to the study of strongly correlated electron materials.
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Figure 1.7: (a) Graphical representation of the Hubbard model. Proposed phase
diagrams at (b) finite and (c) zero temperature [25]

Dynamical correlation functions in the Hubbard model (and other lattice models)
have proven particularly challenging to compute. Imaginary-time methods, such as
determinant quantum Monte Carlo (DQMC) rely on analytic continuation, which is
poorly defined and introduces uncontrolled error. Exact diagonalization methods,
such as the finite-temperature Lanczos method (FTLM) can directly compute these
quantities, but are limited to high temperatures and either uniform or short-range
correlators due to the small size of lattices that can be treated with these meth-
ods. Development of new methods to compute the dynamical correlation functions is
therefore one of the primary goals in the field. [25, 27-31]

The study of the Hubbard model (and the related lattice models) is also possible
by means of quantum simulation, in experiment. Advances in the field of cold atoms
have allowed for the experimental realization of a wide variety of model Hamiltonians
on optical lattices, allowing one to directly compare numerical results to experimental
data. The lattice parameters are tunable. The optical lattice approach allows one to
isolate the effects of electron-electron interactions from other scattering mechanisms
(electron-phonon interactions, disorder) which are necessarily present in real mate-
rials. In optical lattices the role of fermions is taken up by individual atoms with
masses thousands of times larger than the electron, resulting in much slower dynam-
ics. This allows for the study of dynamic correlations with a high time-resolution.
These factors make optical lattices an excellent way to both study the relevant physics
and benchmark new and existing numerical methods. [32, 33]

However, the electrical resistivity p is not yet directly measurable in cold atom
experiments, and the comparison the with theoretical resistivity results has, so far,
been only indirect—the resistivity in experiment was deduced from charge response
measurements. These experiments probe the response to an applied electric field at
long wavelengths. This response can be related to the dc-resistivity via hydrodynamic
theory and the Nernst-Einstein relation [27]. The dynamics at long wavelengths are
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inaccessible to the presently available numerical methods—imaginary-time methods
run into the problem of analytic continuation, and exact diagonalization methods are
generally limited to 4x4 clusters, which is far too small to observe the wavelengths of
interest.

In this thesis, we introduce the open quantum cluster embedding theory (OQCET),
a real-time embedded cluster method that is able to access long-wavelength response
without analytic continuation. This allows us to perform a direct comparison with
the existing measurements in a cold atom experiment.

The method follows the strategy of other embedded cluster methods. Two sets of
equations are solved self-consistently - the equations governing the lattice quantities
are closed by short-range correlators computed in small effective clusters; in turn, the
small clusters are tuned so as to mimic the dynamics of the large lattice. Namely,
the small clusters are open quantum clusters, evolving per the Linblad equation, and
their tuning is done via a time-dependent coupling to an external environment. The
lattice equations are equations of motion for the fermionic bilinear and the local dou-
ble occupancy, but additional quantities can also be used. The method is trivial
in equilibrium: the starting point of the method is a solution for the instantaneous
correlators extracted from a lattice QMC calculation, which requires no analytic con-
tinuation; in the absence of external fields, the OQCET equations yield no additional
information. The dynamical response functions are obtained by probing the system
using weak external fields, and then inverting the linear-response theory equations.
The method has certain desirable properties, such a fulfillment of the total charge
and energy conservation; it becomes exact in the non-interacting and zero-hopping
limits, as well in the limit of infinite cluster size.

The thesis is organized as follows. In Chapter 2 we give a brief overview of the
general methodology of numerical method development. We introduce the concept
of embedded cluster theories, giving a brief derivation of DMFT and its cluster ex-
tensions as an example. In Chapter 3 we introduce OQCET in analogy to DMFT,
and discuss implementation details. We consider several variants of the method, with
respect to a) how the initial density matrices and the Hamiltonians for the clusters are
set up, b) what the jump operators for the coupling to the environment are, ¢) what
the constrained operators are (the quantities on the cluster that mimic the large lat-
tice), d) how exactly we drive the system out of equilibrium and e) how big the cluster
size is. In Chapter 4 we benchmark our method against known results, and finally di-
rectly compare to the experimental findings. We observe good qualitative agreement
between theory and experiment, in terms of temperature and wavelength dependence
trends. Further work is needed to implement the theory for larger clusters, and to
generalize the approach to other dynamical susceptibilities and the spectral function.



Chapter 2

(General methodology

The current, widely accepted paradigm for numerical method development puts em-
phasis on controlled theories. A theory is controlled if there exists a series of sys-
tematic corrections which reduce the level of approximation, eventually leading to an
exact solution. The degree of approximation is quantified by introducing the notion of
a control parameter. Since we often make multiple controlled approximations, a the-
ory may have more than one control parameter. As a control parameter approaches
a limiting value, the approximation associated with this parameter reduces. As all
control parameters in a theory approach their associated limits, the theory becomes
numerically exact.

There are three general families of controlled approaches: finite lattice, perturba-
tive expansion and embedded cluster methods.

Finite lattice methods such as the finite-temperature Lanczos method (FTLM)
and lattice quantum Monte Carlo (QMC) have lattice size as a control parameter.
Quantities are calculated on smaller lattice sizes and extrapolated to the thermody-
namic limit. Lattice QMC methods such as CTINT [31] and CTAUX [35] can treat
larger lattices than FTLM, but are limited to calculating static quantities as they
are formulated in imaginary time. These methods also have an additional control
parameter: the number of Monte Carlo steps performed, which is associated with the
statistical error.

Perturbative methods calculate quantities by expansion in terms of the powers of
some model parameter, such as the interaction strength, (inverse) temperature, etc.
The expansion is truncated at finite order n, which represents the control parameter.
The requirement that the perturbative series converges generally limits interaction-
expansion methods to low values of the coupling, but there has been recent progress
in pushing these methods to intermediate interaction strength [36].

In embedded cluster methods, the idea is to create an exactly solvable represen-
tative model by only taking a small subset of the degrees of freedom of the original
model. This representative model is then coupled to an effective field. The parame-
ters of the effective field are determined in a self-consistent manner by a set of lattice
equations.

When studying transport phenomena, it is particularly important to ensure con-
servation of quantities such as charge and energy, as transport equations that do not



conserve these quantities can exhibit unphysical behavior. One way to ensure that
conservation laws are satisfied is to rely on Luttinger-Ward functional (LWF) deriv-
able theories. It has been shown that theories derived as an approximation of the
LWF obey conservation laws. [37, 38]

<I>[G]=Ci)+§<:>§ +®+
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Figure 2.1: Diagrammatic expansion of the Luttinger-Ward functional and the self
energy in terms of the full Green’s function G. [39]

Diagrammatically, the LWF is defined as the sum of all irreducible two-particle
skeleton partition function diagrams Fig. 2.1. The LWF can be related to the grand
potential (the Landau free energy) as

Q[G] =TrlnG — Tr((G, ' — G™HG) + @[G] (2.1)

where Gy is the bare Green’s function and ®[G] is the LWF. The self energy can be
obtained from the LWF as a functional of G

§B[G]

—& - I3(c) (2.2)

where T is the temperature. We recover the well-known Dyson equation by looking
at the stationary point of the free energy, 6Q2/6G = 0

G'-G,'-2[G]=0 (2.3)

Self-consistent Hartree-Fock and dynamical mean field theory (DMFT) are both
examples of LWF-derivable theories. Hartree-Fock is obtained by approximating the
LWF with only the first term in Fig. 2.1 [10]. Restricting the domain of the full func-
tional to local Green’s functions gives us the DMFT approximation. By including
certain non-local components of Green’s functions (such as nearest-neighbor compo-
nents) we arrive at cluster extensions of DMFT.

Similar formulations using related functionals also exist, such as the self energy
functional by Potthoff et al. [11| and the Almbladh functional [12].

Another important property of the LWF is universality—the form of the functional
is determined by the interacting part of the Hamiltonian, and is independent of the
bare Green’s function. This allows us to approach the problem by solving an auxiliary
problem with the same interaction and at the same temperature. This connection
between lattice models and associated "impurity" problems is the essence of embedded
cluster theories. [39]



2.1 Embedded cluster methods

To create an accurate picture of strongly correlated materials, we need to be able to
treat local interacting physics as well as more delocalized coherent phenomena. Em-
bedded cluster theories provide a framework to do so—by connecting lattice equations
to clusters in which interactions are treated numerically exactly, we can capture both
local and delocalized effects.

We will outline the prescription for creating an embedded cluster theory. First, we
create a representative model from a small subset of lattice degrees of freedom. This
model should be small enough to be exactly solvable. After choosing a representative
model, we choose some lattice quantity of interest (in DMFT this would be the
Green’s function). We will refer to these quantities as the constrained quantities.
Next, we write down lattice equations to express the constrained quantities. These
equations will in general depend on some other quantities, which we will refer to as
representative quantities. The equations are closed by taking values of representative
quantities from the representative model. To relate the representative model and the
lattice, we introduce a self-consistency condition: the representative model is coupled
to an effective field, with the field parameters chosen such that the cluster constrained
quantities match the lattice constrained quantities Fig. 2.2.

—~

Lattice

Constrained
quantities

Representative
model

& o>

Representative
quantities

Figure 2.2: The self-consistency relation in embedded cluster theories. Coupling to
the representative model is represented by the field ¢.

2.2 Dynamical mean-field theory (DMFT)

The LWF formalism provides a powerful framework for proving conservation laws.
However, there are other ways to ensure conservation laws in embedded cluster meth-
ods. We will introduce OQCET in analogy to DMFT, so we start by recapitulating
the derivation of DMFT following [1| and provide an overview of its cluster extensions.
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2.2.1 Single site DMFT for the Hubbard model

We start with the Hubbard Hamiltonian with hopping term J, interaction U and
chemical potential p

H=-J Z c;-rocjg — uan + UZ”%’T"M (2.4)
(,4),0 4,0 i

where ¢ and j denote lattice sites, (i, j) indicates the sum should be performed over
nearest neighbor pairs, and ¢’ and ¢ are fermionic creation and annihilation operators,
with n = cfc. In DMFT, the quantity of interest is the local Green’s function

GoilT) = = (Teni(r)el(0)) (2.5)

where 7 is the time-ordering operator. The lattice local Green’s function can be
mapped onto the Green’s function of the representative model, which is in this case
the single impurity Anderson model (SIAM)

Hsiam = Himp + Hpatn + Hiyp (2.6)
Himp = Unin| — p(nf +nf) (2.7)
Hyan = Y _ 45, doo (2.8)

y
Hyyp, = Y Va(dl, o + cldys) (2.9)
;y

Where we have introduced a set of non-interacting fermions d coupled to the impurity
orbital ¢, parametrized by V) and {. The d-states A present the "bath" that the
impurity is coupled to. The noninteracting Green’s function of the impurity can be
shown to be

Gfl

0,imp

(twy) = twy, + 1 — Aliwy,) (2.10)
where W2
Aliw,) =y AL 2.11
) =30 (211)
is the hybridization function.
The impurity local self-energy is defined as

Simp(iwn) = Ggp

0imp

(iwn) = Gy (iwn) (2.12)
On the lattice, the full Green’s function is

1
att (K, twn) = - , 2.13
Chae (K, iwon) iwy, + p—e(k) — X (K, iwy,) (2.13)

where ¢(k) is the noninteracting dispersion

e(k) = —2J(cos k, + cos k) (2.14)

11



The approximation we make in DMFT is that the lattice self-energy is purely local
and equal to the impurity self-energy, i.e. X;jjaet(iwy) = ;. jZimp(iwy), so its spatial
Fourier transform is k-independent

Zk,lautt = Z eik.rar,OEimp(iwn) = Eimp(ic‘un) (215)

Summing Eq. (2.13) over k to obtain the local Green’s function we arrive at the
self-consistency condition

D Guasi(k, iwn) = Ginp (iwn) (2.16)
k

Gimp - Glatt

SA>

imp _y ylatt

Figure 2.3: DMFT self-consistent loop.

