DEEP INELASTIC SCATTERING BY QUANTUM LIQUIDS

BY
ALEKSANDAR BELIC

Dipl., University of Belgrade, 1985
M.S., University of Hlinois, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1992

Urbana, Hlinois



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JANUARY 1992

WE HEREBY RECOMMEND THAT THE THESIS BY

ALEKSANDAR BELIC

ENTITLED______ DEEP INELASTIC SCATTERING

BY QUANTUM LIQUIDS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY .

VR Ao pDe_

Directdr of Thesis Research

& C b

Head of Department

Committee on Final Examinationy

V/K oz”
/ m M@C{ ﬂ
71 S5k, |

¥ Required for doctor’s degree but not for master’s.

0-517




DEEP INELASTIC SCATTERING BY QUANTUM LIQUIDS

Aleksandar Beli¢, Ph. D.
Department of Physics
University of Illinois at Urbana-Champaign, 1992
Vijay R. Pandharipande, Advisor

The impulse approximation and the related concept of the scaling of the dynamic
structure function S(k,w) at large k¥ and w have played a dominant role in the analysis
of the deep inelastic neutron scattering by quantum liquids. These concepts are reviewed
along with the prevalent approximations to treat final state interactions neglected in the
impulse approximation.

At large momentum transfers it is convenient to express the dynamic structure function
S(k,w) as the sum of a part symmetric about w = k?/2m and an antisymmetric part.
The latter is zero in the impulse approximation, and its leading contribution is given by
(m/k)*J1(y), where y = (m/k)(w — k%/2m) is the usual scaling variable. The integrals of
J1(y), weighted with y, y* and y° in liquid “He are calculated using sum-rules. Polynomial
expansions are used to construct models of J1(y) which appear to be in qualitative agreement
with the observed antisymmetric part at large values of k.

Next, we study the dynamic structure function S(k,w) of Bose liquids in the asymptotic
limit k,w — oo at constant y, using the orthogonal correlated basis of Feynman phonon
states. This approach has been traditionally and successfuily used to study S(k,w) at small
k,w, and it appears possible to develop it further to obtain a unified theory of S(k,w) at all k
and w. In this thesis, we prove within this approach that S(k,w) scales exactly in the k,w —
oo limit, as is well known. It is also shown that, within a very good approximation, the
scaling function J(y) is determined solely by the static structure function S(g) of the liquid.
In contrast, the traditional approach to determining S(k,w) at large k,w is based on the

impulse approximation; J74(y) is solely determined by the momentum distribution »(g) of



the particles in the liquid. In weakly interacting systems, where the impulse approximation
is exact, the J(y) calculated from the Feynman phonon basis is identical to Jra(y). The
J(y) of liquid *He is calculated using this theory and the experimental S(g). It is quite
similar to the Jy4(y) obtained from the theoretical n(g) of liquid “He. A number of technical
developments in orthogonal correlated basis theories are also reported.

Finally, we develop the orthogonal correlated basis formalism that is suitable for study-
ing the dynamic structure function S(k,w) of Fermi liquids in the asymptotic limit k,w — oo

at constant y.
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Chapter 1

Introduction

In the last few years there has been a growing interest in the possibilities for experimen-
tal determination of single-particle momentum distributions in non-relativistic many-body
systems by means of inelastic neutron scattering at large momentum transfers’~!!. This
interest was generated by the advent of pulsed-neutron sources that made possible measure-
ments with substantially larger momentum transfers then before. For example, in the case
of liquid “He a momentum transfer of 20-304 " was achieved!, which is much larger than
the rms momentum of atoms in the liquid of ~ 16471, If it is assumed that at such large
momentum transfers the potentials between the atoms in the liquid are negligible compared
to the large kinetic energy of the struck atom, the deep inelastic response is completely de-
termined by the initial single-particle momentum distribution. This assumption is known
as the impulse approximation (IA)'?'3, At large momentum transfers k, the IA response
S(k,w) exhibits the phenomenon of y-scaling, i.e. the combination %S(k,w) depends solely
upon the scaling variable!? y = 2(w — -2'%) and not separately on upon k and w. However,
the y-scaling property of the deep inelastic response is more general than the IA in the sense
that it may hold even when the IA fails.

If the IA is valid, the momentum distribution can be extracted from the deep inelastic



response in a model-independent way. This gives rise to the exciting possibility that the
momentum distribution is a directly observable quantity. If this were true not only would we
be able to check the accuracy of our calculations and more reliably determine interparticle
potentials, but also to test fundamental physical ideas such as bose condensation or the
existence of the sharp fermi surface!

Unfortunately, in the most interesting cases, such as ‘He, 3He, and nuclear matter,
there is a strong repulsive short-ranged component in the interparticle potential which is
not negligible compared to the recoil kinetic energy even for the large momentum transfers
achieved in recent experiments. Thus the IA must be corrected to account for interaction of
the recoiling particle with the surrounding medium. These corrections are called final state
interaction (FSI) corrections!3-32, Clearly, it would be desirable to develop an analytic,
first-principles theory of the dynamic structure function at large momentum transfers, in
order to understand the FSI. In this thesis we develop such a theory based on the orthog-
onal correlated basis formalism3433, and apply it to the case of a quantum liquid at zero
temperature.

The thesis is organized as follows. In Ch.2 we introduce the formalism of deep inelastic
scattering, the concept of y-scaling, and IA, and then review various proposed theories of
FSI. In Ch.3 we show how the leading antisymmetric correction to the asymptotic dynamic
structure function (DSF) S(k,w) can be estimated using sum rules®®. In Ch.4 the deep
inelastic response of the bose liquid at zero temperature is formulated®” in terms of orthog-
onal correlated basis theory, which is then used to prove the y-scaling in that case. Ch.5
deals with the explicit calculation®” of the scaling function of the bose liquid at T = 0, and
of the “He in particular. Finally, Ch.6 extends the formalism developed in Ch.4 to the case

of a zero temperature fermi liquid, including the proof of y-scaling.3®



Chapter 2

Basic notions of non-relativistic

deep inelastic scattering

In this chapter we will formally develop concepts of deep inelastic scattering, y-scaling,

IA and review existing theories of FSI.

2.1 Scattering experiments

Inelastic scattering experiments have been a very useful tool in our efforts to investigate
and understand properties of the many-body systems. In a typical scattering experiment
the bound state of IV interacting particles, i.e. the target, is bombarded with probes which,
during the scattering process, transfer momentum k and energy w to it. If the coupling of
the probes to the constituents of the target is weak, Born approximation®®° is applicable
and the differential cross section for the process in which final state of the target is not
observed is proportional to the dynamic structure function (DSF) S(k,w) of the system.

Various types of probes (electrons, neutrons, x-rays, ...) have been used over the years
to study wide variety of many-body systems (solids, liquids, atoms, nuclei, nucleons, ...)

with considerable success*'44, Furthermore, by choosing appropriate values for momentum



and energy transfers (k,w) the experimenter can study particular properties of the many-
body system, such as collective modes or single particle dynamics.

In this thesis we will focus on the deep inelastic neutron scattering (DINS) from quan-
tum liquids at zero temperature!~1!, Initially the target is assumed to be a bound state of
atoms containing nuclei such as He with zero spin. The spin of the neutron can be ignored
in this case, but we will keep track of it nonetheless in order to make the generalization to the
case of scatterers with nonzero spin straightforward. Our starting point is the observation
that the interaction between neutron and nucleus is short ranged, the radius of interaction
being a ~ 1fm = 10~5A. In typical DINS experiment neutrons of incident energy E ~ 1eV
are used which corresponds to the initial momentum p ~ 20.&-1, so that the inequality
pa £ 1 is satisfied by several orders of magnitude. Under such conditions neutron-nucleus
scattering is isotropic, with the total cross section o = 47b?, where b is the scattering length.

Following the beautiful idea due to Fermi*®, we introduce the pseudopotential
4rb
Ulr-r;)= %G(r —r;) (2.1)

to describe the interaction of neutron at r with a nucleus at r;, where m is the reduced mass
of neutron and a nucleus. It is easy to check that in Born approximation the scattering

length bp for potential (2.1) has precisely the exact value b:

Pom (4—7'.6)2:5". (2.2)

_1 m
T 4n2 \2m

1 m?
2 2
bB—EUB_IM'/d ka

/ &r =T (1)

Thus this potential gives the correct description of neutron-atom scattering at eV energies
in the Born approximation, and is meant to be used with it only. The total interaction

potential of neutron with the target is

4xh

Hin(r) = 50 300z -15) = 50p(2), (23)

where p(r) is the density. For the initial and final states of neutron we use V~1/2¢'P¥y,

and V-1/2¢P"Ty,, where V is the quantization volume and 7’ are spin wave functions,
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so that the matrix element of Hjy, for a transition with the target states |3) and | f) is

% / dr e ol (£] Hu(r) |9) 'P’m--——m (£1 oL 1), (24)

where k = p — p’ is the momentum transfer to the target, and

= e 23)
s

is Fourier component of the density. The transition rate from an initial state |4, pA) to a

final state | f, p'\'} is given by the golden rule®
Tieg = 2 |(f, P'N| Him i, PN 6(w - Ef + E;), (2.6)

where E; and Ej are target energies and w = (p? — p'2)/2m is the energy lost by neutron,
i.e. the energy transfer to the target. Typically DINS experiments do not resolve the final
state of the target | f) nor the final polarization of the neutron X', while the initial state of
neutron is usually unpolarized. At low (ideally zero) temperature the target is initially in
its ground state. Under these conditions the cross section for scattering into a final neutron
state in an interval Ap’ = Vd®p'/(2r)? is obtained by appropriate summations of T;_,; and

dividing by the incident neutron flux v,q/V = p/mV:

d’a=21r(47rb) Eza“.|f|pk|0)\ 5w - Ef+Eo)‘(’2d)pmV. @)

A MF
Using d3p' = mp/'dwdQ’ we can express the double differential cross section for neutron

scattering into a final solid angle Q' with an energy loss w as

d%o Nb2

P
= =L g(kw), (28)

where §(k,w) is the dynamic structure function defined as*’

Stew) = y |1

’ 6(w — E¢ + Eo). (2.9)




2.2 y-scaling

The concept of scaling in physics refers to a situation when a function that normally
depends upon several variables, under certain conditions depends only upon their particular
combinations that are called scaling variables. In the case of y-scaling the function under
consideration is S(k,w) which depends upon two variables. It is convenient to eliminate

the energy variable w in favor of the West scaling variable!?

y=Tw-5) (2.10)

and express S(k,w) in terms of the Compton profile® J(k,y)

k Kk
I(,) = —S(kw =5+ Ey)' (2.11)

This transformation is motivated by the experimental observation!~! that, for large k,

Compton profile of an isotropic system depends on y alone:
J(kyy) — J(y) k— oo (212)

This property of the Compton profile is referred to as y-scaling, and J(y) is called scaling
function. In terms of S(k,w) the y-scaling property is expressed as

%S(k,w) — J(y) k,w— 00, at y = const. (2.13)

It should be stressed that y-scaling is a general property of deep inelastic response of
non-relativistic systems in that it is observed and can be theoretically proved in all cases
that were studied, regardless of the type of interparticle interaction.

It is less known that S(k,w) obey another scaling law3?, which we mention for com-
pleteness:

k2
wSk,w)—61l-2) kw—ooo, at z= T const. (2.14)

This is the non-relativistic analog of Bjorken scaling?®4®. Since scaling function §(1 — z)

does not depend on the specific properties of the target, no information other than the

6



mere existence of the scattering centers can be deduced from it. But their existence in the
non-relativistic condensed matter systems can be established by direct methods, and hence
the concept of Bjorken scaling is not particularly useful in non-relativistic physics. On the
contrary, in elementary particle physics the model independent conclusions are desireable,

and Bjorken scaling in an important tool in research®0.

2.3 Impulse approximation (IA)

In order to derive the expression for S(k,w) in IA we write the Hamiltonian of the

system as

H = Hip+or, (2.15)
2 2
pi |1 Py
Hip = Z—+ = E v+ (2.16)
‘.¢I2m 2'.’#1 2m’
vy = E'v.‘j, (2.17)
by

where I denotes the struck particle. In DINS experiments the momentum p; acquires
large value of the order of the momentum transfer k, and if the potential v;; is finite
then the interaction vy of recoiling particle with surrounding medium can be regarded as
a small perturbation compared to its kinetic energy p}/2m ~ k?/2m. Thus, in zeroth
approximation, the struck particle decouples from the rest of the system and recoils as if it
was free. This is the IA!3, The higher terms in the perturbation expansion as well as the
case of hard core potentials will be discussed in the next section.

The S(k,w) can be written as

— L fwt 1' = _1__ / fwt ~ikri(t) ikr;(0)
Skw) = 37 [ dt e (01 pi(BpL(0) 10) = ey o [ e Ol kOO,
(2.18)
where py (t), and r;(t) are density fluctuation and position operators in the Heisenberg

picture. The limits of integration in the Fourier transform integrals are assumed to be —oo



and +0o throughout this thesis, unless explicitly stated otherwise. The double sum in the
above equation can be split in two parts: ¢ = j (the incoherent part) and ¢ # j (the coherent
part). In DINS k > 27 /d, where d is the average nearest-neighbor distance. As a result

the ¢ # j (coherent) part can be neglected and we obtain
_ 1 iwt | ~ikri(t) ikri(0)

S(kyw) = o= 2 / dte™t (0] e e |0). (2.19)
The assumption of IA is that struck particle recoils freely. The Heisenberg operator of the
position r;(t) for the free particle can be expressed in terms of Schrédinger operators r; and
Pp; as

[
rit) = ri + —pi, (2.20)

and using the Baker-Hausdorff lemma®

edeB = eAtB+1C, ¢ =[A,B] is a c-number (2.21)

we find

. D 2
SIA(k,w)=% . (0] %r-/dt et exp{-z'%—n& —ik t} |0)
1

I
2 oD 2 *
= FTOIe- gm0 = [ o - - BB, 2

where n(p) is the single-particle momentum distribution, and p is average density of the

system. From this expression and equation (? 13) we find that the scaling function in IA is

Ia0) = [ by~ k-p (229
= @y [, drnie) (224)

Experimentally, one measures the Compton profile and looks for scaling by considering
its behavior at fixed y as k increases. If at high k it approaches an k-independent scaling
function then, according to the IA prescription (equation (2.24)), it may be possible to
obtain n(p) by differentiation:

_ @2’ di1aly)

n = .
(p) » & Ny

(2.25)



2.4 Theories of final states effects

There have been several attempts!3~32 to develop the theory of FSI. In this section we
will give an overview of those theories in order to gain some insight into the problems that

lie ahead of us as well as to motivate our own approach36-3,

2.4.1 Convolution approach

In the convolution approach S(k,w) is written as a convolution of the IA result

Sta(k,w) and the folding function F:
S(kw) = / d' F(k,w - w')S1a(k,w"), (2.26)
Flkw) = 51; / dt Ak, 1), (2.27)

There has been an extensive amount of work!®-2° along these lines, but here we present it

in an unified form. Using the notation of the previous section we can define

0l ove=iHtpl
Ak, = e ”l;m) .
(0] pye~*Hotpy |0)
The denominator of this expression, as we have seen, describes the free motion of the struck

(2.28)

particle and the uncoupled, fully correlated, motion of the remnant, while the numerator
describes the true motion of the whole system. The |A(k,t)[? represents the probability
that the struck particle is moving freely after time 2, i.e. that it is in the same momentum
state k + Pinitial at time £ after the collision with the neutron, regardless of the motion of

the residual system. The amplitude A(k,t) is a complex number which can be written as
A(k,t) = e—i(V(k.t)-iW(k,t))t, (2‘29)

which together with equation (2.27) implies that W(k,t) determines the width of the folding
function, while V(k,t) gives the shift in the energy. The probability P(k,t) = |A(k,?)|* =
exp{—2W(k,t)t} satisfies the decay equation

dP(k,t) _ P(k,2)
d  7(k,)’

P(k,0)=1, (2.30)

9



where r(k,t) is the mean life time of I, i.e. of the state which describes the free recoil of

the struck particle. The solution of equation (2.30) is

P(k,t) = exp {-_ /0 ’ dt"r"(k,t’)} , (231)

and we obtain
L g
W(k,t) = 5 /{; dt'r= (k,t'). (2.32)

In the simplest approximation!? 7(k,t) is independent of t:
=Yk, t) = pov, (2.33)

where v = k/m is the velocity of the struck atom, and ¢ is the total cross section for

atom-atom scattering. In this approximation the folding function is a Lorentzian:

1 1

Flkw) = 3 G ijae

(2.34)

which has unrealistically long tails. It will be shown in subsection 2.4.3 that the DSF
obtained with the Lorentzian folding function does not satisfy the w? (kinetic energy) sum-

rule.