In practice, the DMFT self-consistent equations are usually solved by an iterative
procedure (Fig. 2.3). Starting from an initial guess for A(iw, ), we solve the impurity
problem to calculate Gipp(iw,,) and the impurity self-energy X, (iw,) (Eq. (2.12)).
The local lattice Green’s function is then calculated from Eq. (2.13), with the local
self-energy taken from the impurity (X (k, iwy,) = Zimp (iwy,)):

1

Gg (iw,) = Gran (K, iw,) = 2.17
latt Zw Z 1 tt 1w N Z an + [ — 8(1{) _ Eimp (an) ( )
Updating our guess for the hybridization function,

Aliwn) = iwn — po =[G (iwn)] ™ = Siump (i) (2.18)

we begin a new iteration of the loop. The procedure is repeated until the loop
converges, and the self-consistency condition Eq. (2.16) is satisfied.
DMFT becomes exact in several limits:

1. In the non-interacting limit (U=0) the self-energy vanishes, so the local self
energy assumption becomes trivially exact: X(k, iw,) = X (iw,) =0

2. In the atomic limit (J = 0) the lattice becomes a set of isolated Hubbard atoms,
with the self-energy necessarily being purely local. The DMFT solution is then
trivially A(iw,) = 0 as that describes a single isolated impurity.
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3. In the infinite lattice coordination limit (limit of infinite dimension) it can also
be shown that the self-energy becomes local.

The local self-energy approximation is not justified in many cases, so extensions
to the original theory have been developed. The family of cluster DMFT methods
improve on the original by introducing non-local components to the self-energy. While
these extensions represent systematic corrections of DMFT, they all approach the

exact solution by different paths. Below we present a brief overview of several cluster
DMFT methods following [13].

2.2.2 Cluster DMFT
Cellular DMFT (CDMFT)

CDMFT 2 x 2 PCDMFT 2 x 2

Figure 2.4: Comparison of CDMFT and PCDMFT schemes, supercells are shaded
gray. In CDMFT the self-energies are zero on bonds between supercells, while in
PCDMEFT the inter-cell self-energies are pasted on by symmetry (dashed lines). [13]

In CDMFT, we divide the model lattice into supercells. In this notation, the
Green’s function depends on two sets of indices
Gij = Gruij

where I, .J are supercell indices, and 7, j are now indices of sites within the supercell.
The LWF approximation then consists of restricting the domain to the set of Green’s
functions within one supercell

2| X G| ~0 |3 X 219
1,J i,j€s.c. I 1t,j5€s.c
In this case, the self-consistency condition reads
A A 1 A
imp __ latt __ latt
G =Gyt = > GR (2.20)

KeRBZ
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where RBZ denotes the reduced Brillouin zone and N represents the number of
unit cells. Unfortunately, this approach breaks translation symmetry, as the self-
energy is only nonzero within the supercells (Fig. 2.4). This can be resolved by
post-processing—the lattice self-energy between clusters can be recovered from the
impurity self-energy by symmetry, and we recover a translationally invariant Green’s
function. This symmetrization cannot be interpreted as an approximation of the
LWF, and the choice of quantity to periodize yields, in general, different results.

Alternatively, in periodic cellular DMFT (PCDMFT), the lattice self-energy is
symmetrized in each iteration of the DMFT loop, and the resulting G'* is transla-
tionally invariant (Fig. 2.4). This removes the need for an additional post-processing
step, but PCDMFT cannot be derived as a LWF approximation.

Dynamical cluster approximation (DCA)

(0,m) (1)
] \
[ P

,I \ -
/ \\
4 \
7/ \
s ~
_- P i~
+
- (0,0) _-|@0)
T~ 1
Y 7
\ /7
\ 7/
\ /
AY /
\ 7/

\ /
| [

Figure 2.5: A simple DCA scheme, with the Brillouin zone divided into two patches,
P, (inside the blue square) and P_ (between the blue and red squares). |11

DCA is realized through a coarse-graining of the Brillouin zone (Fig. 2.5). The
LWF is approximated as

O{Cy}wi] ~ @ > G = O[{Gk }vk] (2.21)

keP(K) VK

where k and K are fine- and coarse-grained vectors of the BZ respectively. In the
simplest case, P(K) represents the set of vectors k closest to K (the Voronoi patch
of K). The self-energy is then piecewise constant in k, as

(ID[{ang}VK] _ Q[{ggi\ﬂ{] Sep () (2.22)

The DCA impurity is then a cyclic cluster with wavevectors K, and the self-consistency

condition is )

Gi®(iw,) = G (iwy,) = > Gt (iwn) (2.23)

PK) yepk)

14



where Npk) is the number of fine-grained k-vectors in the Voronoi patch of K. The

lattice self-energy is given as
latt im
Yt = EK(‘;() (2.24)

where K (k) is a function that gives the coarse-grained vector nearest to k.

Nested cluster scheme (NCS)

The nested cluster scheme [13]| represents a real-space method that simultaneously
preserves both the translation invariance and the continuity of the self-energy in k-
space. Unlike in (P)CDMFET, this is done at the level of the LWF approximation.
We start from the idea that the Luttinger-Ward functional can be approximated as
a sum of cluster functionals, with clusters C' chosen as subsets of lattice sites

QG ~ Y 0c(Gel (2.25)

cec

where C is the set containing all clusters. The clusters in C are chosen such that they
cover the entire lattice,

Jeo=c¢ (2.26)

ceC
and that they are independent
cCgc vo,c'ecC (2.27)
nested 2 x 2 nested 2 + 2 nested 2 x 1

@

o

Figure 2.6: Simple cluster nesting schemes |13]

Since we preserve translation invariance, the clusters in C necessarily overlap
(Fig. 2.6), so we have to account for the double counting of diagrams involving or-
bitals present in multiple clusters. To correct for this, we can write the LWF with an
additional term

DG ~ Y 0clGel + ) | pe®olGel (2.28)

ceC ceo
where O contains all the overlaps between the clusters. pco are integers chosen to
cancel out the double counted diagrams. This means that it will be necessary to
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solve impurity problems of clusters in both the original set C and the overlap set O.
In the NCS, both the set of overlapping clusters O and the factors pc are determined
by the initial choice of C. Defining pcee = 1, we can rewrite Eq. (2.28) as

PG ~ Z pc®colGel (2.29)

To distinguish between lattice and cluster indices, lattice indices will be referred to
in vector notation (e.g. X% and 4, j... will be used for cluster indices (e.g. Elmpc).

r,r’

The self-consistency COHdlthIl reads

imp C
Gii° G}f(gf(,*),r(j,C) (2.30)

7]

where r(i,C) is a function that maps site ¢ on cluster C' to its corresponding lattice
vector. The lattice self-energy is given by

latt 1mpC
rr’ - Z C’ io(r),ic(r) (231)
CDr,x’

where ic(r) maps lattice vector r to the site ¢ on cluster C.

2.3 Linear response theory

Linear response theory provides a connection between dynamic correlation functions
and system response to a weak external perturbation. To derive the linear response
equations we follow [15, 16].

In the Schrodinger picture, the expectation value of operator A is defined as

(A) = Tr(pA) (2.32)
In equilibrium, the density matrix p is a thermal ensemble
p = ePHo /Ty (eHo) (2.33)

where Hj is the unperturbed system Hamiltonian. We now introduce an external
perturbation H' at time t = ty. The total Hamiltonian then becomes

H(t) = Hy + V()0(t — to) (2.34)

Here it will be useful to work in the interaction picture. Operators in the interaction
picture will be denoted with a hat, e.g. V(). For the interacting Hamiltonian we
choose H' = V(t)0(t — to) The evolution operator U is given as

. 1/t . .
Ut ,tg) =1+ —,/ dt' H'(t"U (¥, to) (2.35)
i S
Approximating the above expression to first order in H' we get
. 1 [t
O(tto) ~ 1+ 2 / dt E (1) (2.36)
3 tO
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In the interaction picture, states and operators evolve as follows:

(1)) = U(t, to)e™" [ (ty)) (2.37)
A(t) = ¢iflot geiflot (2.38)

It can be shown that the expectation value Eq. (2.32) then evolves as

0

(A0) = (A =i [t 5 ST ) A~ 7 (OADIn(t)

— (A —i / at' ([A), V() (2.39)

to

:(A)O+/ dt’ %, (t, 1)

to

where (A)y denotes the equilibrium thermal average (H = Hj) and

A~

CRv(t,1') = —i6(t — ) {[A(1), V(#')])o (2.40)

is a general retarded correlation function. We can note here that the Heisenberg and
interaction pictures coincide for (---)o as H' = 0. If the perturbation can be written
as a time-dependent classical field F'(¢) coupled to an operator B

V(t)= F(t)B (2.41)

the linear response equation becomes

(A(t)>:(A>0—|—/ dt' x ap(t, ") F(t") (2.42)

to

where

Xag(t,t') = =ib(t — ') ([A(t), B(t')])o (2.43)
is a general retarded susceptibility. As the system was originally in equilibrium, we
can rewrite the above as

XAB<t7 tl> = XAB(t — t/) (2.44)

If the field F(t) is of an appropriate form (a delta-like function, for example) then
Eq. (2.42) can be inverted easily, and the susceptibility can be calculated from the
non-equilibrium response. This approach is referred to as inverse linear response
theory [28].
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Chapter 3

OQCET as an embedded cluster
method

In this chapter we will introduce OQCET as an embedded cluster method in analogy
to DMFT. After outlining the general formalism, we derive the OQCET equations
for charge response in the square lattice Hubbard model.

In OQCET, the role of the representative model is taken up by an open quantum
cluster governed by the Lindblad equation [17]. Like the Anderson impurity model
in DMFT, Lindbladian evolution allows for particles to enter and leave the clusters.
Beyond what is usually considered in the SIAM, in our open clusters we will also
consider more complicated couplings with the environment. In the AIM, the particles
in the bath behave according the bare-propagator A. In Lindbladian evolution the
particles entering the cluster have no memory of their previous state (Fig. 3.1). As a
result, the Lindblad equation is Markovian—the future evolution of the system only
depends on its current state [17]. In practice, this means that it is only necessary
to store data in working memory for the current time step. Therefore, the memory
requirements for non-equilibrium calculations remain constant with the number of
time steps n; and the cpu-time scales as O(n;). This contrasts with other methods
such as non-equilibrium DMFT [18], where both memory usage and cpu-time scale as
O(n?). Significantly lower memory and processing power requirements make it feasible
to perform calculations to very long times. The coupling to the bath in DMFT is
described and tuned by the 2-time propagator A(t,t’), while in the Lindblad equation
we tune the single-time dependence of the coupling constants I'(t).

As already noted, embedded cluster theories are formulated by coupling two sets
of equations—one for the lattice, and one for the embedded clusters. In DMFT,
the lattice equation is the Dyson equation expressing the Green’s function from the
self-energy and the lattice Hamiltonian; the cluster equations are the solution for the
self-energy with respect to the cluster action, which depends on the hybridization
function A.

In OQCET, the lattice equations are equations of motion for expectation values
of constrained operators. The expectation values (EVs) of lattice operators evolve by
the Heisenberg equation

Oi(A(t)) = i ([H(1), A(1)]) (3.1)
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bath environment
L\ e
v
0,—@ o o
o Ly

effective Anderson impurity problem Lindbladian open cluster

Figure 3.1: Schematic representation of the Anderson impurity model and a Lindbla-
dian open quantum cluster

In general (due to two-particle terms in the Hamiltonian), the set of operator expec-
tation values {(A,)} will not yield closed equations of motion (EOM), and the EOM
will also depend on some set {(B))}.

Oi{AN®) = F ({{Aw 1}, {(Bw)}) (3:2)

(cluster) DMFT OQCET

imp latt
Gij —Cr

<A;-l\1>t> 1—<A1-“">

i

SA>

Elll!/{}) N Z%Ltt

i <B(I_l|1st>_)<BIi;m>

Figure 3.2: Schematic comparison of the DMFT and OQCET loops. Quantities in the
top boxes are imposed onto the representative model, while quantities at the bottom
are extracted from the representative model and passed onto the lattice equations.