The failure of the Lorentzian folding function at large w indicate that the approxima-
tion (2.33) for the mean life time is unphysical at small ¢. Indeed, the density around the
recoiling atom is not uniform, but rather given by pg(r), where g(r) is the pair distribution
function, and the amount of scattering at small ¢ is significantly reduced since g(r) ~ 0 for
r & p~113, Using the classical value r = vt a better, time dependent approximation for the
lifetime is obtained™:

=Yk, t) = pg(vt)av, (2.35)
so that

ov [t
W(k,t) = 2 /0 dt'g(ut'), (2.36)

10



and the resulting folding function does not have long tails. This semi-classical argument
has been further developed by assuming that the interaction between atoms at large w can

be approximated by a hard core of radius r.. One can then introduce impact parameter

averaging to obtain8-20;

“k,t) = pva /rcdbb v/ ()2 + B2), 237

T (k,2) posr | 9(y/ () (2.37)
= 2r [t v [ AY] 2

W(k,it) = pv ;A dt ‘/0 db b g(1/(vt')? + b2). (2.38)

The effective value of 7. depends upon w ~ k%/2m, and the DSF obtained with this ap-
proximation is in fair agreement with the available data!! on neutron scattering by liquid
4He.

If the interparticle potential is weak, the correlation between the particles vanishes
and the uniform limit (g(r) ~ 1) is reached, so that the expressions (2.35) and (2.37) for
7-1(k, t) reduce to the simple expression (2.33). At the same time, the total cross section o
also vanishes causing the Lorentzian folding function (2.34) to shrink into é-function, and
the IA is obtained as expected.

Finally, we want to discuss the small y behavior of DSF in the convolution approach.
The S7a(k,w) and Jya(y) of Bose liquids at terhperatures below the A-transition temper-
ature have a §-function contribution at y = 0 coming from the atoms in the condensate,
and we ask whether the same is true for J(y) in the convolution approach. From equation
(2.10) it is clear that the width of J(y) is given by the width of S(k,w) divided by k/m.
Because of this division any part of S(k,w) that has a constant width as k — oo will appear
as a 6-function peak in J(y). In other words, even if we assume that S(k,w) has a peak
at w = k?/2m whose width is finite in the limit ¥ — oo, the resulting J(y) will have a
§-function peak at y = 0. Thus, in the convolution approach, J(y) will have é-function
peak only if the folding function F(k,w) of equation (2.26) has a finite width in the limit

11



k — 00. From the equations (2.33), (2.35) and (2.37) it follows that the width of F(k,w) is
of order =1 ~ ko, hence it is governed by the behavior of o for large k when the eikonal

approximation®? applies giving

g=4r /ow pdp [1 - cos (%z- /oo dzv (\/m))] . (2:39)

-00
For example, in the case of the inverse power potential v(r) = a/r?, n > 1 the above
formula gives o ~ k~2/(2"=1) implying 7=1 ~ k(2n=3)/(2n~1) anq the asymptotic J(y) can
not have a é-function peak in the convolution approach. The same conclusion holds for the
familiar case of the hard sphere interaction which is obtained in the n — oo limit when
o — constant at large k and 7~ ~ k. In contrast, the case n = 1 is a representative of the
weak potential scenario: the potential v(r) = a/r? is Fourier transformable, and the cosine

in equation (2.39) can be expanded to obtain the large k Born approximation result®?

2rm? [® %0 2
0=— ‘/o pdp (/_wdzv(\/p2+z2)) ) (2.40)

which gives vanishing width 7 ~ k= and IA is recovered, as mentioned above.

2.4.2 Gersh series

In another approach?*-% the S(k,w) at large k and w is expanded in powers of m/k:
k m
= 5(kw) = J() + Th) + (TP ) + .. (241)

If the interparticle potential is finite and smooth enough so that its Fourier transform %(p)
decreases exponentially in the limit p — oo, then it is possible to calculate J,(y) as a func-
tion of (n + 1)-body off-diagonal density matrix. Due to the smallness of #(p) at large p,
the coherent part of S(k,w) (cf. equations (2.18) and (2.19)) can be neglected, and the

starting point of this calculation is the expression for the incoherent DSF of the spinless

12



Bose liquid at T = 0:
S(k,w) = _% Im{0] e=%%:[w — H + Eq + in]"1e'¥™ |0) (242)

1 had R . , ;
=-=Im} (0| e KTy — Hpg + Eg + i~ (01w - Hra + Eo + in])'eX™ |0), (243)
=0

where we have split the Hamiltonian in two pieces as in equations (2.15)-(2.17), and gis a
positive infinitesimal. The eigenstates of Hy4 are written as | p,n) =|p)1 | n)N-1, Where
| p) is a plane wave state of the struck particle, and | n) are eigenstates for N —1 background

particles with energies E};_,. They are used as intermediate states to obtain

1 -
S0c) = ~= Tn{ 01 B, ) (B + kol o= Hra+ Bo-+inl™ [p +K,m)
b

+ szl p,n)(p+k,n| [w—HIA+Eo+iﬂ]'l |p+k,n)(p+k,n| L} |Q+k;m)
pnrqm

x(q+k,m|(w— Hra+ Eo + i) |q + k,m){q,m |0) + } (2.44)

The expansion (2.44) is known as Gersh series®®. Each energy denominator carries the

factor m/k in the scaling limit:
(p+kn|[w—Hia+ Eo+in]™" |p+k,n)

m

-1
_E};,_1+Eo+i17] T [y—f(-p-*-O(k_l)-]-in] 1, (245)

2
oo Ptk
2m

and [-th term in Gersh series has exactly [ of them. On the other hand, under the conditions
stated above, the matrix elements (v;) are finite, i.e. of order O(k®), so that the expansion
(2.44) is indeed an asymptotic series in powers of m/k.

When the interaction contains a hard core, i.e. when the interparticle potential »(r) is
divergent enough at small 7 so that its Fourier transform #(p) is not defined, Gersh series
fails. To understand why it happens we will explicitly calculate the term J;(y), which is the
first correction to J(y) obtained in the IA. There are two contribution to Jj, one coming

from the second term in equation (2.44) which we denote Jj 1(y), and another one (Jy o(3))
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from the O(k™!) terms of the energy denominator in the first term of the same equation.

The former contribution is given by

J1,1(y)—-—1m22(0|p n)p+k,n| v gtk m)(q,mlo)'
pnQqm (y k ‘P + Zﬂ)(y q- -k + zn)
Since the denominator does not depend on labels n and m after the terms of order O(k™?)

(2.46)

are neglected, it is possible to sum over complete sets of background states to obtain

U§(ry,r2,.. ., o) ¥o(r],ra,...,xN)

Jm(y) = = Im /d37‘1 da dsrz der 0 = - ———

sz (y-k-p+in(y-q-k+in)

Xe‘p Ty e"(p+k) 1‘1 2 rl - rj)e‘(‘ﬁ'k)'ri e-"q.'ri'
J#1
P 3. 3.4 J3.1 33 pa(r1, 1'2;1'5',1‘2)
= —~Im /drd @3l @By P2 —

VZZ (y-k-p+in)(y-q-k+in)

v(rl -r), (2.47)

where we have introduced the two-body density matrix

N 1
p2(X1,X23¥1,¥2) = ( ) / Pra- - PryPg(x1,Xa, 13, o, IN) Vo(Y1, Y2, T35 0« TN)-
(2.48)
Next, we change variables r; = r{ + 8+ ry, v} = r{ + u+ r and perform the trivial r,

integration to obtain

ha(y) = ——Imp/d3 ! d3s d3u py(x] + 8,0;2%,0)0(r] + )
3 ip-(8—-u) igqu
oo € _/daqa A (2.49)
@rR y-k-p+inJ @7 y—q-k+in
Integrations over p and q are performed using
dp fip-a © dp I d*p; (P
(2 y—k.-p+ "I -0 21 y—py+inJ (2r)
oo dpy P10 .
- - 2 cya"/ _”_ I 1Y) .
6*(ar)e I i 6“(ay) 0(q)) eV, (2.50)

where parallel and normal components are defined with respect to the direction of k, and

after renaming s — s and ) — u we get

Jia(y) = % /_ o:o ds sin(ys) / d®r py(r + sk, 0;r,0) /0 ) du v(r + uk). (2.51)
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In order to obtain the other contribution J;o(y) we expand the energy denominator

(2.45):

(p+k,n|[w=-Hia+ Eo+in]™! |p +k,n)

m - .1-1  (m\? [ p? " . 1-2 -
;[y-k'pﬂn] +(-k-) (;—m+Ez’~‘r-l-Eo)[y-k-p+m] +0(+™),

(2.52)
and substitute into the first term of equation (2.44). The result
L (0] p, ) ( v )
J. =-~=Im) —rF— + ER_, ~ E 2.53
1,0(9) p ;,; (y—k-p+in)? \2m 0 (2.53)

can be further simplified using

to obtain

2
(Ponl &t By - Bo|0) = (pynl Ha— H [0) = —(p,n| w1 [0)  (254)

1 {0} P,n)(P,nl o |0)
Ji, = ——I . 2.55

Further calculation is similar to that of Jl,l(y).

Jio(y) =

—-I-Im i"‘]}'z:/dsrl d3ri ds’l‘z-"d3’l‘N ‘1’3(!'1,1‘2,...,rN)‘I’o(lJl,l‘z,...,l'N)

y—k-p+in
xe'Pr1-11 Z o(r} - 1;)
J#1
1

P / Pry b dry PaFL, T2 T 2) ipry ), o _
7 dyVZ y-k-p+in ¥i-n)

1 e'Ps
~~m = ] dr 0r,0 f
e A P Sy
1 .
= Im -d?/-zp /0 ds e¥? / d®r pa(r + sk, 0;r, 0)v(r)
00 'S
—-1’% / ds ssin(ys) / d®r pa(r + sk, 0;r,0)o(r), (2.56)
0

and we find?®

Ji(y)

J10(y) + J1,1(y)

= -ﬁ-/ﬂw ds sin(ys) /dar pa(r+ sk,0;r, 0) '/: dufv(r + uk) — v(r)). (2.57)
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r+sf<

Figure 2.1: J;(y) of equation (2.57) diverges when the path of u-integration (dashed line)

passes through the hard core region (shaded area).

It is easy to see that formula (2.57) does not apply to hard core systems. The analysis
of the integrand shows that in this case the points defined by vectors rand r + sk can not be
near the origin due to the presence of the exact two-body density matrix py(r+ sk,0;r, 0)
that becomes vanishingly small when its first or second pair of arguments are close. However,
apart from this restriction, their position can be arbitrary. In particular, it may happen
that the straight line that connects those two points, along which the u integral in equation
(2.57) is taken, passes near the origin, as is shown in Figure 2.1. The hard core potential
v(r) takes on large values in the region r — 0 (shaded area), and this causes the u integral
to diverge. The reason for this failure of Gersh series is that the decomposition (2.15)-(2.17)
of the Hamiltonian is not physical when the interparticle potential has hard core. Indeed,
the nonperturbed Hamiltonian (2.16) decouples the recoiling particle from the rest of the

system, and its eigenstates |p,n), which are used as intermediate states in the perturbation
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expansion, do not take into account strong short range correlations that would normally
prevent the struck particle from entering the hard core region of background particles.
Thus, when interparticle potential contains a hard core the Gersh series for S(k,w)
diverges term by term, and an infinite resummation must be performed to make it finite.
The result of this resummation amounts to replacing the bare interaction (2.17) with the

T-matrix ¢, which is defined by the relation’?

t = v +vw— Hia + Eo + in]~1t. (2.58)

However, the T-matrix is k-dependent, and the analysis of series (2.44) is not feasible
without the explicit numerical calculation of ¢.2° The general analysis is still possible in the

somewhat unphysical case of the hard sphere interparticle potential

0 <7
v(r) = , (2.59)
0 r>r

since T-matrix for the scattering of hard spheres grows linearly with k, as was pointed out
by Weinstein and Negele®0. It is obvious that the power counting that led to IA in the case
of smooth Fourier transformable potential fails. For example, the second term in equation
(2.44) contains two energy denominators and one T-matrix, hence it is of order O(k™?) as
is the IA term. Thus, Weinstein and Negele conclude that the S(k,w) of hard sphere gas

y-scales, but the scaling function is not given by IA.
2.4.3 Sum-rule arguments
The w™ weighted moments of DSF

Sa(k) = /0 " d WS (k,w) (2.60)

of the many-body system at zero temperature can be obtained if the ground state wave

function is known, using the relation
1
Sa(k) = 001 Pl fln 10), (261)
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where

(Hyphhn = [H,..., [0}l (262)
n-times
is a short hand notation for the n-times nested commutator. Although this relation, referred

to as w™ sum-rule, is quite well known34, we will present its elementary derivation. From

equations (2.9) and (2.60) we have

2
56 = FZ|isiof 1o (&5 -Eor
I
= S0l p(E - Eoy'ef [0) (269)
so that the w" sum-rule (2.61) holds if
(H - Eo)"p} 10) = [H,p]]n 10). (264)

The last identity can be proven by induction. For n = 1 we find

(5 - Eo)o}, 10) = (Hp], - oL Eo) |0) = (&} 0), (265)
and assuming that the identity holds for some » > 1 we obtain

(H - Eo)**p}, |0) = ( - Eo)(H - Eo)"p}, |0)
= (H - Eo)[H, p1a |0) = (HIH,pL]. - [H, p1aFo) 0)

= (8, [H, p1a] |0} = [H,p}]at1 10), (2.66)

which finishes the proof of the identity (2.64) and the w™ sum-rule (2.61).

The moments Sy,(k) can be related to the y™ moments of Ji(y) (c.f. equation (2.41))

"= f dy y™Ji(y) (2.67)
~k/2

using the auxiliary set of central moments of S(k,w):

5u(k) = (%)n /0 "~ d ( - 2%)"5(1:,«:). (268)
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Indeed, S,,’s and S,’s are connected by binomial expansion

Salk) = (1,:‘-)20 ( j ) (—%) Si(k),

while from equation (2.41) we get

Sn(k)

m

_ N
= "4

Ji+..0
so that

Jﬂ

klifgo Sn(k)

n . ks n
A ,}E‘go ™ [Su(k) - 7],

etc. In section 3.1 it will be shown that

1
n+1

(0 ()" 10) + O(k™%) n even,
Suk) =

Oo(k™) n odd,

(3 [0 () o -

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

where O(k™~?) and O(k~2) terms contain expectation values of the potential and its various

derivatives. From equations (2.71)-(2.73) we obtain

1
n+1

(0] ()" 10) m even,
"=

0 n odd,

n 0 n even,
Jl =

0(1) nodd.
Since from equation (2.23) it follows that

B [ o) = [ oo k-

1 d®p "
n Tl / W n(p)p" n even,

0 n odd,
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we conclude that
00 n 0 n
= 2.
/k/2dyy J(y)_jklzdyy JIA(y) ( 77)

for all values of n. We also conclude from equation (2.75) that Ji(y) is an odd function.
This observations, due to Sears®"32, imply that the asymptotic J(y) is given by Jr4(y), and
that the leading correction to IA is of order O(k~?) and purely antisymmetric in y. This
correction too can be estimated using sum-rules®8, as will be shown in chapter 3.

As presented above, the Sears’ sum-rule argument appears to prove the asymptotic
validity of IA in general, regardless of the shape of the interparticle potential v(r). However,
we know that such a sweeping statement can not be true since, for one thing, it does not
hold in the case of hard sphere gas, according to Weinstein and Negele®*. What went wrong
is the fact that we tacitly assumed that w™ sum rules exist for all n, which puts strong
constraint on the choice of v(r), making the applicability of the sum-rule argument rather
limited. Let us consider, for example, the system interacting with the 1/r potential. It is
Fourier transformable, and thus IA holds, as was shown in subsection 2.4.2. On the other
hand, it is well known that only the first few sum-rules exist for this potential, and Sears’
argument is not applicable.

The very step where the above argument may fail is taking the k — oo limit in
equation (2.73). The neglected O(k~!) and O(k™2) terms contain the expectation values
of the potential and its various derivatives that appear in [H, p{]n that may fail to exist
causing the w™ sum-rule to diverge. However, in the very important case of the hard core
potentials of the Lennard-Jones, type all sum-rules exist, and can be used to estimate the
scaling function J(y) and corrections to it, as will be demonstrated in chapter 3.

From equation (2.76) it follows that the first three moments of the scaling function
J(y) are

/:dyJ(y) =1, (2.78)
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[ :dy W) = 0, (2.79)
/_ Zdysz(y) = %@Ek, (2.80)

where E; is the ground state kinetic energy per particle. We now show that the scaling
function obtained from the Lorentzian folding function (equation (2.34)) in the convolution

approach does not satisfy the kinetic energy sum-rule (2.80). From equations (2.26) and

(2.34) we find

© 1 1 ,
)= [-k/2 % 2mpa (y - ¥')? +1/4p%0? T1al¥), (2481)

and obtain

®d 21()—/“’ o 7 (')/“d i 0. (282)
oo Yy Iy /2 Y onpo IA\Y oo y(y—y’)2+1/4p202- J o

Thus, the Lorentzian folding function indeed has the unrealistically long tails, which causes

the divergence of the kinetic energy sum-rule.

2.4.4 Correlated basis approach

All the theories mentioned above start from the IA that takes into account the interac-
tions in the initial state of the target, and try to improve upon it by incorporating the effects
of FSI. This procedure gets more and more difficult as k decreases and the FSI become more
important. In contrast the response at small k¥ and w is easily treated by using Feynman
phonon states’, In particular the orthogonal correlated basis (OCB) formalism33° based
on Feynman’s ideas is quite successful®®5® in explaining the observed S(k,w) at k ~ 241,
The small and large k methods have different starting points; the momentum distribution
n(q) is the main input for the IA, while the OCB formalism uses the static structure func-
tion §(g) as the main input. The S(g) and n(g) are not unrelated. For example, if one uses

the Jastrow wave function378

Uy =[] fa(ris), (2.83)

i<j
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to approximate the ground state, then the S(g) (i.e. the pair distribution function g(r))
determines® f;(r) and hence n(g). However it is not clear that there exists a one to one
correspondence between the S(g) and n(g) of a general Bose ground state wave function.
In principle the OCB formalism can be used to study S(k,w) at all k¥ and w, however the
calculations®® become technically complicated as k increases. In the present work we show
that, by using analogs of Ward identities®®®? in orthogonal correlated basis perturbation
theories (OCBPT), it is possible to calculate the S(k,w) in the scaling limit, and thus

extend this low k£ method to the k — oo limit.

22



Chapter 3

Antisymmetric part of S(k,w) of
liquid 4He

In this chapter we study the w™ sum-rules S,,(k) (equation (2.61)) of the hard core
quantum liquid at zero temperature, and use them to estimate the antisymmetric part
of S(k,w) *. In subsection 2.4.4 it was argued that w" sum-rules exist for all n if the
interparticle potential is smooth and has a strongly repulsive core. It was also shown that
the y™ moments of the functions Jj(y) that appear in the expansion (2.41) can be evaluated
from Sy,(k). In section 3.1 we prove that the y™ moments of J(y) are the same as those of
J14(y) (equation (2.76)), and obtain explicit expressions for the y™ moments of J;(y) which
is an antisymmetric function of y. In principle, the function J1(y) is completely determined
by its y™ moments. However, the numerical evaluation of these moments becomes difficult
as m increases. In section 3.2 we compute the first three odd moments of the function
Ji(y) of the liquid “He. These are used to estimate its shape by means of the orthogonal
polynomial expansion, and the results are compared to the observed antisymmetric part of
S(k,w). Finally, the brief summary is given in section 3.3.

In order to simplify the notation we use the system of units in which A%/2m = 1, or,

equivalently, A7% = 6.06K in the case of the liquid 4He, throughout this chapter.
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3.1 Calculation of the y™ moments of J(y) and Ji(y)

The w" sum-rule S,(k) (equation (2.61)) contains the n-fold commutator [H, pl]n. It

is straightforward to calculate this commutator for the first few »’s:

Hofh = Y enE + 2k p) (31)
[H’PL]2 = Z ileri {("72 +2k-p;)* - 2% E(' z,-”u)} (32)
i J(#)
(H ,Pltla = Y ekni {("’2 +2k-p;)° +#° ["6 Y (= 3::,:”-:)]
i i(#9)

+ [ 8 Z(( az,t)zvu) 12 Z( azﬁ”'])( a,’)]
() i@

+ [2 Z( azﬁ(D'J”m))] } (3.3)

i(#9)

[H,pi';h = Ee‘k-r-' {(k2+2k-p,.)4+k5[ -12 ) (= a,,v,,)]
i ()

+ k4 -32 Z(( 6,.)21;.,) 48 Z( az,:'vu)( az,s)]
L i) i(#i)

+ K |-2 E(( =0:fu) - 64 ) (5 10,00) 7024)

() i(#9)
—48 Z( az,s”za) z,i)z +8 Z( azy*(D'J”'J)):|
i) i(#)

+ K [12 E ( 62,*”*1)( 3:,.'0.m)+12 Z(( =0,,3)*(Dijvij))
me(#i) i(#9) .

+16 Z( <0, ,A(Du”u))( 3 ,')]
i)

+ |: -4 Z (( az!)v i . V'”xm) 4 E (( az,s)vm'vsm Vm”m])
Jm(#i) Jm(#)

-2).(3 3,,,((D.J)2v,1))] } (3.4)
i(#)
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where 8, ; = k- V; and

Dijvij = (V3vi) + (Vivig) - Vi + (Vivij) + (Vvi5) - V. (3.5)

From equations (3.1)-(3.4) we observe that the dominant terms in the k — oo are those that
do not contain the potential v;;. The leading corrections are given by the terms containing
only one v;;, while the terms containing two v’s are negligible at large k for the following
reason. In the n-fold commutator [H, pl],, =[T+V, pl],, the powers of k appear as a result
of commuting of T with e'’¥™i, Hence, the leading term of the commutator [H, p;f(],, in the
k — oo limit is

(T, bl = 3 %% (k2 + 2k - p;)", (3.6)

$

which does not depend on v;;. Similarly the next leading term is a sum of n terms, each
containing one v and n —1 T’s:

n-1

LT DV Tl A RS (37)
m txmes n-m~1 times

We neglect the terms containing two or more v’s , and call this approximation the *1v”

approximation. Equations (3.1) - (3.4) can be generalized to the arbitrary » to obtain

(8oLl = T4 + 2k pi)" + }), (39)

in 1v approximation. The {n} is defined as

w3 (7 e ey () (27 s,

m=2 i=1 j=1 m=i
(3.9)

where

Koo = Z {(z az,t)a[(Du)b'”u]}( 024)° (3.10)
i(#9)

and the powers of the operator D;; are defined as the repeated application of equation (3.5).

The proof of the equation (3.8) is given in the subsection 3.1.1.
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From equations (2.61) and (3.8) we obtain
1 Teopes
Su(k) = 501 Lo [k + 2 ;)" + {n}] |0). (3.11)
i
It was explained in section 2.3 that the coherent ¢ # j terms in the double sum above are

exponentially small in the k¥ — oo limit, and thus can be neglected to obtain
Sn(k) = (0] [(K* + 2k - ;)" + {n}] |0). (3.12)

On the other hand, from the equations (2.60) and (2.68) we obtain

n

Sa(k)= Y ( : )kz(“"")(2k)"‘.§m(k). (3.13)

m=0

Equations (3.9), (3.12) and (3.13) are solved to obtain

n-1 i .
5alk) = (0] (pe)" 10} +(-1)" 2(—%)‘2( . ) (::j )K.--j+1m-.--1;,--1(3-14)

i=1 i=1 J-
[ 2501 ()" [0) +0(k~2) neven,
= (1) 5L (n - m) ( m:) (3.15)
| X Dy (0] (055 ™o(ris)) 257 10) + O(k~7) modd,

in accordance with equation (2.73). It was shown in subsection 2.4.4 that the y™ moments
of the functions J; can be found from the central moments S,(k). Using equations (2.71),
(2.72) and (3.15) we find that the moments of the J(y) are the same as those of the Jr4(y)

(equation (2.76)) and that the moments of Jy(y) are given by

0 n even,
J{‘ = atl —n-1 n n—m m-1
(=177 Th=i(n—m) o i) (0] (87 ™v(ri;))0z;  |0) nodd.
(3.16)

To obtain the moments of Ji»2(y) from equation (3.14) the terms of order O(k~2) and

higher are needed. However, equation (3.14) was obtained in 1v approximation and we can
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easily convince ourselves that the neglected terms of the commutator [H, pl],, that contain
two or more v’s do contribute to these orders, so that the moments of Ji>5(y) can not be

determined from equation (3.14).

3.1.1 The proof of equation (3.8)

We will prove equation (3.8) by induction. First, we observe that it accounts for all 1v
terms in equations (3.1)-(3.4), i.e. it holds for n = 1,...,4. Next, we assume that it holds

for some number =. For [H, PL]MI we find

(H,pflor = (8,18, p] = [T +V, L N[ + 2k p) + {n}]]

_ E KT {(k2 +2k-p,)"*? + (k% + 2k - p;}{n}

%
+ [T, {n}) + [V, (k2 + 2k p)"] + [V, {n}]} . (3.17)
The last term in the curly bracket contains the potential v;; twice and is discarded in the

1v approximation. Thus, in order to finish the proof of the equation (3.8), we have to show

that

o1} = (R +2%-p)} + [T Y+ [V, R+ 2ep)].  (319)

We denote the right-hand side of the above equation as RHS and obtain

wms = 3 )k”‘“‘m’(—l)m’§<—2k)*i (= )(27%)

m=2 =1 j=1 \Ji-1 m=i

X {(k2 +2k - p;)Ki-jt1m-i-1;5-1 + [T, Ki—j+1;m—i—1;j-1]}

+ f: ( " )k2("""’(2k)’" [V,(% ,,,-)"‘]

m=1 \ ™
3 (e Eert (2)()
m=2 \ ™ i=1 =1 \ J- m—i

X {szi-—Hl;m—i-l;j—l + 2k[Ki— j2ymmi=1;-1 + Kizjttm—i-1;] + Ki—j+1;m—i;j—1}

+ i (;)k2(n—m)(2k)mi ( 'm )Km—j+1;0;j—1 (3.19)

m=1 j=1 =1
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We note that the last term in equation (3.19) can be written as a sum of m = 1 part and

m # 1 part which can be added to the fourth term as ¢ = m part. Also, we substitute

(2)-()-m=(2) o

into the first term of equation (3.19) and obtain

n+l m-1 i i
+1 ndl- m i ™ -
RHS = ) ("m )k2( Hem)—m Y (-2k) Y ( o1 ) ( ’ )Ki—iﬂ;m-‘-‘ﬁ-l

m=2 i=1 j=1 -
n ] .
- (F)M Y (-2k) )] ( " ) ( noat )Ki-m;n—e;j-l
i=1 j=1 i-1 n-itl
= n 2n-m+1) m = i
e ) =
m=2 =1

i .
XZ ( ) ( " J )Ki-j+l;m—i—1;i-l
J—l me=s

+ i_z( )k2<ﬂ-"=>( - Z;( ~1)i(2k)*

X E ( ) ( ! )[Ki-j+2;m-i-1;j—1 + Kiojirm—i-1;5] +
=1 m—1
- 2“: ( :1 )k2(n—m)("1)‘m i(—ﬂc)ii ( j':ll ) ( m-j )Kl—1+l.m-a,3-1

m=2 i=1 Jj=1 m=i

+ ( . )kz(n'l)%( )Kmo (3.21)

The first term on the right-hand side of equation (3.21) is equal to {n+ 1}, while the m = 2
part of the third term and the last term cancel each other. We shift the variables m — m+1
in the reminder of the third term, : — ¢ — 1 in the fourth term,and t > ¢-1, j > j—-1in

the fifth one, and obtain

RHS-{n+1}=
n-1 m
m+1 ( n )kz(n—m)(_l)m-{-l Z(_2k)t
m=2 " m+1 i=1

1 .
m+1 m=3+1
x3 | | Kicirymeizi-a
j=1 i~1 m-t1+1
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- (—l)n Z( 2’“)'2 ( i- ) ( noit )Kt—]+1,n—m—1

i=1 i=1 n-itl

- B (2 )eemerr{-an(7) (20 st Sean
{2()() () )+ () o)
AL ) () (2]

Al m) () o] mms]) o

The second term on the right-hand side of equation (3.22) can be added to the first one as

its m = n part. The further simplification is achieved by using the identities

()= () 629
() (o) (00 (02)
- () () @20
() () = (G)z)-()

= (’““)(""“‘) : (3.25)
i-1 m-i+1 i=1
(o)) () )=o)
t—-2 m=-s+1 t—2 m-3 1—-1
= ("‘“)("""“) (3.26)
i=-1 m-—t41 =i
to obtain
RHS-{n+1}=
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> ( . )k“""")(-l)"‘ Sy ( . ) ( e )Ki-j+1;m—i;j-1

m=2 i=1 j=1 \ i=1 m-i+1
[ n - o [(ma1 ) [ m-jt1
- Z k2(n—m)(_1)m Z(_2k)' E Kivj4tmeizi-1
m=2 \ ™ i=1 j=1 \ i=1 m=—i+1
= 0, (3.27)

which finishes the proof of equation (3.8).

3.2 Evaluation of the antisymmetric part of S(k,w) of liquid
‘He

From equation (3.16) we find that the first few odd moments of J;(y) are given by

=0, (3.28)
1
B o= 5 2 01@0(r)) 10), (3.29)
i(#)
B o= X [0l (84n(rii)) 10) - 5(0] (820(ris))2 [0)] (330)
i(#)
The J? depends only upon the radial distribution function g(r):
!
7 = 3422 " () + 2220) gt (3
0

and it has been calculated with realistic potentials and the exact g(r) obtained with the
Green’s function Monte Carlo (GFMC) method®!52,

It is convenient to define:

J} = A-5B; (3.32)

A= 41er /0 * w2dr (v(IV)(,,H flﬂ";—(-"l) o(r) (3.33)

can be calculated easily from the GFMC g(r). The term B involves gradients of the ground-

state wave function, and thus can not be obtained from distribution functions alone. In the
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present work we estimate it with the simplest Jastrow approximation57:5

Yo = [] fa(ris)s (3.34)

i<j

for the ground-state wave function of liquid 4He. It is then given by

B = By+By+Bs, (3.35)
= &8 2 A 2 f2(r)
B = p[drglr)od) e, (3:36)
B, = p f d3 'l'.'_,-d Tik g3(r,-,-,r.-k)(a,,,-v(r,-,-)) X
02:fa(rix) | 0uifaris) 0z falrir)
[ fa(rix) t2 fa(ri)  fa(rir) (337)
By = p® / d3ri;dPried®rit ga(ijy i, Tt)(92,0(ri5)) X
0z, fo(rik) 0z, fa(rit)
far)  falra) (8:38)
It is easy to calculate B; exactly, and the superposition approximation®:
ga(rissrik) = g(ri;)a(rie)a(rin)s (3.39)
ga(rijs ks Trt) = 9(ri;)9(rin)g(ra)g(rin)9(rin)g (i), (3.40)

is used for the three- and four-body distribution functions in By and Bs. The calculation
of Bj is further approximated by expanding g4 in powers of short ranged functions h;; =

g(r,-j) -1

9a(rijsPie, i) = g(rij)g(rie)g(ra)[L + hjk + hjt + b

+hjkhji + hikhi + hjhi + highjihi]. (3.41)

The three terms 1, hjx, and hj give zero contribution, the hy term gives the largest
contribution (~ —8.&_6), the terms quadratic in & give contributions of order 2.547¢ each,

and the contribution of the hjihjihy term, expected to be ~ —1.&’6, is neglected.
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Table 3.1: The J§ and J§ in liquid *He

Term Aziz LI
J3 124474 1013~
J5 1984~° 13347°
A 46247° 4988 °
B 5347° 7347°
B, 11147° 12647°
B, -5747° -5247°
Bs -147¢ -14~¢

The calculated values are given in Table 1 for the Aziz® and Lennard-Jones (LJ)
models of the interatomic potential. The GFMC g(r) of the Courant group®:6? are used.
The McMillan® f,(r):

far) = exp -%(g)”] ; (3.42)

b = 1170 =2.994, (342)

is used for calculations with the LJ potential, and an optimized f,(r) obtained by the paired
phonon analysis® is used with the Aziz potential.