In OQCET the equations of motion for the set of lattice operator EVs {(A2)}
will be closed by {(B¥*")} computed within the clusters, using a mapping between
cluster and lattice sites. Here the 'hat’ symbol denotes that A and B2 are tensors
of real space vectors r. These tensors can be of arbitrary rank, e.g. the bilinear ¢l ¢y,
is a rank two tensor and the local double occupancy operator ny4n,; is of rank one.

Clusters in OQCET are formed by restricting the single-particle lattice Hilbert
space to a subspace containing a small set of lattice sites. For example, a cluster can
be formed from two neighboring lattice sites with vectors r and r + e,. In principle,
the clusters can be of any shape and the sites need not be connected by nearest-
neighbor bonds. The mapping between cluster site indices and lattice vectors is in
general many-to-many: clusters can overlap, i.e. sites on different clusters can map
to the same lattice vector. If the lattice has symmetries, a single cluster site can map
to multiple lattice vectors.

To create a set of clusters we first select the desired cluster shape (for example,
2x1 nearest neighbor clusters) and we tile the lattice with all possible translations and
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rotations of those clusters. Next, we use lattice symmetries to select the irreducible
set of non-equivalent clusters. On the clusters, {(A$"*)} and {(B$"™*)} are tensors of
cluster site indices {1, j,...}. Since the clusters are small, longer range components of
{(B%*)} might not have a mapping in the space of cluster operators. For example, if
we tile the lattice with two-site nearest-neighbor clusters, a rank two tensor (B ;)
will not have a mapping if r and r’ are not vectors of nearest-neighbor lattice sites.
If that is the case, we set those tensor components of { (B2} to zero.

If the disconnected components of the Wick’s theorem decomposition of (By) can
be expressed as a product of averages {(A,)}, we can rewrite the equations of motion
such that the equations are now closed by the connected average

aAN®D) = F ({(ADLAB)=}) (3.3)

With this approach, we instead set the longer range components of {(B/{m)conn} to
zero, which is equivalent to taking only the disconnected components of {(BR)}.

Due to the possibility of cluster overlaps, the procedure for mapping cluster quan-
tities to lattice quantities is, in general, not unique. One way to address this would
be to apply the nested cluster scheme discussed in the previous chapter, where we
would subtract double counting contributions from clusters formed by overlaps. An-
other, simpler approach would be to simply average out contributions of overlapping
clusters. These approaches will be discussed further in Chapter 4.

The cluster is coupled to an effective environment via the Lindblad equation

d’;—(tﬂ = —i[Haws, p(t)] + Z Li(t) (Li,o(t)Lj - % {LZLZ-, p(t)}) (3.4)

where L; are 'jump operators’ describing the system-environment coupling and I;
are positive real numbers representing the coupling strength (analogous to the hy-
bridization function A(iw,)). For example, a jump operator L = ¢! (L = ¢;,) can
be interpreted as a particle entering (leaving) the system at site ¢ with spin o, and
the rate at which this happens is determined by the associated I'. In OQCET, the
set of jump operators {L;} is chosen a priori based on the quantities we wish to
calculate, and T'; are tuned so that cluster EVs {(A$%)} match lattice EVs {(A2)}
(corresponding to how the hybridization A(iw,) is set so that the impurity Green’s
function matches the lattice Green’s function in DMFT). The analogy with DMFT is
illustrated in Fig. 3.2. The procedure for constructing the cluster Hamiltonian H st
will be discussed in a later section.

In OQCET we start from a system prepared in equilibrium. The lattice equi-
librium EVs {(A%(t = 0))} and {(B¥*'(t = 0))} must be obtained first, prefer-
ably employing numerically exact methods. On the clusters, the equilibrium den-
sity matrix pst(t = 0) is prepared such that {(AS™t(t = 0))} = {(A%(t = 0))}
and {(Bst(t = 0))} = {(BR%(t = 0))}. We note here that in the case where
{(B¥*(t = 0))} are zero by symmetry in equilibrium and the clusters inherit the
relevant symmetries, the second condition is trivially satisfied.

We coevolve the sets of lattice and cluster equations—Ilattice equations determine
T;(t) for cluster evolution and lattice evolution is set by {(By(t = 0))} obtained from
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clusters. One iteration of the method evolves the system in time by a step dt. The

algorithm can be described as follows (Fig. 3.3):

T > 37— ">~ Cluster
\\R\ --< j( \\h**« :
o N VI

oL 5 Lattice
] ] )

Figure 3.3: The OQCET algorithm in time

1. {(A%* (1))} are evolved by a time step dt on the lattice by their respective EOM,
using the values of {(B%(¢))} obtained from the previous iteration. This gives
us {(A@(t + dt))}. If this is the first iteration, then {(B2%(t = 0))} are the
equilibrium expectation values.

2. On the cluster, I';(t) are chosen such that the evolution ¢ — ¢ + dt by the Lind-
blad equation Eq. (3.4) satisfies {(AS""(t +dt))} = {(A¥*(t+dt))}. Since they
constrain the cluster time evolution will refer to the set {(A\(t))} as constrained

operators.

3. The cluster density matrix is evolved to ¢ + dt using I';(t) and cluster EVs
{(B$t (¢ + dt))} are calculated

4. The cluster EVs {(B§"™'(t +dt))} are mapped onto lattice EVs { (B2 (¢ +dt))}

This procedure is repeated until we reach a desired final time ;. This is in contrast
to the loop described in Section 2.2, where the hybridization A is determined for all
frequencies (all times) simultaneously. The comparison between OQCET and cluster
DMEFT is shown in Table 3.1.

cluster DMFT OQCET
Rep. model Anderson impurity model | Open quantum cluster
Constr. Quantity | Gj; (Ay)
Rep. quantity i (By)
Eff. field A {T';}
Latt. eq. Grawe = [Gogae = Sl | AlAN®) = [ ({40}, 1BY}Y)

Table 3.1: Cluster DMFT and OQCET as embedded cluster theories.
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3.1 OQCET for the square lattice Hubbard model

We will describe the implementation of OQCET for the Hubbard model, following
a non-equilibrium protocol to calculate the density response function yq(w). The
perturbing potential we introduce will be piecewise constant in time, i.e. 0;(¢p.(t)) =
0. We start with the square lattice Hamiltonian of the Hubbard model in a time-
dependent non-uniform scalar potential ¢;(t)

H(t)=-J Z C:rr,rco,r+u - Z(N — ¢e(t))1gr + U Z nenyre  (3.5)

r,uG{ez,—ez,ey,—ey},cr r,o

We will restrict our calculations to disordered phases, so we assume that in equilibrium
(in the absence of external fields ¢) the system has both translation invariance and
SU(2) spin symmetry. Since we are interested in the density response, we will have
the density operator c;icgyi in the set of constrained operators. If we wish for the
energy to be a conserved quantity in our model, we must also constrain the bilinear
c;icoﬁj and the double occupancy operator n;n;. In Appendix B we show that
constraining the bilinear and the double occupancy gives us both conservation of
energy and conservation of particle number. DMFT and other embedded cluster
theories generally break momentum conservation, and, in principle, there is no reason
to expect our theory to obey momentum conservation either.

In the following sections we will derive the lattice equations of motion for the
bilinear and the density-density operator n,;n, ;. We will also outline the different
variants of OQCET, depending on the choices of constrained and jump operators,
field probe protocol, cluster Hamiltonian and initial density matrix.

3.2 Inverse linear response theory

In our implementation of inverse linear response theory (discussed in Section 2.3) we
apply two different non-equilibrium protocols: one with potential localized in real
space (protocol A), the other localized in g-space (protocol B) (Fig. 3.4).

From Eq. (2.44), the generalized charge susceptibility X, (t) is defined as

XJ,r,r’ (t) = _10(75)([”0,1'(15)’ nU,I"(O)DU (36)
Since we have translation invariance, X,rr(t) = Xor—w(t) and the above can be
rewritten as

Xe—r (1) = —10(t) ([0 (1) 0 (0)])o (3.7)

Its Fourier transform in space is defined as

Xalt) =) e X w(t) (3.8)

Xat) = —7i9(t)<[nq(t)> n-q(0)])o (3.9)

where

ng(t) = D chi(t)coicralt) (3.10)



Protocol A Protocol B

Figure 3.4: Schematic representation of non-equilibrium protocols. Boxes repre-
sent symmetry-irreducible 2x1 clusters. Colors correspond to values of the potential
¢r: +V (red), 0 (purple), =V (blue). The dashed lines in protocol A indicate the
symmetry-irreducible part of the lattice. In protocol B, the wavelength represented
is A\ =4.

In protocol A we introduce a delta potential at r =0

Par(t) = adr,0d(t) (3.11)

using Eq. (2.42) we get

() — (me(0)) = 3 / 0 e (1 — ) oae (1)

t
() =3 / e (t — )08 06(¢) (3.12)
r V0
(One (1)) = axx(t)
Xq(t) is then obtained as a Fourier transform of
1
Xe(t) = —(0ne(t)) (3.13)

For protocol B, we probe the system with a delta potential at wavevector q = q*,

(be(t) = (5q*,q + 57q*,q) 5@) (3-14)

| o

We keep both q* and —q* terms to preserve inversion symmetry. In real space, this
is equivalent to

¢Be(t) = accos (q" - 1)d(t) (3.15)
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Inverting the linear response equations

(na(t)) — (ng(0) = 3 / 0t xqlt — )dnq(t)

(ong(t)) = Z/o dt'xq(t — t/)% (Oqrq + 0-g+,q) () (3.16)

(5nq(t)) = 5 (Xar (8) + X-a- (1)

(6nq(t)) = axq-(t)

where we have used xq(t) = x_q(t). This gives us xq+(¢) as a function of the density
response (0nq-(t)), which can be obtained as a Fourier transform of (dn.(t)).

In protocol A, we obtain the entire yq4(¢) in one calculation, but the potential
¢ar(t) breaks all translation symmetries. In protocol B one calculation only gives us
Xq+ (t) for one q*, but we preserve translation symmetry in the direction orthogonal to
q*. The presence of additional symmetries means that we need fewer non-equivalent
clusters, making the individual calculations significantly less computationally expen-
sive. The number of clusters needed for protocol A scales as O(L?), where L is the
linear length of the system, while for protocol B the scaling is O(L). In the special
case where q* is collinear with a lattice unit vector and the wavelength A = 27 /q is an
integer, the system also retains translation symmetry along q* with a step of A lattice
spacings. Retaining inversion symmetry by the inclusion of —q* further reduces the
number of irreducible clusters. This means that we then require O(\) clusters, and
we lose dependence on L, making calculations on large lattices easier.