The calculation of J7 can be significantly improved by considering ground-state wave
functions with pair and triplet correlations®”, and by using exact many-body distribution
functions via a Monte Carlo integration of the expectation values. The triplet correlations
influence the pair distribution functions and the binding energy by ~ 10%, and assuming
that they have a similar effect on J§, we can expect the present results to change by ~ 10%.

The values of J? and J7 can be used to test calculations of J;(y). They can also be
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used to construct crude models of J;(y) as follows. Let J1(y) be given by:

h(y) = Z bnpn(y)JIA(y)’ (3.43)
Oddn

where P,, are odd polynomials

Pa®)= Y bamy™ (3.44)

odd m<n
obaying the orthogonality condition

Pu 1Py = [ dy PaPu0)I14(5) = b (3.49)

Then from equations (3.43)-(3.45) it follows that

+00
b= [ P = X bam P (3.46)
= 0dd m<n

We have obtained two approximations to Ji(y). In the first b33 = 0 and by(= 0) and b3
are determined from J} and J3, and in the second b5 = 0 and b,<5 are determined from
JPS5, The variational®® n(p) is used to generate the weight function Jz4(y). With the
Aziz potential we obtain b3 = 4.42 and bp3 = 0 in the first approximation, and b3 = 4.42,
bs = 1.83 and by s = 0 in the second. The two approximations are compared with the
antisymmetric part of measured? S(k,w) at k = 10}:1, divided by (k/m)? in Figs. 3.1 and
3.2. Although the second approximation (solid line) is clearly better then the first one, it
does not completely fit the data; the position of the zero of J;(y), in particular, is shifted

from the experimental value.

3.3 Conclusions

There is a large class of systems (hydrogen atom, for example) such that S(k,w) has
divergent w" sum-rules for big enough n. On the other hand, in systems with LJ-like
interactions these moments exist to all orders due to exp(—c/r®) behavior of the many-

body distribution functions at small interatomic distances r. The results of the present

33



0.05 —
0
oo o © o
o
00 0% e 1
- oo .'.._;/__‘
000 k— S
s 0®
- ° o] °
o %%
o [+
) o 0.
) c
]
005 ; ) A ) 1 . \ ; . 1 R . ) ;
0.0 1.0 20 3.0

v
Figure 3.1: The two approximations to Ji(y) calculated with the Aziz potential compared

with the antisymmetric part of (k/m)2S(k,w) measured at k = 1047 from ref. 2.

0.05 T T g v T - y y T T
o
o0 ° 0 (o]
o
o0 .82 o 1
s o O /—Qh&
ﬁ.0.00 ° °
\ o
& [4
. o © o
o %y g
o .
] -] '0'.
..
005 . L
0.0 1.0 20 3.0
YA)

Figure 3.2: The same as in Fig. 3.1, calculated with the LJ potential.
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calculations suggest that just the lowest few sum-rules provide a qualitative description of
the J1(y). Few more values of JI for n = 7,9,... may be needed to obtain a quantitative
description of the J;(y). Unfortunately it appears that calculations of JJ>3 are not trivial.
For example there is a large cancellation between the leading two-body integrals A and B,
that contribute to J;. A wrong negative value of J} is obtained?” if only the two-body
integrals are retained and B; and Bj; are neglected. These cancellations appear to persist
for higher J7.

The comparison of present results with experimental data suggests that at k = IOA—I,
the (m/k)?J1(y) gives a large part of the total antisymmetric part of S(k,w), which justifies
the use of the series (2.41) at k > 1047, Although in principle the JT are sensitive to the
interatomic potentials, the comparison of values obtained with the Aziz and LJ potentials
indicates that the J? and J§ need to be determined with errors smaller than 10% to study

models of interatomic potentials.

35



Chapter 4

Correlated basis theory of s(k,w)

in the scaling limit

In this chapter we formulate the theory®” of S(k,w) of a non-relativistic spinless Bose liquid
at zero temperature, in the scaling limit. The main building block of this theory are OCB
states. They are obtained from CB states, whose definition and properties are given in
section 4.1, using the orthogonalization scheme described in section 4.2. In section 4.3 the
general properties of OCB matrix elements in the scaling limit are obtained, and in section
4.4 the general framework of OCBPT of S(k,w) is set up. The y-scaling property of S(k,w)

is proved in section 4.5.

4.1 CB states and their properties

In the Correlated Basis (CB) theories of quantum liquids the CB states are defined as3435;

Glpl’--"Pn] (4.1)

IP1,.++,Pa) =
T [plv-wpanTGIpl?'“vpn]]/z’

36



where | ] are noninteracting states of the ideal gas, and G is the correlation operator which

is usually determined by minimizing the ground state energy

(0|t EG|0]
[ojctalo]

If, as is often done in the case of Bose liquids®, G|0] is taken to be equal to the exact ground

Eo = (0|H|0) = (4.2)

state ¥ =|0) the condition (4.2) is automatically satisfied, and the Feynman phonon basis

is obtained:
(pby -+ pba) 10) |
(0] (op, (e ++8n) 1012

|ph cee ’pn) = (4.3)

where

(P ++Pbe) = Y, expli(prerit e+ pacm)), (4.4)

Note that in this notation p}:! oo p;‘,n does not equal (p;f,l ‘e plt,n) with brackets. The simple
product of pp’s contains terms where particles 4, j, ...in the sum are the same. Such terms
are excluded from the product in the brackets by definition (4.4).

For further calculations we need the diagonal and off-diagonal CB matrix elements
of the unit operator and the Hamiltonian, They can be expressed in terms of a-body
distribution functions®

NN =1)-(N-a+1)
p°

Galt1y. oo ,Ta) = / Brop e Pry |Coryye o mn)P. (45)

We are studying homogeneous isotropic Bose systems (liquids) so that g,’s depend only
upon the distances r;; = |r; — r;| between the particles in the a-body cluster. For example,
the two-body distribution function, that is usually called pair distribution function, depends

upon the distance between two particles only:

92(ri,v5) = 9(7i5) = gij. (4.6)

In the same fashion the three body distribution function is denoted g;;x instead of gs(r;, r;,Tk)
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etc. Since the interatomic potential in the liquid has finite range and there is no long range
order, it follows that if one particle is removed far from the rest of the a-body cluster, then

the a-body distribution function reduces to the (¢ — 1)-body one®*:
9a(T1ye e yPam1,T5) — Ga—1(T1,...,F5—1) When 743> p~13 (i=1,...,a=1). (4.7)
In particular, for @ = 2 we obtain
g(r) —1 when r» p~'/3 (4.8)

It is useful to express many-body distribution functions g, in terms of the short range

function
h(r)=g(r)-1 (4.9
and the connected parts g5 that have the property

g5(r1,...,0) — 0 whenany r; > p~M3 (5,5 =1,...,a). (4.10)

The connected parts become important when all the particles of the a-body cluster are
near, that is within the distance ~ p=/3 from each other. For the three-body distribution

function we have34
Giik = 14 hij + hig + hjp + g5 (4.11)

If the short range function h;; is denoted by a dashed line connecting points ¢ and j
hijj= o————o (412)
then equation (4.11) can be written as
gGiik=1l+ o————0 (4.13)

where it is understood that all possible assignments of the labels i, j, k to the end points
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(denoted by open circles) of the dashed line are to be taken into account. Similarly, for the

four-body function we obtain3*

gim =1+ o-—~——o0+ 0———c-goeu-—0po
=0 (] (+ C C (]
+ + Gk + 9551 + 95 + G+ Gk (4.14)
00— ———0

and so on.

We now proceed with the calculation of diagonal and off-diagonal CB matrix elements

of the unit operator and the Hamiltonian.

4.1.1 Diagonal CB matrix elements

The normalization of one-phonon state is given by

N+ N(N - 1)p? / Brid®ry %7 (g(rg) — 1) = NS(K), (415)

0] oo}, 10)

where the full line with an arrow pointing from the point i to the point j denotes ™™
factor, the full circle with the index denotes multiplication with p and volume integration
over the coordinate with that index, and the summation over all the indices is assumed.

For the normalization of the two-phonon state we obtain

(01 (ppq)(ahel) 10) = T T (0] i@ Tartamin) o)

i£j l#m
P q P—q P q p q
- QO+ [N O LN (O
1 3 A | t 3 m v 7
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P q p p—q
fol NN LY
3 T m T m 3

q q=—-p P q
ARER VAR AR
m 1 ] R B R )
+ i terms + gy terms. (4.16)

It was mentioned earlier that the distribution functions of the liquid depend only upon the
differences of the coordinates r;; = |r; — r;| so that an integration over one of the particle
coordinates can be carried out in every connected piece of diagrams in equation (4.16).
Such integration gives the factor = N/p, and we conclude that the diagram that contains

¢ separate connected pieces is proportional to N°. From equation (4.16) we then get

(01 (peg)ehel) 10) =
P q P q P q
NeJeNoYantyanYe
p q
4 Q ]Qmw(zv)
P p q q
Q+ Q X Q+ z_[.l] +0(N)

N*(1+(S(p) - 1)1 +(8(g) - 1) + O(N) = N?5(p)S(q) + O(N).  (4.17)
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It is not hard to obtain the normalization of the n-phonon state using the same method:

Pm Pm
0l epoh o = T O+ /7 O\ |+oer
m=1 1 A
= N"S(p1)---S(pn) + O(N™ ). (4.18)

The energies of the Feynman phonon states are obtained from the identity
(0] A(Z ~ Eo)B |0) = 5— Z(OI (Vid)-(ViB)|0), (4.19)
t—l
where A and B are functions of particle coordinates, like Pp, *** Pp,» Which commute with

the potential. For one-phonon state we obtain

(0] py(E - Eo)Pk|0)
k|H - Eglk) = (0] (V; \']
(KIE - Eolk) oo = g 01 (Vi (%ir) 10)

2mNS(k)(°|”k”k 10) = 2mNS(k) O om S(k) (420)

where the bar over the product of two p’s denotes that only the diagonal terms in the double

sum are to be taken:

Z gbrj-ar) Z e'(b-a)ri, (4.21)

i=j

Energy of the two-phonon state is

(0] (Pppq)(H - Eo)(pbol) 10)
(01 (appg) sbob) 10)
= e DO (Ve (Vitebol) 10

= s (P Gera)efeb 04

(p,qlH - Eolp,q) =

+9 [(0] (pa)ebed) 0) + 01 (o) eed) 10] + 201 rpra)iobol) 10}
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q
_ 1 e +
= mNE5(p)s(g) |F ——
v J J
P—q P q
T 3 o+t 7 T Tm

p P—-q q q-P
m+ m-}-gfjkterms
? m J m ? J
p p q
otV
1 1 J

1
- 2mN25(p)S(q)2{N 2[p?5(q) +¢S(p)] + O(N)}
2
2mp5(p) * 2qu(q) +O(N7). (2)

The generalization of this result to the case of n-phonon state is straightforward:

n

(pla"'ap ‘H_ Eﬂ‘pls“'ap
n n 21 S(p.

and we conclude that both the normalizations (4.18) and the energies (4.23) of Feynman

+0(N7Y), (4.23)

phonons are determined®® by the static structure function S(g).

4.1.2 Off-diagonal CB matrix elements

In this subsection we examine the off-diagonal CB matrix elements of the unit operator
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and the Hamiltonian. They are given by:

(0] (ppy -+ o )Pk ++phy) 10)
NCHm[S(pr) - S)S (1) -~ Sam) 2"

(pl,'”’pnlqh“-’qm) = (4.24)

(0] Vi(pp, ***Pp,) - Vs(P:‘n "-plm) |0)
N®+m)2[S(py) -+ S(pn)S(q1) -+ S(gm)]H/?

1
(pl""’p"K‘H —Eo)lql"-wqm) = %E
i

1
amNEFIA[S(py) - S(Pn)S(ar) -~ S(@m) P2
%3S Bi D301 (Bpy -+ Pps -+ Pp) - (Pl -+l -+ o) 10)- (4.25)

i=1j=1
CB states |p1,...,pn) and |qi,...,qm) are eigenstates of the total momentum operator
Pyt = 2?.’_:1 -I;V,- with the eigenvalues 37 ; p; and Y72, q; respectively. Thus the nec-
essary condition for their overlap (4.24) to be non-vanishing is that }°i-; pi = X0t qjs
i.e. that the momentum is conserved. The same is true for the CB matrix elements of the

Hamiltonian (4.25), since Py,; commutes with it. Anticipating our future needs, we set

Yri=Sa=k (4.26)

i=1 i=1

the momentum transfer. It is plain that, since m and » are finite numbers, in the limit
k — oo at least one of the momenta p; and of q; must have a magnitude of order k in order
to satisfy the above relation. Phonons whose momenta are of the order k are called "hard”,
as opposed to phonons with finite momenta (of order k%) which are named soft”.

It can be shown that the matrix elements (4.24) and (4.25) vanish if the states
[P1s..+,Pn) and |q,...,qn) contain an unequal number of hard phonons. To demonstrate

this we need to study the numerator of equation (4.24)

(O1 (opy *++Pp ok ++ph) (0= 5 (0] Tt tPrtin=imyy ==dnin) ).
fFe# ‘:n
HnF#E]
(4.27)

Let us assume that p; and q; ~ k while all other phonons are soft. If we write py =k +a

and q; = k+ b where a and b are finite, we find that the exponent on the right-hand
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side of the above equation contains the factor ekTian, If 4, # 71 the expectation value is
proportional to (S(k) — 1) which vanish at large k. This is due to the fact that the static
structure function S(k) of a Bose liquid approaches unity exponentially fast as k — oo
even when the interatomic interactions are hard, like for example the Lenard-Jones (6,12)
potential. We do not address here the problem of hard sphere gas whose (S(k) — 1) does
not go exponentially to zero at large k due to the singularity in the derivative of the pair
distribution function g(r) at r = 7. the hard core radius. The ¢; = j; terms do not vanish,

and we conclude that if p; and q, are the only hard phonons then

(0] (Ppy -+ oo )0k ++£hn) 10) = (0] (ppy -+ o, )Xok -+ bn) 10}, (4.28)

where we have used notation (4.21). Similarly, if p1, p2, q1 and q; are the only hard

phonons in CB states |py,...,ps) and |q1,...,qn) then we find

(0] (pp, ---pp,,)(pjn -'-p:’;,,,) 10) =

Tt T ? .‘.I t AN 1 ? 1./ t

(01 (Pp,Pp; *** Pp,)(Pa: PGz * Pam) 10) + (O] (p, Pp, *+* Pp, )(Pa1 PGz * P ) [0).  (4.29)
In general, we conclude that the only terms of the multiple sum (4.27) that contribute to
the overlap (4.24) are those where p’s and pt ’s of hard phonons are paired together in the
sense of equation (4.21). As a corollary it follows that the overlap of two CB states with

an unequal number of hard phonons vanishes since then such pairing is impossible.
In our calculation of S(k,w) we need to consider only the CB states with one hard
and any number of soft phonons. This is because the initial state pl |0) in equation (2.9)
belongs to the CB’s (after it is properly normalized) and it has only one hard phonon. One

hard phonon states are denoted by |P,p1,...,Pn), Where

P=k-p;—:=pn (4.30)

and all lower case p; are of order ”1”, i.e. of order k°. Using equation (4.28) we obtain