M(t, ty, V)

t
Figure 3.5: Boxcar function II(t,t,, V) with total area o = V¢,

In our implementation, since we work with finite time steps, we approximate the
potential delta with a boxcar function II(¢,¢,, V)

ad(t) = II(t, t,, V)

(1, V) = V, f0<t<t, (3.17)
el 0, otherwise

where ¢, is the pulse duration and V' = a/t,,.
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3.3 Lattice equations of motion

In this section we will be working in the Heisenberg picture, and we omit time-
dependence in notation for brevity, ¢!, . = ¢l (t). The Heisenberg equation for ¢f, .,
reads

at(c;rcg,r/) =1 [H c cU,r/] (3.18)

) Yo,r

The Hamiltonian can be split into three terms, H = Hy, + Hpor + Hing. The kinetic
energy term gives us

U [Hkim C:ry,rco,l"} =—iJ Z |:CzT7’,r”CU/,I‘”+u> cz];,rca,l"'] (319)

r’ uc{ez,—es,ey,—ey},0’
applying the identity [aTb, ch} = Opea’d — Saqc'd

{ [Hkina C;rca,r’} = —iJ E 500 < r’’4+u rCUI r//ca r 5r”,r’CLVrCU’,r”+u)
r' u,0’
(3.20)

— T
= —1J E (cg,r_ucg,r/ — ci-,rca,ruru
u

For the potential we have

. . T
i [Hpot, C;rca,r’] = — E (b — ) [CU/J,,CJ/,I.N, c;rcg,r/

= — - 11 ! 11 -‘— / 1 ! T I pl!
- Z(ILL ¢r )50',0' <5I' 7rca",l‘”co-7r 51‘ T CU7rCJ T ) (321)

(= 80) — (5 60 el
= (Qbr - gbl") CU’ng,r’

Finally, for the interacting part
7 [Hlnt7 Co. rCO' I‘ U Z |: //CU rucf //Ca—’rll7 Cl_ rCO',r’]

= UZ O'I'”CO' !’ (51‘” I‘ij r//CO' r — 5 /C Co” N> (322)

r/l

— 1 7
- U(C@I’c&yr - c&,r’cfir')c;rcmrl

Combining everything together we have

at(czr,rca,r'> = Z<_J Z (C:rf,r—uctﬂ" - CtTJ,rCOI"+U) (¢ (bl' ) arCU r/
u

1 1
+U (Cﬁ,rcc_f,r - Ca-JJC&,r’ Cg,rca,r’

(3.23)
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We now take the thermal average of the bilinear, X, ., = <cL7rcmr/>

8154)((7,1r,r" = Z( —J Z(Xa,r—u,r’ - Xa,r,r’-i—u) + (gbr - ¢r’) Xa,r,r’
" (3.24)

U penn - *>*>>

The 4-operator average can be decomposed into connected and disconnected compo-
nents

<(C];.7I.C6,r - Cgm/cﬁ,r/) Cl,7rca-,r/> = <<Cl;7r05-7r> — <C;’r/657r/>) <cL7rcg7r,>—|—Ya’r7rz (325)

where we have introduced

t i conn ; i conn
Ya,r,r’ = <Cﬁ,rc6,rcg,rco,r’> - <cﬁ,r’cf_77r'co,r6071‘/> (326)

By using X, = Xz, and substituting u — —u in the first term we get

atXO',I'I‘/ - Z( - JZ<XU,r+u,r’ - Xa,r,r’-‘ru) + (¢r - gbr’) Xo,r,r’

(3.27)
+ U ((Xa,r,r - Xa,r’,r’) Xa,r,r’ + Ya,r,r’) )
For the density-density operator we have
8,5(710,1410/71-/) = —i [H, n@rnagr/] (328)

The operator n,,n, »» commutes with the density operator n, ,, so the commutator
[Hpot + Hints Noxnor ] vanishes and [H, ng Mo ] = [Hkin, Mo x Mo’ 1]

at (no',rna’,r’) =1 [Hkim no,rna’,r’]

= —ZJ E |:C;|;.//7r// Co”’r”+u; 7/La',r'n(‘)”,l‘/:|

r//7u7o-//

_ E T i
= —iJ Nor [Ca”,r”ca"ﬂ‘”-‘ru’na’,r" + Cg/qrﬂca”,r”%—ua Ngyr| No’ r!

(3.29)
Following the same procedure as for the bilinear, we get
at(no',rno'/J/) = —Z(]Z{ (Cl.m_uco—,r - CL,I‘CO',I"FU) na”,l"
" (3.30)

+ Nox (CL’,r’fucU',r' - Cl’,r/CU'7T'+U> }
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By substituting u — —u in the first terms in brackets we arrive

Ot(NpxNor v) = —iJZ{ (cjmurucg,r — c;rcmrJru) N’
" (3.31)

+ Mo (CL’,r’+ucU',r' - Cl',r/ca’yr'+U> }

We now take the thermal average, and decompose the averages into connected and
disconnected components

Ot (N xNgr vy = —iJ Z{ <<cj,’r+uca7r> — <c;rca7r+u>> (gt pr) +

<no—7r> <<Cl_/7r/+uco-/7r/> - <Cll,rlcalar/+u>> +

T T
(5070' <C;1‘CU'7T/> (<Ca’7r’cd,r+u> - <CU’,r’+uCU,r>) + (332)
Oo,0" <CZ/,r/CU,r> <<CL,rCU’7F’+U> - <C;r+u00’,r’>> +
50,0’51',1" <<Cj7,r+uca’,r’> - <C;rca’,r’+u>> +
60',0’ (5r,r’+u - 5r+u,r’) <Cl7rca/,r’> }_iJWU,U’,r,r/

Where

_ E T
Wo’,a’“r,r/ - < { <CU7r+uCU’r - Cl’yrca’r"’_u na—lyr/

" (3.33)

conn
+ Nor (CZ',rUruCU’,r’ - CZ/,r/CU’,r’+u> }>

We have spin symmetry in our system, so we can rewrite Eq. (3.32) using X, =
Xo/,r,r’

at <na,rno’,r’> = —1J Z{(Xcr,ﬂ»u,r’ - Xo,r,rJru) Xo,r’,r’
u

+ Xcr,r,r(XU,r’Jru,r’ - Xa,r’,r’+u>
+ 50,0’Xa7r,r’(Xo,r’,r+u - Xa,r’-i—u,r) (334)
+ 50,0’ U,r’,r(Xa,r,r’+u - Xo,r—i—u,r’)

+ 60,0’5r,r/(XU,r+u,r’ - Xcr,r,r’+u>

+ 60,0’(5r,r’+u - 6r+u,r’)X¢7,r,r’} - Z.JM/vcr,a’,r,r’

The double occupancy thermal average, d, = (n4,n ) is a special case of the above
expression,

atdr - _QZJZ (Xcr,r+u,r - Xa,r,r—l—u) Xo,r,r - iJWT,i,r,r (335)
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By taking the complex conjugate of Eq. (3.26), we get

T _|_ conn 'i' '|‘ conn
*
Yo,r,r’ - <Cc‘r,r66,rcg7rlca,r> - <C5’r105,r/007r,ca7r>

= _YE',r’,r

(3.36)

Analogously for Eq. (3.33)

oo’ ryy’ T _< E {no’,r’ <Ca,r+uca,r - ngrcg,r—&-u)

u
conn
T T (3.37)
+ Cot i 4uCo’r’ = Corp1Co’ x'u ) Nor

=W o’ o' r

Since at equilibrium Y, ;v = Y5 vy and Wy, 5v v = Wy 5 » by symmetry, we conclude
YO'J',I‘/ (t = O) =0 and WO’,O”,r,r’ (t = O) =0.

3.4 Preparing the initial state

To prepare the initial state for OQCET, we must obtain lattice expectation values of
our constrained operators { (A" (¢ = 0))} and initialize a cluster density matrix with
matching equilibrium EVs.

3.4.1 Equilibrium lattice thermal averages

The quantities we are interested in, the fermionic bilinear and the double occupancy
can both be obtained directly from the full Green’s function and self-energies in the
imaginary-time formalism. As defined in Eq. (2.5), the Matsubara Green’s function

is Goij(T) = — <Tcg’i(7')czjj(0)> (3.38)

The bilinear is simply the appropriate component of the Green’s function at time

T=0":
G = 07) = = (Teou07)eh ;(0)) = (el ,(0)eri(07)) (3.39)

The double occupancy d, = d can be calculated from the well-known Migdal-Galitskii
formula [19]

1 1 .
i= kz Gulisn) Bulivr) = lim & kz Greliwn) Sic(ico, )™ (3.40)

To obtain numerically exact values for the self-energy, we employ the quantum Monte
Carlo method CTINT implemented in the TRIQS library. [34, 50]. Since CTINT is
a Monte Carlo method, we first symmetrize the result to reduce statistical noise and
enforce lattice symmetries. To study long wavelength response, we need to work
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with lattices of size ~64x64. We cannot obtain the self-energy for such large lattices
directly, as CTINT is limited to ~8x8 lattices. However, at high temperatures the
self-energy is sufficiently short-ranged and the 8x8 lattice self-energy is a good ap-
proximation. The CTINT self-energy can be mapped onto the larger lattice (Fig. 3.6)
by the formula

¢ : 17C 17C
gt _ {ErTINT if || < LLOTINT apq |y| < L[CTINT (3.41)

0, otherwise

for a CTINT lattice of size LETINT x [ CTINT

CTINT [ ] [ ] [ ] [ ] [ ] [ [ [ ]
205 .
N— latt
Zr

Figure 3.6: Mapping of CTINT self-energy (red) onto a larger lattice. The self energy
for remaining sites is set to zero.

The full lattice Green’s function is then calculated as

1
G liw,) = 3.42
k(iton) iwy, — ex + 1 — Yy (iwy) ( )

This procedure is analogous to the periodization step in CDMFT discussed in Sec-
tion 2.2.2. To obtain the expectation values for the bilinear and the double occupancy,
we must perform Fourier transforms of the quantities G,;;(iw) and >, G (iwy, ) Xx (1w, ),
as described in Appendix C.

Two-particle quantities such as the nearest neighbor density-density correlator
Mo Mo’ r+u caNNot be obtained just from the self energy, but can be measured directly
in CTINT. In this case, we use the CTINT data directly, assuming that it does not
significantly depend on lattice size.

3.4.2 Clusters in equilibrium

The initial cluster expectation values can be calculated as

(ALt = 0)) = Tr |paaa(t = 0) A7 (3.43)
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A natural way to prepare the cluster density matrix would be to create a reduced
density matrix by tracing all lattice degrees of freedom outside the cluster (from the
environment)

Pclust (t = O) = TrEnv [platt (t = 0)] (344)

where Trg,, represents a partial trace of the environment degrees of freedom. This
guarantees that cluster expectation values will match lattice EVs for all possible
single- and many-body operators in the initial state. The reduced density matrix is
however computationally very difficult to obtain for large lattices. Another problem
is that the reduced density matrix will generally not commute with the projected
cluster Hamiltonian, meaning that the EOM for pg. will not be stationary even in
absence of external fields. One possible way to address this is to introduce additional
jump operators {L;} and coupling {I';} in Eq. (3.4) such that pgu presents a sta-
tionary solution for the corresponding Lindblad equation. In this case, applying the
stationarity condition dpy/0t = 0 to Eq. (3.4) we get

i[H, po) Zr ( LipoLi — % {L Ll,po}) (3.45)

since I';(t = 0) = 0. . .
It is not immediately clear how to choose L; and I'; to satisfy this condition. If
we now write the equations of motion for p very close to po, p(t) = po + Ap(t)

00 — il Ho, +ZF< (v + 89(O)E] = 5 {L1Lu (oo + 29(0)})
+ 300 (Lotz] - 3 {12 o0} )

(3.46)

if we ignore contributions from the Ap term in the second term on the RHS, substi-
tuting Eq. (3.45) we get

dfl_(tt) = —i[Heust, p(t)] + i[H, po] + ;Fi(t) <Lip(t)LZT — % {LILiy P(t>})

= —i[Heust, p(t) — po] + z; [i(t) (Lip(t)L;r - % {LIL“ p(t)}>

With this modified Heisenberg equation, we now have satisfied the stationarity
condition, while the reduced density matrix gives us appropriate expectation values.

As the computation of a reduced density matrix on large lattices is difficult, we
propose two alternative schemes. In the first, we modify Hamiltonian parameters
w,t,U on the cluster and use the thermal density matrix corresponding to that Hamil-
tonian (at the same temperature as the lattice). The parameters are tuned so that
the cluster EVs of constrained operators match lattice EVs. For constraining X; ;
and d; the choice of u,t,U as parameters make clear physical sense, as they modify

(3.47)
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the density, kinetic, and potential energy. For more complicate choices of constrained
operators, additional terms would have to be introduced into the Hamiltonian with
corresponding parameters.