(0] (PpPpy -+ Ppu)Plypls -+ pb) 10)

P,p1yee s PulQydts e s Qm) = ,
(BsPrs- s PalQ s 9m) = T A5 ry - S(2)S(@) - ST

(4.31)
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where we have taken into account that S(P) = S(Q) = 1 since P,Q ~ k — . In

particular, for » = 1 and m = 0 we obtain

1
O (e 100 1
(k-Llk) = ———pr,zlpq-jlspf = N37%,/5(7) ——4
- % §g;_l_1 _ (4.32)

As far as matrix elements of the Hamiltonian are concerned, we need to consider only

the terms having P - Q in equation (4.25), which give contributions of order k? and k. The

4

terms having P - q; or p; - Q contain ppp};j and pp, pa terms respectively, i.e. they contain
expectation values of ¢’¥%im which vanish in the limit k¥ — oo. Finally, the terms having

Pi * q; give contributions of order 1 which can be neglected. It then follows that:
(P’pls oo 1Pn|(H - -EO)lQ’(hs cos ’qm) =

E]; [kz_k' (Z pit+ E q.‘l)} (P’pla--"Pn|Q’q1’"',qm)+O(ko)’ (433)

i=1n i=1lm

i.e. in the k¥ — oo limit the CB matrix elements of the Hamiltonian are proportional to

those of the unit operator. In particular, from equations (4.32) and (4.33) we obtain

1 kIS -1)

(k= L1|(H - Eo)|k) = —‘/_N-W + 0(k°). (4.34)

Finally, we want to calculate the off-diagonal two-phonon CB matrix element of the

unit operator that is given by

‘_—T-"l'
(=11 m,m) = OGP i) [0

= 785 (O P16 00+ 01 G apo) 0] 435

In order to calculate the second expectation value on the right-hand side of equation

(4.35) we need an explicit expression for connected three-body distribution function [
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It is not known exactly, and we will use an approximate form, the so-called convolution

approximation’®:

0\ ,O

\\ ,/
P / d®ry hhjihy = Y . (4.36)
l
)

The choice of convolution approximation will enable us to express all relevant CB and OCB
matrix elements in term of the static structure function. It is straightforward to build
approximate forms for the higher connected distribution functions that will have this same

property. For example™:

e N
c N’ / N,/
Gl ™ Y + 4 + p.¢
} / 7N\
i / /I \\
) A -0 d o
a o q P
\\\ ,/, \\ //
\, 4
+ Y + p S— (4.37)
| / \,
| // \\
L S d ©

etc. It can be easily checked that the convolution forms (4.36) and (4.37) satisfy the so-called

sequential relation for the distribution functions

Goet(F1s e esFaet) = i [0 ey 1m0) (4.38)

that follows from the definition (4.5). On the other hand, in the presence of the strong short
range repulsion the distribution functions g, ought to vanish whenever position of any two

particles coincide. In particular, we demand that
gii; =0, (4.39)
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which is not satisfied in the convolution approximation. The more detailed discussion of
merits and shortcomings of the convolution approximation can be found in the ref. 34.

From equations (4.35) and (4.36) we get

(k-Llk-m,m)=
I-m 1 m
Nz\/SiliSimi —_) —_— —_
t J ? J
')
1 l1-m m-1 m o
A A S T m

Nm‘ {(S(1-m])-1) + (S() - 1)(S(m) — 1) + (S) - 1)(S(1 - m]) - 1)+
+ (8(m) - 1)(S(1 - m]) - 1) + (S(¥) - 1)(S(m) — 1)(S(]l - m|) — 1)}

W {5()S(m)S(1 - mi) - () - S(m) + 1} (4.40)

4.2 Orthogonalization of CB states

CB states are complete and normalized, but not mutually orthogonal. They can be
used in the perturbation expansions, but require the special formalism that takes into the
account their nonorthogonality, which is often called correlated-basis perturbation theory
(CBPT)™. There has been an ample amount of work on this approach, and it was proved
that the perturbation expansion is renormalizable, and the leading terms in the expansion
of energy eigenvalues have been explicitly derived™. Recently, low order CBPT was used
in microscopic calculations on helium liquids®*™ and nuclear matter”®7”.

On the other hand, the clear analysis of the convergence properties of CBPT is yet
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to be given. In particular, it is not clear whether the nonorthogonality spuriosities that
are introduced when CBPT is truncated are negligible or not. Furthermore, the properly
orthogonalized eigenvectors can not be easily extracted out from CBPT which is a major
problem when quantities other than eigenvalues of the Hamiltonian are to be calculated.

In order to use normal perturbation theory, we have to orthogonalize the CB states.
There are continuum many of them, so that it can not be achieved using the well known
Gram-Schmidt procedure, which is described in subsection 4.2.1. It is possible to orthogo-
nalize the CB states using the Lowdin transformation™, whose definition and properties are
discussed in subsection 4.2.2. Resulting orthogonal states, however, have higher energies
than CB states; in particular, the ground state expectation value of the Hamiltonian is
higher than Fy, which is an unwanted property. Perturbative corrections move the energy
down again, and both the increase in energy due to the Léwdin transform and decrease due
to perturbative corrections are larger than the net displacement34™, In view of these diffi-
culties, the orthogonal correlated-basis perturbation theory (OCBPT) was not the preferred
tool for studies of quantum liquids.

Recently, however, the new orthogonalization scheme, free of the problems mentioned
above, was proposed by Fantoni and Pandharipande®® This new scheme is the subject of
the subsection 4.2.3. The energies of the orthogonal CB (OCB) states obtained with this
scheme are equal to those of CB states in the thermodynamic limit.

It is expected that OCBPT has better convergence than the nonorthogonal CBPT.
Moreover OCBPT uses the well known simple perturbation expansions instead of the
nonorthogonal perturbation theory. On the other hand, the computation of the matrix
elements is more involved due to complexity of OCB states. The convergence of OCBPT
is not expected to depend upon the specific nature of the bare interaction, i.e. if it has a
hard core or not. For this reason we use it to study the scaling properties of the response

at large k and w.
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4.2.1 Gram-Schmidt orthogonalization procedure

This procedure is well known and it is described in many texts on linear algebra, hence

we quote it without the proof. If |i) (¢ = 1,2,...) is an arbitrary nonorthogonal basis, then

the vectors

|1)as 7(—1—|—5i—|1), (4.41)

19 - Tzt lides aslil ) |
= y 1=2,3,... (442)
[61) - Sk lastil )]

form an ortho-normal basis. We note that the Gram-Schmidt procedure depends on the

liYes =

assumption that there are countably many vectors in the basis |¢), and is not applicable to
the CB states of equation (4.1) that depend on the continually varying momentum labels.
Also, we note that the orthogonalization process is recursive and thus depends on the
chosen order of vectors |1), |2),..., and different choices of the order yield different sets of

orthogonal normalized vectors |i)gs.

4.2,.2 Lowdin transformation and its properties

Lowdin has invented the orthogonalization procedure that is both applicable to the
arbitrarily large sets of states |¢) and does not depend upon the chosen order to label the

states. The procedure is defined as follows. Let |i) be an arbitrary nonorthogonal basis,

and Nj; be its overlap matrix
N = (ilf), (443)
and let all of the vectors |¢) be normalized. Then the vectors

ik = Sl (444)

form the orthogonal normalized basis, where (N~1/2);; is the inverse square root of the

overlap matrix (4.43).
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We will prove the above statement under the assumption that the label ¢ takes on dis-
crete values only. The generalization to the case of continually varying ¢ is straightforward,

the sum in equation (4.44) is replaced by the appropriate integral. For the overlap of the

Loéwdin states we obtain

it =[SOl [Simor
= Y (N2 Non(N2),; = 635, (4.45)

where we have used the hermitean property of the overlap matrix
N}; = Ny (4.46)

Now, to finish the proof, we have to show that N;; is a positive definite matrix, so that
(N-1/2),; exists. We will prove the equivalent statement that the determinants of all leading
minors of the matrix N;; are positive. We start this proof by recalling that the n-th leading
minor of the matrix is its » X n submatrix situated in the upper left corner of the matrix. It
is obviously constituted by the overlaps of the first n vectors |i). These n vectors form the
base of the n-dimensional vector space, and can be expanded in terms of an other orthogonal

basis |j] in this space as

i)=Y lilei (847)

=t
We denote the n-th leading minor of the overlap matrix by N, ;; and obtain

n
Y ke

=1

det [Ny, ;5| = det = det

| detleij| = |det|ei|[* > 0. (4.48)

The equality in expression (4.48) can not be reached since the matrix ¢;; transforms one
basis into another which guarantees that it is not singular (i.e. det|c;;| # 0), and we

conclude that

det[Nn i3] > 0, (4.49)
which finishes the proof of the existence of the matrix (N~1/2);; and of the statement (4.44).
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Figure 4.1: The two vector orthogonalization example (6 = 30°).

We can illustrate the differences between the Gram-Schmidt and Léwdin transforms

by an example of the nonorthogonal basis that contain only two real vectors:

1 sin@
1) = y 12)= (4.50)
0 cosf
The overlap matrix and its inverse square root are
i 8 _sint
N= 1 sin# N 1 , cos 3 sin 5 ’ (451)
sinf 1 sv ] - sin—g- cos %

and we obtain the following Gram-Schmidt and Lowdin states:

1 0
|1)GS = s |2)Gs = , (4.52)
0 1
€os % sin%
1)z = » 2= ) (4.53)
~sind cos &
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all of whom are shown in fig. 4.1.
As mentioned before, the nonorthogonal vectors |¢) enter the Gram-Schmidt procedure
in an asymmetric way since the vector |1) is singled out. If we renumerate them like [1)’ = |2)

and |2)' = |1), then the different set of orthogonal vectors

, sin@ , cos @
|1)gs = y |2as= (4.54)
cos @ —sinf

is obtained. On the contrary, the set |1)' and |2)’ yields exactly the same Lowdin states
since the overlap matrix N (equation (4.51)) does not change. Moreover, even the ordering
of the Lowdin states is arbitrary since the matrix N~/ is not unique for the given matrix

N. In our example we could have chosen

so 8 [
1 —8lnsg COS3
-12 _ _2 2 2
N sinf 0 o ’ (4‘55)
cos 7 - sin 3

instead of N~1/2 of equation (4.51), which would correspond to the exchange |1)z, «|2)r.
We also remark without the proof that Lowdin transformation has the variational
property that the set of vectors | )z is the orthogonal basis that is the "closest” to the

original set [¢). More precisely, the quantity

A% =[] = 10— 1P, (4.56)

where |4) is an arbitrary orthogonal basis, reaches the minimum when |z) =|¢);.
The calculation of N~¥2 is not easy, and becomes forbiddingly hard as the set %)
gets larger. To avoid these problems an approximate method of calculation of N~1/2 was

developed. The matrix N is divided into diagonal and off-diagonal parts:

N = 1+F, (4.57)

Nii = Ni(l-6;), (4.58)
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and its inverse square root is found as the sum of the infinite series

N-Y2-1- %ﬁ+ -f;f(T\f)2 -, (4.59)
where the coefficients in this expansion are the same as in the Taylor expansion of (1+z)~1/2
around the point 2 =0,

The expansion (4.59) is very useful in practice, but may fail to converge. More precisely,
it diverges when the largest eigenvalue of N exceeds 1. This possibility was overlooked by
many authors, including the Lowdin himself, who defined the transform in terms of the
expansion (4.59), instead of defining it in terms of N~1/? which, as we proved, always
exist. We will encounter the situation when the series (4.59) diverges in chapter 6 where
we calculate the deep inelastic response of the Fermi liquid at zero temperature. Here, we

give an elementary example that involves only three real vectors

1 1 1
1) = 2) = — 3)=— (4:50)
=101, _\/_2- 11, _\/f 0. s
0 0 1

The overlap matrix and its determinant are

1 12 12
N=[1//2 1 1/2 |» det|N|=%, (4.61)
V2 12 1

so that the inverse matrix is given by
3/4  -=1/2/2 -1/2/2 3 2 -2
Nl=4| 122 1/2 0 |=|{-vZ 2 0 [, (4.62)
-1/2/2 0 1/2 -2 0 2

and

-2 -2

\/__ 3v2-2
N‘1’2=——5-—2\/—t.—-¥ 2 VZ-1+y5-2v2 VB-1-\[5-2v/2 | (463)
-2 \/2'—1-\/5—2\/'2' ﬁ-1+\/5-2\/§

53



Next, we calculate the n-th power of the matrix

0 1V2 V2
N=N-1=|1/y2 0 1/2 (4.64)
V2 12 0
Using the ansatz
a, b, b,
M= b cn dn (4.65)
b, dp, cn
and the obvious relation
(W)™ =N, (4.66)

we obtain the following set of difference equations for the unknown quantities an, by, €5,

and d,;:
Q41 = \/ibn
bpsr = 7-% + 3bn

Cng1 = '\7551; +3ds

dn+1 = Vla'bn + %cn )

with the initial conditions

a1=0, b1=1/\/§, (]

&)

=0, d=1/2

(4.67)

(4.68)

The system (4.67), (4.68) is linear, and can be solved by usual methods. The solution is

an = T('\n-l - A""l)

b= /207 - Xp)

Cn = 711—7(A;'+1 - ,\121+1) - ,\g+1

d, = 711-7( 1
where

1+/17
4 9

A2 =

Xn+1 - ,\121-1-1) + A§+l J

\

(4.69)

(4.70)



are the eigenvalues of the matrix N, and we find that the series (4.59) is divergent due to
the fact that the eigenvalue A; ~ 1.28 is larger than 1.

In those instances when the series (4.59) fails to converge, it is still possible to find
N-1/2 by discretization and diagonalization of the operator Ni;. An other procedure for
calculation of N~/ is based on the observation that although series (4.59) is divergent

when the largest eigenvalue Apay of N exceeds 1, the series
-1/2 ! 52372
N-%a)=1- -2-aN + §(aN) - (4.71)

converges for all & < 1/Apax. After the series (4.71) is summed for several values of o the

operator N~2/2 is found by a rational (Padé) extrapolation®®! to @ = 1.

4.2.3 Fantoni-Pandharipande scheme of orthogonalization

As we have already mentioned, it is impossible to orthogonalize CB states (4.1) using
Gram-Schmidt procedure alone, while straightforward application of the Lowdin transform
leads to difficulties due to the fact that Lowdin states have higher energies than the CB
states. The Fantoni-Pandharipande orthogonalization scheme®®, which is free of these prob-
lems, is defined as follows. CB states (4.1) are orthogonalized recursively with respect to
the number of phonons they contain. We start with the one phonon states |p). They are
orthogonal to the ground state | 0) and to each other because of the momentum conser-
vation, and can be included in the orthogonal basis without change. In fact, any two CB
states with different total momentum are orthogonal to each other, which means that we
can restrict our attention to the subset of CB states with the given total momentum k

without loss of generality. Thus the first state in OCB is
|k) = |k). (4.72)

The two-phonon states are orthogonalized in two steps. First, a partially orthogonal (PO)
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set of two-phonon states is defined using the Gram-Schmidt procedure

|p1,P2} = |p1,p2)~ |k)(k| P1,p2). (4.73)

It should be noted that this expression differs from usual Gram-Schmidt one (equation
(4.35)) by the absence of the factor

[1- (k| p1, )2 (4.74)

which, it turns out, is equal to one in the thermodynamic limit®. A two-phonon PO state
|p1, p2} is orthogonal to one-phonon OCB state | k) by construction, but it is not orthogonal
to other two-phonon PO states |q;,qz}. This is achieved in the second step by the Lowdin

transformation;

Ip1,p2) = Y. 191, }N"Y%)qy qz: pr,pas (4.75)
q1,92

where, as before, N~1/2 is the inverse square oot of the overlap matrix N of the states that

are being orthogonalized, in this case of the two-phonon PO states:

Nqy,qipup: = {a1,2|P1, P2} (4.76)

The same two step procedure is repeated for three-phonon states, four-phonon states, and
SO on.