In the second scheme we start with an unmodified, projected lattice Hamiltonian.
The density matrix is then constructed as a modified Boltzmann ensemble

pclust t Z/ ZZZ Z e —BEabi j =7k (Vo | Ax k| Va;) |\IIO¢]>< o

A kEN a ijEa

— Tr Z Z Z Z G*ﬁEaéi,j*'YA,kOIjai|A/\,k‘\I}ch>

A kEXN a 1,jea

(3.48)

where « are eigenspaces of the Hamiltonian, F, are the associated eigenvalues and
V¥, are vectors in the eigenspace o. The index £ represents a sum over all components
of the constrained operator tensors {Al/\att}, so Ay is a scalar in the space of cluster
indices (it is of course still a matrix in the cluster Hilbert space). The parameters
7k are again chosen to reproduce lattice EVs for constrained operators.

Projecting onto the eigenspaces guarantees that [p, H] = 0. In the Hamiltonian
eigenbasis, the density matrix has a block diagonal form p = @, pa, with the blocks
corresponding to eigenspaces a. In each block « the Hamiltonian has a scalar form,
H, = E,I,, where I, is the identity matrix with dimension dim(«a). Since scalar
matrix commutes with every matrix,

[Ha, pa] =0 (3.49)

The commutator of block matrices is simply a block matrix of commutators of indi-
vidual blocks, so

(H, p] = @P[Ha, pa] = 0 (3.50)

«

The obvious approach might have been to try to modify the weights w(¥) in the

ensemble
P

where |U) are system eigenstates. However, if these eigenstates were obtained nu-
merically, we cannot make sure to get |¥) that obey system symmetries. This means
that tuning w(W¥) can break these symmetries, making it an unsuitable approach.
The approach we described previously respects symmetries by construction and is
independent of the choice of basis for degenerate eigenstates.

3.5 Cluster dynamics

As previously introduced, cluster dynamics are governed by the Lindblad equation

D) i o 01+ ) (Loz - {tipw}) e
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If we are using the reduced density matrix method, the first term on the right-hand
side becomes [Heust, p(t) — po], but the rest of the derivation proceeds completely
analogously. For brevity, we will use H for H_, in the remainder of the section. A
short derivation of Eq. (3.52) is outlined in Appendix A.

For some choices of jump operators nonzero contributions to operator expectation
values start at the second order, so we solve the equations to second order in At

(a2 Lol (3.53)

p(tiv1) = p(t;) + At - prea

+

1
2

dt It

The second derivative can be expanded as follows:

% =i {H, dZ—(tt)} + ;Fi(ﬂ (Lidz—f)@ 2 {dfi(t) Ll })
n Z dI;;t(t) <Lip(t)LZT - % {p(t), LILi})

)

(3.54)

Substituting Eq. (3.52) and Eq. (3.54) into Eq. (3.53) we get

p(tiv1) = p(t;)

AL ( .t +Z( )+ At% t:ti) (Lip(ti)LI—%{p(ti),LILi}»

+ §<At) ( 7 {H, % t:tl] + ;Fz(tz) <Lz$ t:tiLi 5 {a t:tl’LiLZ
(3.55)

We can now make the substitution I'}(t) = T';(¢) + %AtdEl—gt). This is equivalent to
taking the value of I';(¢) at the midpoint of the interval, assuming I';(t) is piecewise
linear. Ignoring terms of order (At)® we arrive at

otinr) = p(ti) + At <_Z [H, p(t +ZF’ ( toL} — % {p(ti),LZLiD)
Ly ( o) o (g5 LTL}))

(3.56)
By introducing the new parameters I, we can solve the differential equation to sec-
ond order without worrying about the parameters’ derivatives. The derivative zt
Eq. (3.56) is calculated as:

% ., =i H ()] + ;F;(ti) (Lip(ti)Lj - % {nlt), LIL,}) (3.57)

Where we have substituted I'; into Eq. (3.52) and discarded the ~ At term, as its
contribution to Eq. (3.56) would be of the order (At)3. To simplify notation, we will
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relabel I", as T';.
Expanding each term in Eq. (3.56) we get:

_; {H> ‘;ﬂ — —{HH, p} +2HpH—izi:Fi ([H, LipL” - % [H, {,0, LILz}])

(3.58)
dp i _ i it 1 7 gt
ZFL - ZFL [H,p] LT+ Ty ( LiL;pLiLf — §Li{p,Lij}Li
i,
(3.59)
——Zr{ LTL} Zr {Hp LTL}——ZFF {Lij},LZTLi}
(3.60)

T T
+3 Zrirj {{p.LiL;} ,LiLi}
17]

We can rewrite Eq. (3.56) in terms of sums over {I';} by introducing the following:

P = At (< [H,p]) + 5 (A1) (= {HH, p} +2HpH) (3.61)

Qi = At (LwLI - % {p7 LILz}) %(At) (—z‘ [H, LipLj} -

: ) (3.62)
? /)
Loap2 i 1 - - Pt
Rij = 5 (&) LiLypLiLi — 5 Li{p, Lij}Li + {L pLi LIL; }
(3.63)

~s{{psin}ain}))

For the reduced density matrix method, coefficients A and B; change, becoming

P=At-(—i[H,p—po]) + %(At)2 (—{HH,p}+2HpH) (3.64)

Qi = At (LmLI - % {p, LZLi}) %(At) <—z’ [H, LZ-pL” +

E[H, {/LL;[LI'}] —iL;i[H,p—po] L] + {[H pl, LIL; })

2 2
(3.65)
Now Eq. (3.56) can be written more compactly as:
p(tivr) = p(ts) + P(t) + > TiQilts) + > _ Tl Ri;(t:) (3.66)
i irj

At the beginning of each step we calculate P, (); and R;;, then we find the appropriate
{I';} such that we match the desired set of expectation values.
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3.5.1 Minimization

We wish to minimize the difference between thermal averages of the set of constrained
operators {Ay} on the full lattice and on our cluster. This amounts to minimizing
the merit function that we define as:

1
r(t;) = Ne > U Ak (ti1) = (A ey (L) (3.67)
k
Where N is the number of operators {Ay}. The average (Aj) . 1S given by
<Ak>clust - Tr(ﬂ ’ Ak) (368)

Substituting Eq. (3.56) in and using linearity of the trace we get

(Ak)erust (ir1) = Tr((p(ts) + P(4:)) Ax) + Z LiTr(Qi(t:) Ax)

+ Y I Te( Ry () Av) (369)

(AR) apust (ti1) = (AR) et (8) + P(8:) + Z TiQi(t:) + Z DT Ry (L) (3.70)

Where M = Tr(MAy,). The merit function 7(¢;) can now be expressed as a function

r?(t»:iz( (A (1) + (A (1) + P8

2
+ E [iQi(t) + E FiFjRij(ti>)
: 0

We perform the minimization numerically using the Nelder-Mead algorithm imple-
mented in the SciPy Python package. 51, 52]

(3.71)

3.6 Choice of jump operators

In general, there is an arbitrary number of possible choices for the set of jump op-
erators. There are however a few guiding principles for making this choice. Firstly,
the solutions to the optimization problem should be unique (this can be checked nu-
merically), so the number of I';’s should match the number of constrained operators
(counting the real and imaginary parts of complex-valued operators separately).

In the Lindblad equation, I'; are non-negative real numbers. To make the opti-
mization problem simpler, we can extend the domain of T'; to the real axis (I'; € R)
by pairing up conjugate operators:

0 — bt 0]+ 3 (000 (B - 5 (£l 00}

(3.72)
+[T30(~T) (LIp(ﬂLi -3 {LLlot }>>

2
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Secondly, the jump operators and their I';’s must respect lattice symmetries. For
example, if sites ¢ and j are equivalent by symmetry and the operator L; = ¢,; is
present, then L; = c¢,; must also be included, with I'; = I';. This reasoning also
applies for spin symmetry (if present).

It is also helpful if the physical meaning of jump operators can be easily intuited.
In the simple case of 2x1 clusters with constraints on X,;; we have one complex
and two purely real constraints (four unknowns). A good starting point for jump
operators are the annihilation (and creation) operators of the single particle single-
site and plane-wave states

{00,07 Co,1, Co,k:(b Cd,k:% }GE{T,i} (373)

where
Co k=0 = C50 + Co,15 CU,I{}:% = Co0 + 1Cq,1

After introducing additional constraints in the form of d;, it might be tempting
to simply add the operators ¢, ;c,; to Eq. (3.73). In practice we find that such choice
leads to problems; at some point in time evolution, there no longer seems to be a
solution to the self-consistency condition, and no choice of {I';} can be found to make
the merit function zero. We interpret this as being related to the operators being
insufficiently independent. To alleviate the problem, we separate the action of ¢, ; by
introducing operators

Ng.iCois (1 —MNsi)Cou (3.74)

The action of these operators is illustrated in Fig. 3.7. After some trial and error
for the other operators, we arrive at the set

{nc_r,(]co,(b Ns1Co,1, (1 - n&,o)ca,(), (1 - 715,1)00,17

3.75
(1 =n6,0)(1 = n5,1)Cok=0,  Cok=7}oecit.l} (3.75)

If we wish to introduce additional non-local density-density constraints (nyn. ),

> (1 — nw)c
C
T> n|iCt
A

Figure 3.7: Effect of ns;c,; and (1 — ns;)c,; on a lattice site.

we use the same jump operators as Eq. (3.75), adding
{A=miz)fe 7 }octrn (3.76)
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For 2x2 clusters with X, ; ; constraints, the jump operators we chose are tailored
to the non-equilibrium protocol B, as this allows us significant savings on computation
time. Since we have translation symmetry along one direction, e.g. the x direction,
the expectation value X, ;rte, i purely real. This means that we need fewer jump
operators (the current operator in the form ¢; + ic; is unnecessary). With reasoning
analogous to the 2x1 X, ; case, we choose

{00,07 Co,15 Co,2, Co,3, Co,0 + Co,1, Co,2 + Co,3,
Co1 T Co2, Co0t Co3y, Co1t 152, Coo+1Cs3, (3.77)

Co,0 + Co1 + Co,2 + Cs,3, CU,O + Co,l + Z.00,2 + icUB}UE{T 1}

with indices {0, 1,2, 3} as labeled on Fig. 3.8.

2 3

0 1

Figure 3.8: A 2x2 cluster in protocol B with labeled sites. The colors denote symmetry
equivalent sites

3.7 Limits in which OQCET becomes exact

OQCET is exact in the atomic limit J = 0, as the problem is reduced to a sum of
individual Hubbard atoms. The solution to the optimization problem is then trivially
{I'i =0 Vi}, as the individual atoms are uncoupled.

In the non-interacting limit U = 0, the situation is more complicated. Even at
U = 0, for the cluster evolution to follow lattice EOM nonzero {I';} are needed. This
coupling introduces correlations into clusters, meaning that Y, ., and W, ., are
nonzero. For X, ./, the connected parts no longer factor into the equations of motion
Eq. (3.27), and they reduce to the exact EOM for the non-interacting problem. This
means that X, ., is exact in this limit. In the lattice EOM for d, (Eq. (3.35)),
the Wo o v term does not vanish since it does not depend on U. The nonzero
contributions from W, ./, ,» mean that the results for the double occupancy are not
exact even at U = 0. However, in this limit the Hamiltonian only depends on X, ;. ,,
giving us exact results for the total energy. Since we are ultimately interested in the
susceptibility xq(t) o< (dng(t)), the fact that d, is not exact does not affect the final
results.

OQCET also becomes exact in the limit of infinite cluster size, as the lattice
EOM become equivalent to the Lindblad equation for the single remaining cluster
with {I'; = 0 Vi}. We note that in this limit, the Lindblad equations of motion
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for all three initial cluster state methods (Section 3.4.2) reduce to the exact solution,
with Pclust = Platts Hclust = Hlatt and [H, pO] =0.

3.8 Post-processing

J=0.25,U=25T=0.7,L=64,n=0.425

A=16 (g=0.39) A=4(q=1.57)
6 —— Raw data 6 —— Raw data
Blackman window applied (x2) Blackman window applied (x2)
51 —— Lorentzian broadening n=0.12 (x5) 51 —— Lorentzian broadening n=0.05 (x5)
+~ -~
5 s ]
9] S
[§) ]
+ 34 + 3
3 3
>g 21 >::' 21
£ S
T T
0 A 0
-1 -1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
w w

Figure 3.9: Comparison of raw and processed data for two values of A\. At shorter
wavelengths the peaks become more dense and smaller broadening is necessary.