In general, if the CB states up to and including (» — 1)-phonon states have already
been properly orthogonalized, the n-phonon states are orthogonalized by first obtaining a
PO set of n-phonon states

Pree s PR} = P1e-oPr) = Y Y. Qe @m)@isee s Gm | Pryee s Pr)  (477)
m<n q1y.Qm

that are orthogonal to all (m < n)-phonon OCB states. These states are then mutually

orthogonalized using Léwdin transform

|P1y.-+yPn) = Z lqas. e Qn}(N_l/z)q:,m,Qn; P1ysPn? (4.78)
qQ14qn
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where N~1/2 here denotes inverse square root of the overlap matrix N of the n-phonon PO

states:
N‘lly---ﬂn; P1yeeiPn = {ql, v 7Qn|pla (XX 5p'n}' (4'79)

The methods for calculation of N=1/2 were discussed in subsection 4.2.2. The simplest one

is to sum the series (4.59), providing that it converges. In the case of n-phonon PO states

N-1/2 i5 given by

- 1
(N llz)qx.--..qn;m.--..pn = 61 Qi P1yPn — g{qh---,qnlpl,...,p,,}

3
+ ‘8' 2 {QI"'"qnlpll’-"ap’n}{pll»'"’p,nlpl’“',pn}"--- (480)
p’]"")p’n

where a bar on the matrix elements indicates that the diagonal matrix elements are to be
omitted.
It is shown in ref. 35 that in the thermodynamic limit (N,Q — oo while p = N/Q =

const) the Fantoni-Pandharipande orthogonalization scheme has the following properties:

a) The diagonal matrix elements of the unit operator are preserved by the orthogonal-

ization process, i.e. the OCB states are normalized as are the CB states.

b) The diagonal matrix elements of the Hamiltonian are preserved, i.e. the OCB states

have the same energies as the CB states.

c) The off-diagonal matrix elements are not preserved. For example, the matrix elements

of the unit operator vanish after the transformation.

These properties hold only for the OCB states with the finite number of phonons, which
limits the applicability of Fantoni-Pandharipande scheme to very low (strictly speaking zero)
temperature. At finite temperatures states with the number of phonons that is comparable
to the number of particles in the system have to be taken into account, and the above

properties are not applicable.

57



From here on the notation | i), | 7), ... will be used only for OCB states that are
obtained from CB states (4.1) using the Fantoni-Pandharipande scheme that we have just
described. These may also be denoted by listing all momentum labels whenever appropriate.

At the end we mention that the original definition® of Fantoni-Pandharipande scheme,
in which the PO states are defined as

|P1,---,Pn}'5 [P1s.--sPn) = Z E la1,.-,9m)(@1s -+ o1 Am|P1y .-, Pn)  (4:81)
m<n Q1yenlm

instead of equation (4.77), is incorrect since these PO states with different number of

phonons are not mutually orthogonal:

"UP1yeeesPul1ye-rQm} #0 forn#m, (4.82)

which can be verified by direct substitution.

4.3 OCB matrix elements in scaling limit

The OCB matrix elements of the unit operator are trivial since the OCB states are
orthonormal, and we need to study the matrix elements of the Hamiltonian only. The
diagonal OCB matrix elements of the Hamiltonian are the same as the CB matrix elements

by construction, and using equation (4.23) we get

(P1yee sl H |P1yev s Pa) = 2

™ S(p‘ (4.83)

On the other hand, the off-diagonal OCB matrix elements of the Hamiltonian are different
from the CB ones. We can generally write
IP,ph s ,Pn) = E Z a(ph ceeyPnydiy.-- st)lQ,qla vee ,Qm)y (4'84)
ms"l q1yQm
where the coefficients a(pi,...,Pn,Q1,...,qm) are obtained from the Gram-Schmidt and

Léwdin transformations described in the subsection 4.2.3. From equations (4.84) and (4.33)

58



we obtain

(P,p1,...Pn| H|P',pyy.-., PR)

Z Z a*(m,m,quhn-,Qm)a(Pi,..,,Piu,q;,---,q:n')
m<n ¢, Qqm

m'<n' q},..,q,

X(Q,Qh see ’qml(ﬂ - EO)IQ', qll’ v "q:n')

1 2 m m' ,
2 E E'n"; k“-k- Zq‘.+ij
m<n qi,..qm i=1 i=1

!
m!'<n' ql,...,q:n,

Xa‘(pl,' vosPrsqly. .. ’qm)a(pll" . ’p:u'sq'h vee ,q:,,')

X(Q’QI’ oo ’quQ" q’ls ven ’Q:n’) + O(ko)' (4°85)

The coefficient of the k? term is just the overlap (P,p1,...,pn | P',p},...,pl), Which
is zero for nondiagonal elements. Hence the leading term of the off-diagonal OCB matrix

elements of the Hamiltonian is proportional to &:

(Pyp1ye. | H |P',pY,. .., PL) = O(E). (4.86)

We conclude this subsection with the calculation of the one- to two-phonon OCB
matrix element of the Hamiltonian (k — 1,1| H |k). In order to do it we need to calculate
the corresponding PO matrix elements. Using equations (4.77), (4.72) and (4.34) we find
that the one- to two-phonon PO matrix element is given by (from here on we will omit the

O(k°) terms):

{k - L§(H - Eo)lk}

(k- LU(H - Eo)lk) - (k - L,1k)(k|(H — Eo)|k)
1, LSO-1_ k1 k-1

sk VR VAT = " 77 VO (487)

The OCB states are obtained from PO states using the Léwdin transformation for which

the overlap of the two phonon PO states is needed. From equations (4.73), (4.72), (4.34)
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and (4.40) it follows that the overlap of the two-phonon PO states is given by

{(k-Llk—mm} = (k—11k-m,m)— (k—1lk)(klk— m,m)
+/5@S(m) (51~ mi) - 1) (4.88)

The one to two-phonon OCB matrix element of the Hamiltonian can be calculated using

PO matrix elements (4.87) and (4.88) and equation (4.75) as follows:

k—-L1| H |k =

= {k-L}|(H - Eo)k} - “I‘Z{k =Lk - L, h{k - L, h|(H - Eo)lk}

+ E{k Llk-1,1} {k- b,k -1, b} {k-1;,L|(H - Ep)k} - ..
11112

- _Tlmim(k 1“"\(/’)7_51 : (;W;; A [SWS() (S -1l) - 1)k 1y 5\(/’%_51
2 [ o [ i f50SE ($01- - 1)
X 4/S(1)S (1) (S(h - Kal) - 1)k -1 S\(/l%—jl )

_ _T;—k 1[ T+ ( 2./(2411 A(lh)llS(g()z)l

8/(2‘13 et 11)/(2 ;3 A(h,1p) 125(;2()1) —)]

- 7’%%"; 0, (4.89)

10y = [\/fo(l)+\/§(l_)( £y, 501

2
At oot o

A(Lm) =1. i S(m)(S(]l - m|) - 1). (4.91)

The function f(I) is determined entirely by the static structure function S(g). It
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1R
Figure 4.2: The function f(I)/! (equation (4.90)) of liquid *He at equilibrium density and

zero temperature calculated from S(q) of ref. 81 with (solid line) and without (dotted line)

Lowdin corrections.

contains a leading term

foll) = 12@5)—(—;)1—)2, (492)

and small corrections from the Léwdin orthogonalization of the two-phonon states. When
| — 0 the function A(l,];) can be expanded in 1 and substituted in equation (4.90). The
angular integral of the zeroth-order term of this expansion vanishes, and the bracket that
multiplies \/S(7) in equation (4.92) is proportional to l. Thus, the function f(l) is linear for
small values of ! and has the same slope as fo(l). The functions f(I) and fy(l) computed
using experimental®! §({) for liquid “He at low temperatures are shown in Figure 4.2.

We want to stress that the simple angular dependence of the one- to two-phonon
matrix element (4.89) and the linearity of the function f(!), which will both be crucial

for the calculation of the scaling function J(y) in chapter 5, are not the artifacts of the
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convolution approximation that was used in the calculation of the overlap of two-phonon
CB states (equation (4.40)), but rather a genuine property of the matrix element (4.89).
Indeed, the three-body integral in equation (4.40) depends only on I, m, and i- rh due
to the isotropy of the liquid, and so does the overlap of the two-phonon PO states (4.88).
This property alone fixes the angular dependence in equation (4.89), as is obvious from the
derivation therein. An additional feature of the overlap (4.88) is that it vanishes when [ — 0
or m — 0 since PO states with an unequal number of phonons are mutually orthogonal by

construction, which explains the linearity of the function f(I) at the origin.

4.4 OCBPT of S(k,w)

The DSF S(k,w) (equation (2.9)) can be written as
S(k,w) = —%ImD(k,w) (4.93)
where
D(kyw) = 3-{01 pyc o — H + Bo + ir] o} |0) (494)
is the density-density response function (DDRF), and % is a positive infinitesimal. The

Hamiltonian of the system is divided into diagonal and off-diagonal parts with respect to
OCB:

H=Hy+H, (4.95)
(i] Ho |5) = 8;;(i| H |4), (4.96)
(@) B'|j) = (1 - 6;)(i| H 13), (4.97)

and since OCB states ), | j) are close to the exact eigenstates of the Hamiltonian, we expect

H' to be small and treat it as a perturbation. The resolvent in DDRF can be expanded as:

D(kw) = 33001 pclo~ Ho+ Eoctin]™ (B [o~ Ho+ Bo+in]™")" o} |0

n=0

ZXS(i)Go(i)Xo(i) + ZXG (1)Go() H;;Go(5) Xo(3) + +++» (4.98)
i 1,
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where

Xo(i) = =4l o} 0) (499)
and
Go(3) = (i| [w = Ho + Eo +in] ™ |3) (4.100)

are energy denominators.

In general, matrix elements Xo(%) can be formidable. However, if we use the Feynman

phonon OCB states as the intermediate states |¢), the state

\/I%STBPL l0), (4.101)

(k) =

is a member of OCB, and the matrix elements Xy(%) become simply
Xoli) = /S (k)b (4.102)

In this case the expansion (4.98) can be further simplified to obtain

D(k,w) = S(k)Go(k) + Go(k)[D_ Hy;Go(i)HyGo(k) + -
S(k)[Go(k) + Go(k)S(k,w)Go(k) + Go(k)E(k,w)Go(K)E(k,w)Go(k) + -]

S(K)Go(k) + Go(k)S(k,w)D(k,w), (4.103)

where

B(k,w) = 3 HigGo(i)Hjy + 3 HigGo()H Goli) Hjgc + - (4.104)
s 4

is the proper self energy (PSE). Finally, from equation (4.103) it follows that

S(k)

D(k,w) = , 4,105
&)= G -2y 1 i (4.105)

which, together with equation (4.93), gives
S(k,w) = =S &) ImB(k,w) — 7 (4.106)

T (Gg'(k) - ReZ(k,w))? + (ImE(k,w) — n)’
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4.5 Scaling property of S(k,w)
When £ is large, §(k) = 1, and from equations (4.83) and (4.100) we obtain:

Golk) = - o pin]t = Pyt in)? (4.107)
om k ? ’

Dkw) = w- -2’% - 3(k,w) + i) (4.108)

Moreover, it was proved in section 4.1 that only the states |¢) that have one hard phonon
with momentum of order k and one or more soft phonons with finite momenta contribute

to X(k,w). These states are represented as:

Ii) =|k‘p1 "”‘"Pn-l,Pl,---,Pn-l), (4.109)

where |p;| are finite, i.e. of order k°, and

Goli) = = 5(k=p1+++=pact) + O(K?) 4 ir]"
= %yo(i) +0(k™%), (4.110)
90G) = =k -(Pr++ +pa-1) +in] ™ (4.111)

It was also proved in section 4.3 (c.f. equation (4.86)) that the off-diagonal matrix

elements H]; between states having one hard phonon each are proportional to k [m,ie.
= Xt 4o 4.112
i = —lhij + O(k™)] (4.112)

where hl; is independent of k. From equations (4.104), (4.111) and (4.112) it follows that

25 (k,w) = Es(y) + O(™?), (4.113)
Ts(y) = 2 hi;90(i)hly + zhg,.go(i)hg,-go(j)h;k 4oeen (4.114)
Consequently ’ ”
X pew) = Dsts)+0G™), (4.115)
Ds(y) = [y-Zs(y)+in™, (4.116)
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so that

J(y) +O(k™), (4.117)
1 ImZs(y) — 7
7 (y — ReZs(y))? + (ImZs(y) — 7)?’

k
—"-;S(k,w)

J(y) =

(4.118)

ie. %S(k,w) is function of y alone in the limit K — oo, and y-scaling is found to be an
exact result.

We also obtain the useful relation
_zs(y)
1-yD = —_— 4.119
Y S(y) y— ES('!I) + i ( )

from equation (4.116).

65



Chapter 5

Calculation of the scaling function

of the Bose liquid at T=0

In this chapter we present the calculation of the zero temperature scaling function
J(y) of the Bose liquids in general, and of *He in particular. The material is organized as
follows. In section 5.1 we derive an analytic expression for J(y) using the Ward identity
that is proved in section 5.2. The properties of this J(y) are discussed in section 5.3, and
numerical results on *He are given in section 5.4. Finally, in section 5.5 we give the brief
summary of the theory of deep inelastic response of Bose liquids at zero temperature, i.e.

of chapters 4 and 5.

5.1 Calculation of the scaling function

It was shown in chapter 4 that spectator phonons do not contribute to the matrix

elements of OCB, i.e.

(pl,---,Pmth,---,Qm| H Ipll’-"’p:;',qla“-’Qm) = (pli""pnl H lpll"-wp:z') (5°1)
when the number of phonons (n 4+ m) and (»’ + m) is finite®®. Because of this property
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Figure 5.1: The expansion of the self-energy Xs(y) (equation (4.114)). The thick line

represents the hard phonon while the thin lines represent the soft phonons.

it is possible to consider the diagrammatic expansion of Xg(y) (equation (4.114)) shown
in fig. 5.1, where the thick line represents the hard phonon and thin lines represent soft
phonons. An exact calculation of X g(y) is difficult because of the large number of different
types of vertices, representing the matrix elements h{;, in this expansion. However, all the
diagrams based on the vertex at which the hard phonon emits or absorbs a soft phonon, as
illustrated in fig. 5.2, can be summed by the standard field theoretical methods, as will be

shown below.

In section 4.3 it was shown that this basic one- to two-phonon vertex is given by

P (k| B k- L) = To@) + O(k™) = -;—ﬁ%l N+0k1Y. (52)
The function f(l) is determined entirely by the static structure function §(g), and is also
calculated in that section. We recall that S(g) is the only input in our calculation of the
scaling function, as opposed to other works where the ground state momentum distribution

n(q) is used.

Since we closely follow the calculation of electron self-energy in QED, it is natural to
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Figure 5.2: Diagrammatic representation of terms that include only the one- to two-phonon

vertex: the proper self-energy Xg(y).
use the same terminology whenever possible. Thus, the dressed vertex I'(l,y) is defined as
I'(l,y) = To()[1 + A(L,p)), (5.3)

and it represents the sum of diagrams in fig. 5.3; A(l,y) is the vertex correction. The
dressed hard phonon propagator g(y) is shown in fig. 5.4, and the Dyson equation®#4 for

the proper self energy is shown in fig. 5.5. Analytically it is written as

Zs(y)

Y T(1,v)g(y + k- DTo(l)
1

. 1k 1+ A(,y) _ Lkl

= ;( JN 2 f(l)) y+ﬁ-l—2s(y+ﬁ-l)+iﬂ( VN 2 f(l))
d31 (f( . i)zf(l)[l + A(l, y)]

(2m)3p 4[y+]2.1-)]5(y+fc-l)+i’l7].

(5.4)

If we put A(l,y) = 0 in equation (5.4), we obtain the integral equation for the sum of
all diagrams without intersecting soft phonon lines as is illustrated in fig. 5.6:

v [ (k-1)25(0)
Bs(v) = / (2r)p aly+k-1-Sh(y+ k- 1)+ (55)
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Figure 5.3: Diagrammatic representation of terms that include only the one- to two-phonon

vertex: the dressed vertex I'(l,y).

+ see

1}
+

Figure 5.4: Diagrammatic representation of terms that include only the one- to two-phonon

vertex: the dressed hard phonon propagator g(y).