The response calculated in OQCET has a discrete spectrum due to the fact that
the both the clusters and the lattice have finite size, meaning that the response does
not decay in time. At long wavelengths the dynamics become slow, and we only have
a response in a narrow range of low frequencies. Because of this, the coupling of
clusters to the environment is weak and we observe only a few sharp peaks in the
response.

The calculations have a finite cutoff time ¢, so a Fourier transform into the
frequency domain will be noisy. To correct for this, we multiply the response with

the Blackman window function before performing the Fourier transform. [53] The
Blackman window is defined as
l— tmaac t— tmax
w(t) = ag — ay cos (ﬂ'—) + ag cos (27r—> (3.78)

with ag = 7938/18608, a; = 9240/18608 and a; = 1430/18608. The cutoff ¢4, is
taken to be long enough such that we remove the noise while preserving discrete peaks
in the spectrum.

When comparing with experimental data, to get the system response to decay we
have to apply additional broadening, as is standard in ED-based methods. To do so,
we perform a convolution of the raw frequency response with the Lorentzian kernel

fw) = —— (3.79)

- [1 + (g)Q]
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where 7 is the broadening width. An example of the post-processing steps can be
seen in Fig. 3.9.
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Chapter 4

Results

All calculations in this chapter were performed for the square-lattice Hubbard model.
All the results are presented in the units of bare half-bandwidth D = 4J = 1. The
delta function is approximated with V' =1 and ¢, = 0.001. The Blackman window
cutoff is chosen to be t,,,, = 200.

4.1 Benchmarks

We check the correctness of our implementation of OQCET by benchmarking the lat-
tice differential equation and the Lindbladian cluster evolution against known results.
In the U = 0 limit, the lattice differential equations should give exact results
for the density. To verify this, we compare the results to bubble calculations which
are in this case numerically exact (Fig. 4.1) [54]. This also serves to show that our
approximation for the delta potential places us in the linear response regime.

U=0.00,T7=0.20, n=0.500

0.50005 -
0.50000 —~— \ [
/ .

0.49995 -

L

0.49980 1 |

0.49975«1‘ |
—— OQCET

0.49970+ \/ Bubble calculation

0 5 10 15 20 25 30
t

Figure 4.1: Comparison of density response between OQCET differential equations
and bubble calculations.

OQCET does not give us exact d, in the U = 0 limit, but if we evolve the double
occupancy by equation Eq. (3.35) with W, ./, = 0 we expect to get exact results.
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For U = 0, the double occupancy is simply the square of the density, d. = (n,)?

which we can calculate from the bubble (Fig. 4.2).

L=8,U=0.00,T=0.20, n=0.500

0.25005 -

/"\
»i' \
0.25000 A e~ — \ [
/ "~
0.24995
r |
0.24990 A |
=) { |
S |
T 0.249854| |
0.249804 | |
| |
0249754 | |
| —— Lattice dy EOM, Wy g,r,r =0
0249707 |/ Bubble calculation
0 5 10 15 20 25 30

t

Figure 4.2: Comparison of double occupancy response between lattice differential
equations and bubble calculations. The bubble double occupancy is given as the
square of the density shown in Fig. 4.1.

To check that the equations for Lindbladian evolution (Section 3.5) have been im-
plemented correctly, we reproduce results for the evolution of a simple two-level sys-
tem with decay shown in [17]. We compare the OQCET implementation of Eq. (3.66)
with code provided in [17] (Fig. 4.3).

The Hamiltonian, initial state and jump operator of the system are given by

0 Q 0 0 _ 01
P R B ) B (L RS
Q=1,E=1,=0.2
1.0 —— |pool OQCET
|Poo| from Ref.
—— |p11| OQCET
0.8 === |p11| from Ref.

0.6 1

density

0.4+

024 | %

0.0 4

Figure 4.3: Comparison of density evolution of a two level system between OQCET
and implementation provided in [47].
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4.2 Comparison with exact diagonalization

The 2x2 Hubbard lattice is small enough to be solvable by exact diagonalization (ED).
While results obtained from it cannot tell us much about long-wavelength response,
it allows us to compare OQCET with numerically exact results. The procedure for
exact diagonalization calculations is outlined in Appendix D.

To verify that the differential equations are correct in the interacting case, we
compare results obtained by exact diagonalization on a 2x2 lattice with results from

our implementation of the equations of motion, given the exact Y, and W,
extracted from ED (Fig. 4.4).

L=2,U=2.50,T=0.85 n=0.500

le—5+5e-1

(noo(t))
|
\

0.09916 t

~ N /

0.09915 JaVAVAl ~

= 0.009141 | J !
;3 0.09913 "
0.09912{ \/

0.09911 Y
0 5 10 15 20 25 30
t

—— Exact diagonalization
Second order DE with exact Yy r,r, Wo, o, r, ¢, dt=0.1

Figure 4.4: Comparison of density and double occupancy evolution for an interacting
2x2 lattice.

When using 2x1 clusters, Y, , (t) is truncated to its nearest-neighbor components.
To check the validity of this approximation, we compare results for evolving X, , ,» and
d, equations of motion using truncated Y, , () with exact results (Figs. 4.5 and 4.6).
We see that the data are qualitatively similar, while the Y,,, = 0 approximation
gives significantly worse results. We see that the next-nearest neighbor Y is not
always smaller than the nearest neighbor Y, but it’s effect on the EOM is apparently
significantly less important.
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Figure 4.5: Values of nearest and next-nearest neighbor Y, ., (t) on a 2x2 lattice
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Figure 4.6: Comparison of expectation values between exact diagonalization results
and results using truncated Y, ,,/(t) on a 2x2 lattice. X, ,, and d, are obtained from
the lattice equations of motion.

42



4.3 Initial cluster state method

In Section 3.4.2 we introduced three methods for preparing the initial density matrix
and the cluster Hamiltonian: using a reduced density matrix with additional envi-
ronment coupling needed to ensure stationarity in absence of external fields, using a
modified Hamiltonian with a thermal state, and using a density matrix with a mod-
ified Boltzmann ensemble. We will refer to these three methods as reduced, thermal
and weighted.

In Fig. 4.7 we compare the three methods on a 2x2 lattice, which allows us to
benchmark them against numerically exact results obtained from ED. We see that
Xq(w) does not significantly depend on the choice of method. In the following sections,
we will use the weighted method to prepare initial states. We also see that the OQCET
spectrum is discrete with fewer peaks than the ED case. The discrete spectrum is an
artifact of finite cluster size, as discussed in Section 3.8.

L=2,U=2.5,T=0.85 n=0.500

14 — FED
Reduced

—— Weighted

—— Thermal

o ] J\
] |

12 A

—Imyxq(w) + const

0.0 0.5 1.0 1.5 2.0 2.5 3.0
w

Figure 4.7: —Imygq(w) for different initial state schemes. (waiting for reduced matrix
scheme results)

4.4 Effect of constraints and cluster size

Cluster evolution in OQCET is constrained by operator expectation values {(A,)}.
The choice of operators {/AlA} is arbitrary to a degree—to get charge response it is
necessary to place a constraint on the density (n;(t)). If we want conservation of
energy in our theory it is necessary to include constraints on both X, ;; and d;. In
Fig. 4.8 we compare the charge response for three sets of constrained operators. In
the first, we only constrain X, ;;. For the second, we constrain both X,;; and d;.
We see that the latter choice introduces an additional peak in the spectrum. Finally,
we include additional constraints on the nearest neighbor density-density correlators
NerNo r+u, DUt this does not qualitatively change the spectrum. These operators are
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Figure 4.8: —Imyq(w) for different cluster sizes and choices of constrained operators.

not explicitly present as terms in the Hamiltonian, so they may have a less pronounced
effect on system dynamics.

U=1.88,T=0.80,n=0.412
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Figure 4.9: Density response for different 2x2 overlap schemes.

To see the effect of cluster size on the charge response, we compare results for
2x1 and 2x2 clusters with constraints on X, ; ;. There is an additional subtlety when
using 2x2 clusters. Nearest-neighbor bonds will generally belong to two (overlapping)
2x2 clusters which might not be equivalent. When using cluster results for Y, ,/(w)
and W, », on a given bond to close the lattice EOM, the question is which value to
use— Yy, (w) and W, o v on the given bond might be different when computed from
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two clusters to which this bond belongs. We apply two different methods to resolve
this ambiguity in two ways—the nested cluster scheme (explained in Section 2.2.2),
and a scheme where we average the values of Y, , /(w) and W, , » from overlapping
clusters. If we try to apply a nested cluster scheme subtracting contributions from
2x1 clusters, the system response very quickly diverges (Fig. 4.9), giving unphysical
results. A possible reason for this is that Y,,,(w) has a discrete spectrum, the
contributions from the 2x2 and 2x1 clusters do not cancel out properly; in general,
subtracting two discrete spectra with peaks whose positions do not perfectly match
results in a non-causal spectrum. This non-causality might drive the system further
and further out of equilibrium. If instead we average contributions from overlapping
2x2 clusters, we get a well behaved response (Figs. 4.8 and 4.9).

4.5 Comparison of non-equilibrium protocols

We see that protocols A and B give qualitatively similar results. Away from half-
filling, protocol A often diverges, whereas B gives good results. Protocol B requires
fewer clusters and preserves more symmetries, which is likely what makes it more
stable. Since embedded cluster theories break momentum conservation (as discussed
in Section 3.1), we expect to see the response differ somewhat with the choice of
protocol.

After applying Lorentzian broadening, the two protocols give nearly identical re-
sults. This tells us that the initial response Imyq(¢) is the same for both protocols.

U=2.5,T=0.851=8(9q=0.79), n=0.500
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§ 1.25 4 F\ —== Protocol B, Lorentzian broadening n=0.12 (x5)
+ |
§ 1.00 A ,"t )L
50'75("‘17 i R B LR
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0.00 . : - r —
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Figure 4.10: ng(t) and —Imyq(w) for non-equilibrium protocols.
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4.6 Comparison with other numerical methods

In Fig. 4.11 we compare results for Imyq(w) between several methods. When compar-
ing OQCET to the equations of motion Eq. (3.27) with Y, ,» = 0 we see qualitatively
different results: in OQCET we see renormalization of the lower band and the pres-
ence of a Hubbard band at w =~ U. The DMFT results only see the Hubbard band,
which is expected, as at T' = 0.02 the system is in a Mott insulating state. At T = 0.85
the Mott gap has melted, which explains the presence of the lower band in OQCET.
To obtain the entire spectrum, the OQCET results in Fig. 4.11 were obtained by
protocol A.

RPA, T=0.02 ' DMFT, T=0.02

cocccooc
CCCEOC
- W (5K

0.075
0.050

0.025

0.000

Figure 4.11: —2Imyq(w) at half filling. RPA and DMFT results are taken from [55].
EOM refers to equations of motion Eq. (3.27) with connected parts set to zero.

The charge compressibility x. = dn/0u can be obtained as the limit of the sus-
ceptibility
Xe = — lim xq(w =0) (4.2)

The compressibility x. is a static quantity, so it can be calculated numerically exactly
by Monte Carlo methods such as DQMC. In Fig. 4.12 we see good agreement between
OQCET and DQMC results. OQCET overestimates x. somewhat, but the results
become better with increasing temperature, as is expected. Since there is a finite
cutoff to our signal, the raw data is oscillatory (Fig. 4.12a) which introduces error to
our calculation of y.. The value of y. in Fig. 4.12b is taken from the converged value
of Blackman window yq4(w = 0) at finite q. The error is estimated from the width of
the oscillations in the raw data.