Figure 5.5: Diagrammatic representation of terms that include only the one- to two-phonon

vertex: the Dyson equation.
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Figure 5.6: Diagrammatic representation of terms that include only the one- to two-phonon

vertex: nonintersecting diagrams of Xi(y).

This integral equation for £(y) can be easily solved numerically by iteration.

To calculate g(y) including the vertex correction we need another equation relating
Zs(y) to A(l,y). As mentioned in chapter 4, the number of hard phonons is conserved in
this theory, and equals to one. This conservation is analogous to the charge conservation

in QED, and it is not surprising that the identity
k-1A(Ly) = Ss(y) - Ss(y + k1), (5.6)

analogous to the Ward identity of QED,%60 holds. The proof of this identity is given in

section 5.2, Equation (5.6) is expressed as

k 1[1+AQ )] =[y+k-1-Zs(y + k1) - [y - Ds(y)] (5.7)
and substituted into equation (5.4) to obtain

@ k-ifO{ly+k-1-Ss(y+ k-1 - [y - Es@)]}

W) = | e 4z[y+1} 1- zs(y+l"< 1)+ in]
X ¥iU)] k:1/0)
@ k- Tl ~ Zs(y)] / (27 4y +k-1-Zs(y + k 1)+ in
_ k-17(1)
= —[y—2s(y)] / 7P dlly+k-1-Ss(y+k-D)+in] %)

Substituting this ¥5(y) into the right-hand side of equation (4.119) we obtain

k-i(1)

1-yDs( /
¥Ds(y @ ally+ k-1- Ss(y+ k1) + i7]
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&
(27r)3p
— / dl,Ds(y + L)L F(L,), (5.9)

At g, 1f(')D s(y+k-1)

where

Foy= "ot LOEER) [0 10

p? + z? t
At small ¢ the function f(t) is linear in ¢ so that F(z) is finite and continuous at z = 0.

(5.10)

Moreover it is real and decreasing since f(t) is real and positive. Taking the real and

imaginary parts of equation (5.9) we obtain

yReDs(y) - 1

1611r2p/ dz(y - z)F(y - z)ReDs(2), (5.11)

yImDs(y) 16;2,) / do{y - 2)F(y - 2)ImDs(z). (5.12)

Equations (5.11) and (5.12) are of the convolution type, and can be solved by Fourier

transform. Function F(z) is absolutely integrable since the integral

/_o:oda:IF(z)l = / dz / pip f(x/pzp:::z) L fg)
= 2/(; dzf(z) (5.13)

is finite, which implies that its Fourier transform F' is defined. We use the identity

i) = [ deysa), (5:14)

where prime denotes the differentiation of the function with respect to its argument, and

introduce the notation

X(s) = _°° dy e ReDs(y) (5.15)
Y(s) = _°° dy e ImDs(y), (5.16)

to reduce the integral equations (5.11) and (5.12) into differential ones

X'(s) aF'(s)X (s) — 2mid(s) (5.17)
Y'(s) = aF'(s)Y(s), (5.18)
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where a = 1/1672p. Equation (5.18) is linear homogeneous differential equation of the first

order whose solution is
Y(s) = C; e2F @), (5.19)
where C; is an arbitrary constant. The equation (5.17) is not homogeneous, and we look
for its solution in the form
X(s)=C(s) eoF (), (5.20)
where C(s) is the function to be determined. Substitution of the ansatz (5.20) into equation

(5.17) gives

C'(s) = —2mi e~ FO§(s) = ~2mi e~ FOg(s)

C(s) = ~2mie~2FOg(s) + C, (5.21)
and we obtain

X(s) = Cre?F @) — opiesFo)-F ©)g(s), (5.22)
where C} is another arbitrary constant. Expressions (5.22) and (5.19) are general solutions
of the equations (5.17) and (5.18) respectively. |

In order to fix the values of arbitrary constants C; and C; we need some additional

constraint on X(s) and Y(s). From equation (4.116) it is obvious that the function Dg(2)
viewed as the function of the complex variable z has no singularities in the upper half-plane

(Re z > 0). Real and imaginary parts of such functions are connected by the dispersion

relations8>86
1 [ ImDg(y'
ReDg(y) = =p / dy’—TSQ—)- (5.23)
T J-oo y-—-v
1 00 ReD
mDs(s) = ~2p [y P, (524
~00 )

where p denotes the principal value of an integral. The Fourier transforms of ReDg(y) and

ImDs(y), X(s) and Y (s), are also connected. Using the formula®’

o0 e—iya
p | 4= =—insenls), (5:25)

-0
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we obtain from dispersion relations (5.23) and (5.24) single relation
X (s) =i sgn(s) Y(s), (5.26)
which, together with equations (5.19) and (5.22), yields
Cy - 2mi e=FOg(s) = § C; sgn(s). (5.27)
The last equation is equivalent to the system
Cr = —~iCy , C) —2mi eFO = iC,, (5.28)

which is obtained from it by substituting the values s < 0 and s > 0 respectively. The

solutions of this system are

Cy = —iCy = im e=°FO), (5.29)

and we obtain
X(s) = —in eFO)-FO) ggn(s), (5:30)
Y(s) = —retFl-FO), (5.31)

In the limit 8 — o0 F(s) — 0, and hence X(s) — Fire~F O, Y(s) - —re~2F©), Thus,

we have to be careful when inverting Fourier transforms. Using the formula (5.25) we obtain

ReDs(y) = ‘/; . ‘21—; e“yX(s) = —ir e'ﬂF (0) / %wsgn(s) a.F(s) -14 1)
= e FO [—-i- / ds sin(sy) (e“F ) _ 1)] . (5.32)
y Jo
Similarly we find

mDs(y) = /_°° .Z_E.eiwy(s)=_,r oFO) [° 98 e (P ~141)

_°°7r

= - oFO) 76(y) + /‘; > ds cos(sy) (e“F (8) — 1)] . (5.33)
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We note in passing that ReDs(y) is an odd function and ImDg(y) an even one. The

expressions (5.32) and (5.33) can be written together as

Ds(y)

¢~oF(0) [-‘.lll- —ird(y) + [) ” ds (sin(sy) — i cos(sy)) (eai'(a) - 1)]

) [y : o /0 ™ ds e (2P0 - 1)] , (5.34)

It is also possible to write down an explicit formula for the proper self energy Z(y) in terms
of the function #'(s), but we will not do it here. Instead, we return to our main goal, the

calculation of the scaling function J(y). Since InDg(y) = —xJ(y) it follows from equation
(5.33) that

Jiy)=C {6(y) + /_ : -2‘% e'v [exp (a /_ : dze"””F(z)) - 1] } , (5.35)

where we have introduced the constant

C=eFO = exp (—2a ./o = d:cF(a:)) = exp (—2a /0 ” dl f(l)) . (5.36)

Formulae (5.35) and (5.36), together with (5.10) and (4.90), express the scaling function of
the Bose liquid at zero temperature in terms of the static structure function $(g). They

are the main result of this chapter.

5.2 Proof of the Ward identity

The Ward identity (equation (5.6)) establishes the connection between the proper self-
energy Ys(y) and the vertex correction A(l,y). The diagrams that contribute to the s(y)
are shown in fig. 5.2. If an external leg 1 is attached to any hard phonon propagator in
any of the Xs(y) diagrams, a diagram contributing to the A(l,y) is obtained. In fact, all
the diagrams that contribute to the A(l,y) (shown in fig. 5.3) can be generated in this way
from the £5(y) diagrams. Thus, there is one to one correspondence between the diagrams

that contribute to T5(y) and the groups of diagrams that contribute to the A(l,y) that
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5N O, o xR

Figure 5.7: An example of the correspondence between X g(y) diagrams and groups of A(1,y)

diagrams.

have the same arrangement of the internal lines as the Zg(y) diagram plus an additional

external leg 1 attached to any hard phonon propagator. An example of this correspondence

is shown in fig. 5.7.

The Eg(y) diagrams can be enumerated by an index »:

Zs(¥) = ) Ssu(y)- (5.37)
v
The same enumeration scheme can be extended to the corresponding groups of the A(l,y)
diagrams:
A(lv y) = 2 Z Au,iy (17 y)’ (5.38)
vV o4

where the indices i, enumerate the diagrams A, ;, in the group », and all of these can be
generated from the diagram Xg, by the procedure discussed above. We will prove the Ward

identity (5.6) by showing that it holds for each group v separately, i.e.

ko1 ) A (Ly) = Ssu(y) - Ssp(y + kD). (5.39)
iy
We begin the proof of equation (5.39) by quoting the identity:
kl[y+k-m+in]™ [y+k-(m+ D)+in]? = [y+k-m+ig] ™ - [y+k-(m + D+in] . (5.40)
From equations (4.111), (5.2) and (5.40) it follows that

k-1go(y + k-m) To(!) go(y + k- (m+1)) =

To(?) [go(y + k- m) - go(y + k- (m + D). (541)
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k-1
-m-1

Figure 5.8: Graphical representation of equation (5.41). An arrow pointing from a vertex
denotes an extraction of the momentum from the hard phonon propagator; shaded oval

stands for an arbitrarily complex connection scheme of the internal lines.

Equation (5.41) has a simple graphical representation as is shown in fig. 5.8. An arrow
pointing from a vertex denotes an extraction of the momentum from the hard phonon
propagator, which is an artifact of the removed external leg 1. A shaded oval stands for an
arbitrarily complex connection scheme of the internal lines.

Next, we consider the arbitrary group v of the diagrams A, ;, contributing to the vertex
correction A(l,y). With the aid of equation (5.41) it is easy to demonstrate that equation
(5.39) holds for an arbitrary v as is done in fig. 5.9.

This finishes the proof of the Ward identity, since it was already shown that the validity

of equation (5.39) for all »’s implies equation (5.6).
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Figure 5.9: The proof of equation (5.39).
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5.3 Discussion

We begin the analysis of the scaling function J(y) (equation (5.35)) by evaluating it
in the limit y — 0. In this limit the function F(y) (equation (5.10)) can be expanded as
follows:

Py )= FO) - bljin 2 + 0. (542

In section 4.3 it was shown that the slope of the f(I) at the origin is the same as that of
Jo(!) (equation (4.92)) so that

im I i o0 _ g
i = m T =i S(l) = 2me, (5.43)
where ¢ is the sound velocity in the liquid, and we obtain
F(y = 0) = F(0) - 2mc|y| + O(3?). (5.44)

The function F(y) has a cusp at y = 0, and we will now show that as a consequence the
scaling function J(y) has a cusp at the origin in addition to the é-function. In the theory

of Fourier transforms®® it is proved that for sufficiently smooth functions ®(z):

@f(o) a"(0) _ 80)(0)

/ dz cos(sz)d(z) = = % T $— 0. (5.45)
Thus, the Fourier transform of the function F(z) is
F(s—>00)=2 ] dz cos(sz)F(z) = % +0 ( ) (5.46)
so that the integrand of equation (5.35) becomes
4amc 1 me 1
aF(e) —_
+0 (34) Iy 3 +0 (s ) 8 — 00, (547)

From equations (5.35), (5.45), and (5.47) it follows that

J(y = 0)=Cé(y) + 1 [A Blyl], (5.48)
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where the constant C is given by equation (5.36), and the constants A and B are given by

A =4npC /0 " ds [exp (8—:3; /0 = dz cos(sz)F(z)) - 1] ) (5.49)
B= C%f. (5.50)

The scaling function in IA (equation (2.24)) exhibits the same small y behavior with

the coefficients
00
Cra=ne, A= /o dgqn(q), Bia= zi_%qn(q). (5.51)

Using the well-known expresion for the strength of the 1/q singularity of the momentum

distribution n(q) at zero temperature®® we obtain

Bra= nc-”;—c, (5.52)
and find that
B B
C=Cu’ (5.53)

i.e. the ratio B/C in our theory is identical to that in IA.

Next, we want to discuss the origin of the é-function peak at y = 0. In general, the
presence of the §-function in DSF means that probe couples to along-lived state with a given
energy and momentum. The inverse lifetime of this excitation is given by the imaginary
part of the self energy: 7! ~ ImE(k,w), and it is expected to be proportional to k on the
basis of the semi-classical value 7 ~ pve where p is the density, v = k/m the velocity and &
the average two-body scattering cross section. The Im¥(k,w) depends upon g, and it is of
order k when y # 0. However, in the present calculation the Im¥(k,w) at y = 0 does not
have a term of order &, and hence the §-function at y = 0 in the J(y).

The origin of the y dependence of the lifetime can be easily seen in the contribution
of the second order diagram, i.e. the first diagram of fig. 5.2. In second order, an off-shell

Feynman phonon with momentum k and energy w = k%/2m + ky/m can decay into two
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Feynman phonons of momenta k — 1 and 1, thus acquiring a lifetime given by*®

3 2
Lo / (2”)'3 Ik - l,l|H|k)|26(w—(k2ml) '2ml.29(z))‘ (5.54)

Using equation (5.2) we obtain

L. @%27% [ 112508+ k14 0. (5.55)

When y # 0 we get 7 ~ k™! as expected from semi-classical arguments, but when y = 0
(on-shell Feynman phonon) the situation is completely different. In that case the energy-
conserving §-function forces the cosine k-1 to be of the order k™! which makes the integrand
of the equation (5.55) small, and we find that on-shell Feynman phonon has a long lifetime
7 ~ k in this order.

The Zs(y) of equation (5.8) has the properties:

ReXs(-y) = ~ReZs(y), (5.56)
Im¥s(-y) = ImEs(y), (5.57)
25(0) = 0. (5.58)

The solution of the simpler integral equation (5.5), obtained by summing diagrams of fig.

5.6, also satisfies the symmetry properties (5.56) and (5.57), however
ImE5(0) # 0. (5.59)

Hence, the scaling function J(y) obtained from the X5(y) does not have a é-function at
y = 0. The approximation X(y) is bad since there is an exact cancellation between the
summed and the omitted diagrams at y = 0. This cancellation occurs order by order in
loopwise expansion of X5(y). We will demonstrate it on a two-loop level, i.e. we will show

that the sum of the second and the third diagrams on fig. 5.2 vanish at y = 0. We denote
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this sum 2(52)(3/) and obtain:

28(0) =
Bl Bm (k- D)2(k-m)2f()f(m) ( 1 L1 )
(2r)3p (27)3p 16(k -1+ in)k - (14 m) + i) \k-1+ip k-m+ip
®l  Bm k- mf(l)f(m) A
(273 (2r)Pp 1612m2[k - (1+ m) + i) (k-1+k-m)
Fl Pm k-mf)f(m) _
(27)3p (27)3p  1602m2

0. (5.60)

In the present calculation it was possible to sum all the diagrams containing one- to two-
phonon vertex (fig. 5.2), and thus preserve this cancellation. If, for some reason, the J(y)
has to be approximated by a subset of diagrams, then it appears that the correct way to
do it is to sum the diagrams order by order in the interaction rather then to sum infinite
subsets of diagrams like £(y).

In our calculation of the scaling function J(y), we have taken into account only the
diagrams containing one- to two-phonon vertex. We can estimate the validity of this ap-
proximation by calculating the sum rules (2.80)-(2.82). The y° sum rule (2.80) is satisfied

since from equation (5.35) it follows that

/ " dy J(y) = eFO [1 + /_ : ;;’;r 2rd(s) (e - 1)] =1, (5.61)

-00
The y sum rule (2.81) is satisfied since J(y) is an even function of y, and for the y? (kinetic

energy) sum rule we obtain

2m *© 2 — ® ds aF(s) i 2_iys
3 E /_mdyyJ(y)—C'/_mmr (e 1) dy y’e

-00

00 - 2 -
= -C » ds (eaF(a) - 1) 6"(8) =-C [%2_ ea.F(a)]

=0
= —c|af"(0)+ (aF’(O))z] sFO) = _mizp j: dy (—iy*F(y)
- 24:_2,) /0  dl BE(), (5.62)

where we have used the fact that F(y) is a symmetric function which implies £(0) = 0.

However, since equation (5.35) is not exact, the right-hand side of equation (5.62) may be
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different from 2mE; /3, and the difference is a measure of the importance of the neglected
one- to many- phonon diagrams.