4.7 Comparison with experimental results

In the experiment performed by Brown et al. [27] °Li atoms are placed in an optical
lattice simulating the Hubbard model with an external sinusoidal potential

H— H+ V/drsin (xq")n (r)0(—t) (4.3)
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Figure 4.12: (a) Real part of charge susceptibility for different values of q (raw data).
(b) Comparison of x.(T) between OQCET, numerically exact DQMC results, and
exact diagonalization results in the atomic limit. DQMOC results have been taken
from [27]

After first thermalizing the system in the external potential, the potential is switched
off at t = 0, and the response in the experimental protocol is given by

nag(t) = / dtxg(t =)0 »

= / Xq(t)dt'
t

Certain assumptions about hydrodynamic behavior at the longest length and time
scales yield an ansatz for the charge susceptibility at long wavelengths and low fre-

quencies [27, 54|

B Xe

] w  w?
q%D q2 DT’

Xa(w) (4.5)
where Y. is the charge compressibility, D is the diffusion constant and I' is the mo-
mentum relaxation rate. The experiment was performed for a range of temperatures
and wavelengths of the external potential, and the response was fit to the ansatz
Eq. (4.4) to obtain the parameters x., D and I'. The experiment found excellent
agreement between experimental data and the hydrodynamic ansatz.

The raw experimental data is not available, so OQCET results shown in Figs. 4.13
and 4.14 are compared with the hydrodynamic ansatz Eq. (4.5) using x., D and I'
extracted from experiment. The trends with wavelength and temperature in OQCET
are in qualitative agreement with the hydrodynamic theory. The Hubbard peak at
w = U present in OQCET cannot be described by the ansatz. In the time domain, this
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peak corresponds to high frequency oscillations that cannot be seen in the experiment
due to the finite time resolution and relatively large error bars. However, this peak
is expected to be present, as it can be seen in the optical conductivity spectrum [56]
and the spectral function [26]. To get results for individual wavelengths, the OQCET
data in Figs. 4.12 to 4.14 was obtained using protocol B.
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Figure 4.13: —Imy(w) and experimental protocol response for different values of the
wavelength A (wavevector ¢).
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Chapter 5

Conclusions

We have formulated, developed and tested OQCET, an embedded cluster method,
based on the exact solution for Lindbladian dynamics of small, open quantum clusters.
OQCET becomes formally exact in the atomic, noninteracting and infinite cluster size
limits, ensures conservation laws, allows computations for large lattices and avoids
analytical continuation. Different versions of the method can be formulated depending
on the specifics of the impurity and lattice equations (the choice of constrained and
jump operators, the initial density matrix and the impurity Hamiltonian, choice of
non-equilibrium protocol). We document the differences in the results obtained by
the different versions of the method and identify the most optimal choices for the
computation of the quantity of our interest, which is the charge-charge correlation
function.

As expected, we find that finite lattice and cluster size necessarily yield a discrete
charge-fluctuation spectrum, which is especially evident at long wavelengths. Discrete
spectrum means a non-decaying response in real time. Our calculation is formulated
in real-time and can only ever be performed up to a finite time; a Fourier transform of
a non-decaying function of time given on a finite interval leads to oscillatory artifacts
in the frequency domain. In practice, we apply the Blackman window when perform-
ing the Fourier transform from time to frequency and obtain precise positions and
amplitudes of the peaks. To compare with experimental results, we need to employ
additional Lorentzian broadening, as is standard in ED-based methods. We are able
to probe large lattices and response at wavelengths of order 20, which is not possible
with any straightforward application of ED (or even FTLM). The qualitative agree-
ment with the experiment is solid, which is evidence for the validity of both OQCET
and the effective hydrodynamic theory proposed in [27].

In the future we aim to apply OQCET with 2x2 clusters including constraints
to the double occupancy. We also plan to use a non-equilibrium protocol involving
a pulse of vector potential (as outlined in [25]|) to probe the current response and
calculate the optical conductivity.
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Appendix A

Derivation of the Lindblad equation

We derive the Lindblad equation used in cluster evolution from microscopic dynamics,
following [17, 57].

We start with a total system with a Hilbert space Hr, dividing into the system
of interest represented by H and the environment Hg (Fig. A.1).

Total System
(Hr,pr, Hr)

System
(H,p,H)

Environment
(HEe, pE, HE)

Figure A.1: A schematic representation of the system and environment. [17]

The evolution of the total density matrix is given by the von Neumann equation:

dpr
dt
The total Hamiltonian can be decomposed as Hr = Hs®@1gp+1s® Hg+aHy, with o

representing the strength of the system-environment coupling. The interaction term
can be written as

= _i[HT7PT<t)] (A-l)

H; = Z S ® E; (A.2)

with S; € B(H) and E; € B(Hg) (B(#H) represents the space of bounded linear
operators on H).
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For the following derivation we will work in the interaction picture. Operators
evolve with the system and environment Hamiltonians, while the density matrix
evolves by the interaction Hamiltonian:

O(t) _ ei(HJrHE)tOeii(HJrHE)t (A3)
P — il 1), (0] (A.4)

Integrating the equation we get

prlt) = pr(0) — o / ds(H (s). pr(s) (A5)
Substituting Eq. (A.5) into Eq. (A.4)

dpr(t)
dt

t
— —ialHi(t), pr(0)] — a? / ds[H (1), [Hi(s), pr(s)]]  (A.6)
0
Repeating the procedure once more

dpr(t)
dt

— —ialHi(t), pr(0)] - ? / ds[H (1), [Hi(s), pr (D] + O(a®) (A7)

We now have no dependence on the previous states of pr(t) in time up to order o?.
We make the approximation that the system is weakly coupled to the environment,
and discard orders ~ o and above, leaving us with the equation of motion

dpgt(t) = —ia[H;(t), pr(0)] — a2/0 ds[H(t), [Hi(s), pr(t)]] (A.8)

To obtain the equation of motion for our system, we trace out the environment degrees
of freedom

= —iaTrg[H;(t), pr(0)] — 042/() dsTrp [Hi(t), [H(s), pr(t)]]
(A9)

The system density matrix still depends on the total density matrix, so we have
to make further approximations. We assume that initially, at ¢ = 0 the system
and environment are decoupled, i.e. the total density matrix is separable, pr(0) =
p(0) ® pr(0). We also take the initial environment state to be thermal, pg(0) =
exp(—BHEg)/Z.

With these assumptions we can substitute Eq. (A.2) into the linear-in-a term of
Eq. (AL9)
Trp[Hi(t), pr(0)] = > (Si(t)p(0) Trp[E;(t) pr(0)] — p(0)Si(t) Trp[pr(0) Ei(t)])
Z (A.10)
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We can set this term to zero by rewriting our total Hamiltonian Hy such that (E;) =
Trg[pp(0)E;] = 0. Our new total Hamiltonian is then Hy = H +a ) . (E;)S; + Hp +
aH], where H = ). S; ® (E; — (E;)). This reduces Eq. (A.9) to

aelt) _ o / dsTeg[H, (1), [Hi (5), pr ()] (A11)

To extract a closed equation for p(t) we have to make further approximations. If we
take that the environment correlation and relaxation times are much smaller than
the characteristic system time scale, we can assume the environment is always in a
thermal state and is decoupled from our system, pr(t) = p(t) ® pr(0). From the
above equation we then get

d@—? = /O dsTrp[H (1), [Hi(s), p(t) @ pr(0)]] (A12)

The kernel of integration is generally fast-decaying, so we can extend the domain of
integration to infinity. A change of the integral variable s — t—s gives us the Redfield

equation
dp(t)

L. / " dsTep[H (0), [Hi(t — 5), p(t) © p5(0)] (A.13)

This mapping does not guarantee positivity of the density matrix. To ensure a positive
mapping we need to perform the rotating-wave approximation. To do so, we look at
the spectrum of the superoperator HgAg = [Hg, As] in the Schrodinger picture,
denoted by the subscript S. We write the system operators from Eq. (A.2) in the H
eigenbasis:

SiS = Z Sis(w) (A14)
where S;s(w) are such that
HSis(w) = —wSis(w) (A.15)

In the interaction picture, following Eq. (A.3), we write H;(t) as
Hz(t) _ ei(H+HE)t (Z S @ EiS) e—z‘(H-i-HE)t (A16)
in the H eigenbasis the above becomes

Hi(t) = Z e Sis(w) ® Ei(t) = ) e'Ski(w) @ El(t) (A.17)

2w
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We expand the commutators in Eq. (A.13)

dfc’l_iﬂ — o [/OOO dsTrp[H (t)H (t — s)(p(t) @ pg(0))]

— /OO dsTrp[H;(t)(p(t) @ pp(0))H(t — 5)]
0 (A.18)

_ / s TeslHy(t — $)(p(t) © pis(0)) Hy ()]

— /000 dsTre[(p(t) ® pe(0))H(t — s)H(t))

We now write H;(t — s) in terms of S;(w) and H;(¢) in terms of S;(w’). Here we will
show the algebra for the first term above, the rest are computed analogously.

/0 " ST [Hi () Hi(t — 9)(p(t) © pi(0))] =

_ /0 h dsTrp [ > e(S(w) @ Bl () (S5(w) @ Ej(t — 5))(p(t) @ pr(0))

1,J,0,w"

= > T [ | ases i, - s)pE<o>} ¢ (W) S s () (1)

1,7,w,w’ 0
= > T [ / dse™* B} (1) B, (t — s>pE<o>] &G () Sy (w)p(E)
1,j,w,w’ 0
(A.19)
Combining all four terms we get
dp t i(w —w /
P = 3 () [Sys(n), 815
it (A.20)
eI W) [855(0)p0515)] )
where
Aij(w) = Trg { / dse™* E} (t)E;(t — s)pE(O)}
0
= Trg {/ dseiwse_iHEsEjSeiHESEjSpE(0)] (A.21)
0

_ /0 " dse (Bl(5)5,(0))

We expect the terms with |w — w'| > a? to oscillate faster than the characteristic
times scale of the system, so in the low-coupling approximation we only take the
resonant terms w = w’ and we get

d’;—(tt) = > (A5 [Sis@)o(t), Sfs(@)| + A5i(w) |Sisw), p()STs()|)  (A.22)

2,7,
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We can decompose A; ; into Hermitian and non-Hermitian parts to obtain the Hamil-
tonian and non-Hamiltonian dynamics

Tij = — % (Agj(w) = Aj;(w))
Yij = Nij(w) +A:j(w)

(A.23)

Returning to the Schrédinger picture (and omitting the S subscript onwards) we arrive
at the

d[c)zgs) —i[H + Hys, p()] + ) 75w ( (OSI(w) - %{SZT(“)SJM”)@})

w,1,7

(A.24)

where Hig = 3, . 7,51 (w)S;(w) is the Lamb shift Hamiltonian, which renormalizes

the energy levels of the system. Since <E;r (S)Ej<0)> is positive, v;; is also positive,
E

’L’J7w

and it can be diagonalized by a transformation 7

M(w) 0
wyrt=[ 0  Dyw) - (A.25)

Rewriting the equation in its diagonal form we get:
dp(t) _ f Loy
U = i+ Hus 0]+ ST ) (L@ - 3 {Hwn e, o)
(A.26)

w) = ZleSl(w) (A.27)
I

where

Since we are free to choose the environment coupling operators in OQCET, we can
choose a real A;;. This means the 7;; term is zero, and the Lamb shift contribution
vanishes. If we then rewrite the sums over ¢ and w as one sum over ¢ we get the
well-known form of the Lindblad equation

di)isf ) )+ ZF ( % {LILi,p(t)D (A.28)

This is the form that we use for cluster evolution in OQCET.
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Appendix B

Energy and particle number
conservation

To show that OQCET conserves particle number N = ZU’T Xory and energy E =
(H), we will show that 0;N and 0, F are zero for any values of Y, y/, W, o v extracted
from the clusters. Starting from equations Eq. (3.27) conservation of total particle
number is easy to show

{M\f - Zater’r — _ZJ Z (Xcr,r—u,r - Xcr,r,r+u) (Bl)

Making the substitution r — r — u in the second term we see that the terms cancel
out and we have

To show conservation of energy we will prove
OE =-J 0Xoxatu— 1Y OXore +U D Ode =0 (B.3)