Finally, we want to show that in the uniform limit (|g(r) — 1| « 1) the scaling function
J(y) (equation- (4.35)) equals to the Jz4(y). The uniform limit* is the situation where‘ the

radial distribution function is very near to unity:
g(r) =1-0aG(s), s=(ap)®r, G(0)=1, (5.63)

where « is a small parameter. Physically, it corresponds to the dense (p — 00) systems
with regular interaction, although it can be realized even in dilute (p — 0) systems provided

that the potential is sufficiently weak. The static structure function is given by3*
S(g)=1-F(p), p=(ep) g, F0)=1. (5.64)

Since S(q) depends only on p, each integration over momenta gives an additional power of
. Thus, to the lowest order in @, the Lowdin corrections in equation (4.90) vanish and the

function f() becomes:
PS@ -1)?
5()

The above relation between S({) and #(!) in the uniform limit is derived in ref. 34. Using

Jul) = = 41%n(]). (5.65)

it the scaling function in the uniform limit becomes

Ju(y) = Cub(y) + - / " I@ = Cré(y) + 4—}— ™ dg qn(g), (5.66)

167%p Jiy m2p Jy)
where
cU=1_L/°°dsz(z)=1-/ P4 o) (5.67)
872p Jo (27)3p '

is the fraction of particles in the condensate, as in Jra(y).

5.4 Numerical results

In this section we will apply the theory developed in section 5.2 to the liquid *He

at zero temperature. The vertex function f(!) given by equation (4.90) was calculated in
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Figure 5.10: The scaling functions of liquid *He at equilibrium density and zero temperature.
Solid line: J(y) of equation (5.35) obtained using f(I) of fig. 4.2; dotted line: Jra(y)

generated from n(q) of ref. 68. The é-function peaks at y = 0 with the respective strengths
of 0.15 and 0.092 are implied.

section 4.3 and shown in fig. 4.2. As was already mentioned, the only input needed in this
computation is the static structure function §(g). It can be seen that the Léwdin correction
(i.e. the difference between f(I) and fo(l)) is small, but it is nevertheless significant since the
scaling function J(y) (equation (5.35)) and the strength of the é- function peak (equation
(5.36)) depend exponentially on f(1).

Using this f({) in equations (5.35) and (5.36) we obtain C = 0.15, and the J(y) that
is shown in fig. 5.10. For comparison, J74(y) generated from the variational n(g) (ref. 68)
that has the condensate fraction n, = 0.092 is also shown. In order to test the sensitivity
of the calculated J(y) to changes in the input, we have computed it using the Monte Carlo

5(q) from ref. 61, and obtained essentially the same result. In particular, in this case C =
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0.14 which is to be compared with n, = 0.11 in the Monte Carlo calculation of ref. 61.

Finally, using the value E; = 14.8K from ref. 68 and f(!) from fig. 4.2, we find that

2
2mE,, 5 Wp j dl 12 £(1) = 0.97. (5.68)

As was argued in section 5.3, the closeness of this value to 1 suggests that diagrams involving
one- to many-phonon vertices have contributions much smaller than those of diagrams
containing one- to two-phonon vertex only. However, the numerical value 1 - 0.97 = 0.03 of

the error has to be taken only as an estimate since the experimental S(g) and theoretical

E; are used to obtain it.

5.5 Conclusions

In this and the previous chapter we have presented the calculation of the §(k,w) of
a Bose liquid at T = 0 in the asymptotic limit k,w — o0, at y = £(w — k?/2m) =const,
using OCB formalism. The orthogonalized Feynman phonon states are used to construct
the OCB. It is found that y-scaling is exact in k — oo limit, i.e. 225(k,w) is a function of
y alone. It is also found that the dominant physical process is emission and absorption of
soft phonons (i.e. phonons whose momenta are < k) by the hard phonon that is generated
by the recoiling atom.

In order to obtain the scaling function J(y) an approximation that amounts to allowing
soft phonons to be emitted or absorbed only one at the time is introduced (c.f. figs. 5.2-5.6).
The resulting theory is solved using field-theoretical methods without further approxima-
tions, and the closed expression for J(y) is obtained (c.f. equations (5.35), (5.36), (5.10)
and (4.90)). The only input needed is the static structure function S(g) of the system.

It is found that J(y) has a é-function peak at y = 0, whose strength is connected with
the slope %%)-lyﬂ in the same fashion as in the IA (equation (5.53)). In the case of the

liquid *He this strength is equal to 0.15, which is to be compared with the corresponding
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value of ~ 0.1 in the IA that is obtained from the theoretical calculations of the momentum
distribution®®. The plot of the calculated J(y) vs. Jra(y) for y # 0 is given in fig. 5.10.

Finally, the validity of the approximation made in neglecting processes that involve
simultaneous emissions and/or absorptions of multiple phonons, is tested in two ways. First,
the kinetic energy sum rule for J(y) is evaluated (equation (5.62)). Its numerical closeness
to the theoretical value suggests that the neglected processes are not important. Second, it
is verified that in the exactly solvable uniform limit (g(r) — 1 < 1) J(y) reduces to the IA
as it should.
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Chapter 6

Correlated basis theory of S(k,w)

for Fermi systems

The OCB theory of the deep inelastic response of Bose liquids was presented in chapters
4 and 5. In this chapter we present its generalization to the case of Fermi liquids. The CB
states suitable for Fermi systems are defined and discussed in section 6.1. In section 6.2
we examine the CB matrix elements of the unit operator and the Hamiltonian. Finally,
in section 6.3 the OCB perturbation expansion of S(k,w) is considered, and its y-scaling

property is proved.

6.1 The choice of the CB states

The n-particle n-hole CB states for Fermi systems are given by3435

Glpl""’pn;hls---;hn]

Ipl--- P'hla--'ih)E ’ (6'1)
n " [P1ye+esPrih1yeres BalGIGIPL, v i by, , B2
where the correlation operator G is defined as®%°!
G = F(R)Fsr, (62)
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where

FR)= T[] flr) I Airiemw) - (6.3)
(<IN i<ichsN

is an operator that depends upon the positions of the particles R = (ry,...,ry) only, and

Fgp= H fer(ij) (6.4)
Wj
i<j<N
are Feynman-Cohen backflow®? correlations. The non-interacting particle-hole states | ] of

the ideal Fermi gas are Slater determinants

B(R) = det|gi(ry)| = det |2

: (6.5)

The spin functions are suppressed for brevity. The effect of the backflow operator on the

determinant can be expressed as

Fr@(R) = &(R') = det |¢s(x})|, (6.6)
where
ri=ri+ ) a(rir, (6.7)
i(#9)

and 7(r) is a function that is determined variationally.

Comparison of the Fermi CB states (6.1) to the Feynman phonons (4.3) that were
used in the Bose case shows two main differences. First, the Fermi gas states ®(R) can
not be expressed as a product of the non-interacting ground state $o(R) and the sum of
¢'%T; factors or their products. Thus, it is impossible to express the Fermi CB states in
the form of some simple factor multiplying the exact ground state, as was the case with the
Feynman phonons. As a consequence, the CB (variational) ground state |0) is not equal to
the true ground state {0) of the system. Second, the backflow plays an important role in

the Fermi systems since it accounts for the large (~ 20 %) part of the variational ground
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state energy, as was found in the case of liquid 3He.®® In contrast, the backflow correlations
in Bose systems play the role only in description of excited states? and can be neglected

when the total moment of excitations is large.

The CB matrix element of the operator O is given by

(P1+++>balO[PY, . By) = / VRS, b, (R) F(R)O FR) 3D 1w (R), (6.8)

where &P denotes the so-called direct term:

#°(R) = J] i(rs). (6.9)

At zero temperature both n and n’ are finite which implies that most of the momentum
labels in &* and &P in equation (6.8) are the same. Let q be one such moment corresponding
to the orbital ¢;(r;) in . The determinant %, ...h, (R) is a sum of N! terms of the form
(=1)PTI; #i(rp(;)) corresponding to the different permutations P. If in one of these terms
an orbital ¢; has an argument other than r; (i.e. P(%) # ¢ for that particular permutation)
then we say that in this term the momentum q is exchanged, and the term e‘3(*i~r()
appear in the integrand of the matrix element (6.8). On the other hand, permutations with
P(?) = ¢ do not exchange the momentum q, and exponential terms cancel out.

When the total momentum k of a CB state is large, and at least one of the parti-
cle momenta p; is hard (i.e. of order ~ k), then the terms in the matrix element (6.8)
that contain exchanges of the hard momentum contain factors of the type eXTi, and are
exponentially small in the limit £ — oo. In particular, there must be an equal number
of hard momenta in |ps,...,hs] and |p},...,h!,] states in order for matrix element to be
non-vanishing., Oa the other hand, the initial state pl | 0) in S(k,w) contains one hard
momentum, and we conclude that only the intermediate states with one hard momentum
are allowed. Moreover, since the terms in which it is exchanged are vanishingly small, it is

not necessary to antisymmetrize the CB states with respect to the particle carrying hard

momentum.
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Similarly, the analysis of the matrix element (z|p;rc|ﬁ) shows that the index of the
particle carrying the hard momentum should not be included in the backflow operator Fgr
since it would give rise to the factor of the type eK'™1=T1) causing the matrix element to
vanish in the k¥ — oo limit. Thus, we conclude that the CB states suitable for studying of

the deep inelastic response of Fermi liquids are given by

|P+hspl+hh'"spn+hn;h’hlv~-"hn)’ (6-10)

where
P=k-p;-::+~pyp (6.11)

is the hard particle momentum and equations (6.4) and (6.5) are modified to read

Fer= I  far(i) (6.12)

1< %’<JJ <N
3(R) = ¢p4n(r1)det |pi(r;)|, 1<i<j<N, (6.13)
¢pn(r) = £FHIT, (6.14)

6.2 CB matrix elements and their properties

We first consider the diagonal CB matrix elements of the Hamiltonian. It can be shown

that they are given by®®

(il H13) = (O1HI0) + 3 eu(m:) - ;eu(he), (6.15)
pi i

where e,(p;) and e, (h;) are variational energies of the particle and hole states respectively.
At large momenta P the energy e,(|P + h|) approaches free particle dispersion relation,

and we obtain

En=CE 0w = B _ b st p-ma0g). (60
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Next, we want to find the k-dependence of the off-diagonal CB matrix elements of the

Hamiltonian. They are given by

(ilHj) =

= [EVR 6pn(r1) Bpiny i@ orh) PR

’,(r'2" -wr;V)
n

1
X (—%EV? + Ev;j) F(R) ¢pywe(r1) 3P iny,.h
i i<i

- .2% Z; / EVR Vi [69,m(1) B in @ Th) F(R)]
Vi [F(R) $prahe(r1) ‘1’3;+h;,...,h; (G ’rfv)]
+ [ OV G (1) Byt ¥h) F(R)
X ;”ij F(R) ¢pan(rs) Bprim b (5200sth): (6.17)
i<y
In the limit k¥ — oo the leading term in equation (6.17) is the one in which the derivatives

operate on the hard momentum orbitals ¢p,p, and pr}, and we obtain
(i1H]j) =

(P+h)-(P
2m

+ h’ * »* L
)Z / VR Gpp(r) B in b (ThseesThy) F(R)

X F(R) ¢pryw(r1) 8 mr b (85 oxh) + O(K)

% [kz -k ( Y opi+ ) pj-h- h’)] (il5) + O(k®), (6.18)

i=1n =1
Thus, for large ¥, the off-diagonal CB matrix elements of the Hamiltonian are proportional
to the corresponding matrix elements of the unit operator. We want to stress that this
conclusion is valid only because the matrix element of the potential (second term oh the
right-hand side of equation (6.17)) is finite, even when the potential contains hard-core,
because the CB states have proper short range correlations built in thru the operator F(R).

In analogous derivation in Bose systems, this issue did not arise since Feynman phonons
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contain the exact ground state wave function which implies the identity (4.19).

6.3 OCBPT of S(k,w) for Fermi systems and its y-scaling

property

The OCB states are obtained from the CB ones using the Fantoni-Pandharipande
ortogonalization procedure defined in subsection 4.2.3. The diagonal matrix elements are
preserved in this procedure and, using equation (6.16), we find

. . R L 0
(¢| H |3) = (¢|H|i) = o —k:(p1+:+-+pn—h)+0(") (6.19)
m m
On the other hand, in section 4.3 it was demonstrated that if the off-diagonal CB matrix

element of the Hamiltonian is proportional to the corresponding overlap as in equation

(6.18), then the off-diagonal OCB matrix element is of the form
(i1 E 13) = O(k). (620)

The proof presented there used only the properties of the Fantoni-Pandharipande procedure
and not the explicit form of the CB states, and is equally applicable here.

OCBPT of S(k,w) for Bose systems was developed in section 4.3. The initial stages
of that development are applicable to the Fermi systems as well. Thus in order to calculate
DSF $(k,w) and DDRF D(k,w) (equations (4.93)-(4.94)) we divide the Hamiltonian of the
system into the diagonal and the off-diagonal parts with the respect to OCB (equations
(4.95)-(4.97)) and perform the resolvent expansion (equations (4.98)-(4.100)). Since the
state p}; | 0) is 2 member of Feynman phonons OCB and, as a consequence Xo(i) ~ 6;x,
further simplification of the expansion (4.98) was possible in the Bose case. In contrast, in

the Fermi case we have to keep all X;(2)’s in the expression (4.98). However, they have to

satisfy sum-rule

S % = 50l 0 =50 =1, when koo, (621
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and we expect only a few classes of states | i) to be important. For example, since the

operator pl can be expressed as
o= ;al vqfa (6.22)

where a and ¢ denote creation and annihilation operators of the ideal gas states, we expect

that the main contribution comes from the particle-hole states
|s) =|k+ h,h). (6.23)

Even though the Fermi case is more complicated than the Bose one, it is still possible to

sum the series (4.98) to all orders with the following Dyson-like equations®:
D(k,w) = 3 X3(i)Go(£)X (), (6.24)
i
where X(2) is dressed pL matrix element

X (5) = Xo(i) - E 4Go(1)X (5). (6.25)

We now proceed to prove that S(k,w) of the Fermi systems scales in the limit & — oo.
From equations (4.100) and (6.19) we find

Go(i) = (i|[w~Ho+ Eo+in]™ |3)

B k. e
= l-got ke (rt e+ pa—h) + O(K) 4 in]”

Z90(i) + O(K), (6.26)
where

go(i) = [y = k(1 +++ +Pa — h) + i}, (6.27)
and from equation (6.20) we obtain

k
Hj; = —hi; + O(K°). (6.28)

It was argued in section 6.1 that the CB matrix element (z|pL |0) is of the order O(k®) since

k-dependencies of the exponent in pL and in ¢p +h(l‘1) cancel each other. The OCB matrix
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elements Xo(%) are linear combinations of the above CB matrix elements and thus are also

of the order O(k°):
Xo(i)= (i1 o [0) = O(8). (629)

Finally, using equations (6.24)-(6.25) and (6.28)-(6.29) we obtain

%D(k,w) = Ds(y) + O(k™1), (6.30)

where
Ds(y) = 3 Xg()go(i) X (4), (6.31)
X(%) = Xo(3) - Zh:'jyo(j)x (%), (6.32)

which implies that ;’f;S(k,w) for the Fermi systems y-scales in the limit k¥ — oo:
k
—5(k,w) = J(y) + O(K™), (6.33)

J(y) = —-:FImZX;,“(i)go(i)X(i). (6.34)

From equation (6.34) it follows that the scaling function J(y) of the Fermi system is
determined by the functions X(z) which are, in turn, determined by the off-diagonal OCB
matrix elements of the Hamiltonian h{; and the functions Xo(i) (equation (6.32)). Cal-
culation of these matrix elements is coupled with considerable technical difficulties. For
example, they depend upon twice the number of momentum labels then their Bose coun-
terparts which raises the dimensionality of the integrals used in their evaluation. Also,
the Léwdin expansion (equation (4.59)) is divergent when applied to liquid 3He CB states,
and alternative techniques of performing the Léwdin transform, discussed in the subsection
4.2.2, must be used instead. Inlight of these remarks, the calculation of the scaling function

J(y) of the Fermi systems remains a challenging problem.
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