The second term is zero from the conservation of particle number. From Eq. (3.27)

we get
Z at)(a,r,rJru - Z [ <_J Z (Xa,rfu’,rJru - Xa,r,r+u+u’>
u/

r,u,o r,u,c

(B.4)
+ U (Xa,r,r - X&,r-ﬁ-u,r—f—u) Xa,r,r-i—u + Ya,r,r+u>

By substituting r — r — u’ in the term )
out, leaving

Z at)(o',r,rJru = ZU Z ((X&,r,r - X&,r+u,r+u) Xa,r,r+u + Ya,r,r+u> (BS)

r,u,o r,u,o

Xsrr+utw the hopping terms cancel

!
r,u,u’,o

A further substitution r + u — r, followed by substituting u — —u in the term
me Xz r+urtuXorriu gives us the form

Z at)(a,r,r+u = ZU Z ((Xﬁ,r,rJru - X&,r+u,r) Xa,r,r + Ycr,r,r+u) (B6)

r,u,o r,u,c
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Substituting Eq. (B.6) and Eq. (3.35) into Eq. (B.3)

0.E = —zJUZ ( ”,N+2Ym+u>

o,u

From Eq. (3.33), Wi | ,r is given as

0rs0e = (5 (ovatr =) i

u
conn
1 At
+nT,r Ci,r+uclyr CJ,,rclnI'-‘rll

which can be written as
conn
WT»LP»I‘ = Z< (Ci,rJruCU,r - Cl,rca,r—&-u) no,r>

u,o

If we introduce . conn
Wcr,r,u = <<CLr+uca,r - Cl-7rca,r+u> n&,r>
the above can be written as
Wigre =Y Worn

We can then write Eq. (B.7) as

O = ——zJUZ ( Woru+ Wortu, u+Yarr+u+Yar+ur>

g,r,u

(B.9)

(B.10)

(B.11)

(B.12)

Vzhere we have made the substitutions r — r + u and u — —u to obtain the second
W and Y terms. Applying Egs. (B.10) and (3.26) we write out the terms in brackets

conn
T T _ T
Wcr,r,u + Wa,r—l—u,—u + Ycr,r,r—l—u + Ycr,r—i—u,r - <(Co'7r+uco',l' - CZ-J-CO',I'—"-U n&,r

T T conn
+ <<Ca rCor+u — Ca,r+uco,r> na,r+u>

conn
Ca rccr I'Co' rca,r+u>

s
(o
(e
(@

conn
C5xCo,rCo r+ucar>

+

conn
r+uCa, r+uca rCo, r+u>

conn
r+u€s, r+uco r+uCo, r>

(B.13)

Operators with opposite spins commute, so all the terms in the above equation cancel

out and
Wo,r,u + Wa,r—i—u,—u + Yo,r,r—i—u + Yo,r+u,r = O
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Since I/T{U,mu, Y, rrtu lie on the same bond (in the same cluster), the identity is valid
for all W,y u, Yorrtu calculated on clusters. This finally leads us to

which we set out to prove.
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Appendix C

Numerical Matsubara Fourier
transform

The Matsubara Green’s function is defined as

GY (1) = ~(Tre(r)c'(0) (C.1)
It can be shown that it is antiperiodic for fermions,

GM(t) = -GM(1 + B) (C.2)

As a consequence, its Fourier transform is discrete, and G (7) can be written as a
sum of Matsubara frequencies:

1 <&
GM(r) = 3 > e GM (iwy,) (C.3)
I
GM(z'wn):/O dre™n"GM (1) (C4)
o, = w (C.5)

From the form of Eq. (C.3), we see that the double occupancy from Eq. (3.40) can
be calculated as the Fourier transform of (8/U) )", Gx/(iw,)Xk(iw,) at time 7 = 0.
A high frequency (Laurent) expansion of GM (iw,,) demonstrates the issue we would
run into if we were to naively try the Fourier transform Eq. (C.3) numerically:
a b c d

G" (iwy,) = o + (i) + (i) + (i) + O((iw,)°) , a,b,e,de R (C.6)

The ﬁ term is what gives rise to the discontinuity of G at 7 = 0, and because
of its very slow decay, it is difficult to capture numerically. To address this, we fit
the first few parameters of the Laurent expansion and do these Fourier transforms
analytically. The remainder now decays much more rapidly, and its Fourier transform
can be computed numerically to a high degree of precision.
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The first step is to determine the coefficients a,b,c,d in Eq. (C.6). We first
notice that the odd and even powers give imaginary and real contributions to G,
respectively. We fit the tails of G (iw, ) with the cutoff w, > 20 using a least-squares

method. The real and imaginary parts are fit separately with functions
b d
fRe = + ;
(twn)?  (iwy)* (C.7)
a c

fim = = +

iwy,  (iwy)?

Imz

Av2

Av2

e L

Rez

Av2

Figure C.1: Keyhole contour for complex integration. Black crosses are poles of ¢(z),
the blue cross represents the pole of h(z).

The analytical Fourier transform of 1/(iw,,)! can be computed by integration along
the keyhole contour C shown in Fig. C.1 [58]

I= %Ch(z)g(z)dz (C.8)

where
1 e—ZT
h(z) = E 1 (Cg)
o(z) = nsle) = o

To simplify calculation, we restrict the domain of 7 to 0 < 7 < . The full function
can easily be recovered by Eq. (C.2).

The contour encloses simple poles of g(z) at the Matsubara frequencies. The
integral I can be evaluated by Cauchy’s residue theorem

I=2miY Res(h(2)g(z)) (C.10)

- Z=1iwn
iwn,
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Where

(p—1)
Res(f(2)] = lim 2

e~ oD G (A R) (C.11)

is the residue for a pole of order p at z = z;. for a simple pole (p = 1) the expression
simplifies to

Res((2)| __ = Jim (= = 20(2) (C.12)
h(iw,) is regular for all n, so
Res(h(2)g(z)) i T h(iwn,)Res(g(2)) o (C.13)

The residue of g(z) is easily computed

. . B
Res(g(z)) = im (2 — an)m
i — 1
n—0 eBntiwn) 4 1
_ Bn (C.14)
n—0 —6577 + 1
— i G
-0 —1 —fn+1
-1

where we have used that e’ = —1, which follows directly from Eq. (C.5). This
gives us

I = : (C.15)

Next we wish to show that the integral over the outer circle of the contour vanishes
as the outer radius goes to infinity (i.e. that as |z] — oo, g(z)h(z) goes to zero faster
than |z|71). For Rez > 0, g(2)h(z) e #I" while when Rez < 0, g(2)h(z) e/*(7=5).
Since 0 < 7 < (3, the integrand vanishes exponentialy as |z| — oo. This means the
only nonzero contribution to the integral is along the small circular contour around
z = 0. This can be evaluated by the residue theorem, this time enclosing only the
pole at z = 0 (with an additional minus sign, as the contour is oriented clockwise)

I = —2miRes(h(2)g(2))

= —2miRes(h(2)g(2))| _

LT 5
B 2t efr4171=0 (C.16)

. 1 ‘ d(l—l) . e~ 7T
= 2T I g (Z AP 1 1)

= —2miRes(

. 1 i d(lfl) e~ 2T
= (=1 250 dz=D) (6/82 - 1)
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Equating Eq. (C.15) and Eq. (C.16)

—iWn T 1 d(l 1) e~ 3T
lim
52 (iwn). l—l).z—>0dzl ) (eﬂz—l—l)

1 =1\ [ d* )\ [di7'7R 1 (C17)
T hi%;( k ) (ﬁe ) (dz(l—l—k) eﬁz+1)
The n-th derivative of 1/(e” + 1) can be written as a sum
dwn ew + 1 Z m 1 + ew (1 L pwym+1 (018)

where C]" are coeflicients to be determined. From the above definition, it directly
follows that C§ = 1 (taking m = 0, the sum only has one term). Taking the derivative
of both sides we get

dn+1 1 n d mw
=N e
dwn+1 ew + 1 — dn (1 + ew)erl

n+1

em (m + 1)€(m+1)w
cmto_ — cr - 1
mZ_O m (1 + ew m+1 Z ( 1 + ew m+1 (1 + 6w)m-i—Q (C 9)
n+1 emw emw n+1 emw
Cn-i-l— Cn - -
n;) m (1 + €w>m+1 Z m (1 + ew)m+1 Z mC, (1 + ew)m+1

where we have made the substitution m — m—+1 in the second term. Equating terms
in the sum we get the recurrence relations

C”“—mC"—mCZ}Z 1) 0<m<n
n+1 __ m (020)
Cn+1 - (TL + 1)Cn

Introducing S} = (7711)!m Cr, we see that S)! satisfy the recursion relation for Stirling
numbers of the second kind,

Sl — St + S (C.21)

In the literature, Stirling numbers of the second kind .S}, are usually written as {:I},
and we will employ that notation onwards. Performing the substitution w = Sz, by

the chain rule we have - = - and Eq. (C.18) now reads
dr 1 a e
— =p" ! P EEE—— C.22
dzref? +1 =b T;]( 1)m! {m}(l—i—eZ)Wrl ( )
Finally, substituting this equation into Eq. (C.17) and using (}) = ﬁ
; -1 1-1—k
1 e=tnT [—1—k) (=1)F"1Fml |
= —_— = C.23
B & (iw,)! kZ:O n;) { m }2m+1k!(l 1w (C-23)



Defining F (( ) =13 e Fourier transforms of the first four terms in
twn B Luiwn (iwn)
the Laurent series read as follows:

()=
< M” ) e (C.24)
i) -

< (B — )

i) (-2

The remainder G (iw,) we calculate by simple subtraction

.bl»—*.-l;

éM(z'wn):GM(z'wn)—(iJr .b +— 4 ,d 4) (C.25)

iwn  (iwy)?  (iwy)®  (iwy)

Eq. (C.3) can be rewritten as in terms of the discrete Fourier transform:

M 1 Y —iwnT M [
G(ﬂ:EE:e"G(WQ

N (C.26)

1 .z i In AM -
e ing Z N z27anGM(an)
B n=—N

where we have truncated the Matsubara frequencies to the first N terms. This gives
us GM(71) at 2N equally spaced points on the interval [0, 3). Finally, summing all the
terms we obtain G (r)

M) =240

24(

2r = 8)+ % (o7 - 72) + 15 (= 36774 18°) 4 6¥ () (cm
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Appendix D

Exact diagonalization

To benchmark the results obtained from OQCET we can use numerically exact results
obtained by exact diagonalization (ED). ED is limited to very small systems (we use a
2x2 cluster, which has very pronounced finite-size effects) but it nevertheless provides
us with a good starting point for benchmarking.

We first diagonalize the unperturbed Hamiltonian H. In its eigenbasis, the Hamil-

tonian can be expressed as:
Hging = P~ Hyoa P (D.1)

where Hioq is the matrix representing the Hamiltonian in the Fock basis. We start

from a thermal state )

p= 7 3P (] (D2)
v

We introduce a perturbation o II(¢,t,, V') (Eq. (3.17)) which is piecewise constant

in time. The next step is to diagonalize the perturbed Hamiltonian H’ and obtain its

eigenstates |x).

Hc/iiag = PlilHtiockPI (D3)
The eigenstates |x) evolve as
X (1)) = e [x(0)) (D.4)
From this it follows that the density operator evolves as
1 —i(Ex—E,
plt) = 5 D7 e BB ay [x(0) (X'(0) (D5)
XX

where |x(0)) are eigenstates of H’. An operator A transforms under a change of basis

as follows:
A =M 1TAM (D.6)

Therefore, to obtain our density matrix in the perturbed Hamiltonian eigenspace, we
must first transform from the H eigenspace to the fock space by the change of basis
matrix P~!, then apply the change of basis by P'.

Pfock = PPHPA

D.7
PH' = P/_lpfockpl ( )
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Once we have reached t,, the perturbation switches off and we once again have
our unperturbed Hamiltonian H. We now transform back into the H eigenspace, and
p(t) is given as

pt) = - D e BB ayy U (1)) (V) >t (D.8)

R%
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