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Abstract

After pioneering experiments that realized Bose-Einstein condensates in systems of
ultracold atoms with weak contact interactions, it took a decade for experimental
techniques to advance and enable measurement of effects of the dipole-dipole inter-
action that exist between atoms or molecules with a permanent or induced electric
or magnetic dipole moment. The first such experiment was realized in 2005 with
chromium atoms, followed by the experiments with atoms with much larger magnetic
moments, such as dysprosium and erbium. Furthermore, the dipolar condensates
comprised of polar molecules with much stronger electrical or magnetic dipole mo-
ments were also realized. While the contact interaction is symmetric and has a short
range, the dipole-dipole interaction between atoms or molecules is anisotropic and
has a long range. These features are responsible for a whole series of new phenomena
that appear in ultracold dipolar gases. If we take into account that the strength of
the contact interactions can be varied over many orders of magnitude using the Fes-
hbach resonance technique, and that the dipole-dipole interaction strength can be
also tuned using a fast rotating magnetic or electric field, it is easy to see that such
a versatility of dipolar quantum gases is unparalleled and makes them an obligatory

element in a toolbox for engineering quantum devices and sensors.

The main contribution of this thesis is study of Faraday and resonant density
waves in ultracold bosonic systems with the contact and the dipole-dipole inter-
action. Such waves emerge in Bose-Einstein condensates as a result of harmonic
driving of the system. They represent nonlinear excitations and are generated due
to the interaction-induced coupling of collective oscillation modes and the existence
of parametric resonances. We introduce here a variational mean-field approach for
the description of the dynamics of the Faraday and resonant waves in dipolar conden-
sates. This approach is based on the Gaussian variational ansatz, which includes
the condensate widths and the conjugated dynamical phases as parameters. The
ansatz also includes the density modulations in order to capture the dynamics of

density waves.



Using the developed variational approach, as well as a full numerical approach,
we study in detail the properties of density waves in dipolar condensates at zero
temperature, where breaking of the symmetry due to anisotropy of the dipole-dipole
interaction plays an important role. We derive equations of motion for the dynamics
of a driven dipolar system and identify the most unstable modes that correspond to
the Faraday and resonant waves. Based on this, we derive the analytical expressions
for spatial periods of both types of density waves as functions of the contact and the
dipole-dipole interaction strength. We compare the obtained variational results with
the results of extensive numerical simulations that solve the dipolar Gross-Pitaevskii

equation in three dimensions, and find a very good agreement.

In this thesis we also study effects of the contact and the dipole-dipole interaction
on the properties of the ground state and of the collective oscillation modes of dipolar
condensates. While the increase of the contact interaction strength always leads to
the increase of condensate widths, the situation is more complex when the dipole-
dipole interaction is varied. In a cigar-shaped geometry when the dipoles are oriented
in the radial direction, the increase of the dipole-dipole interaction strength leads
to the increase of condensate widths in the weak-confinement direction and in the
direction of the dipoles, while the width in the third direction decreases. We also
study the frequencies of the collective modes, where the interaction effects turn out to
be less pronounced, in particular for the breathing and the quadrupole mode, whose
values practically remain constant over the whole range of experimentally relevant
values of both interaction strengths. The frequency of the radial-quadrupole mode is
more sensitive to changes of interaction strengths, especially the contact interaction
strength, and shows a nonmonotonous behavior as a function of the dipole-dipole

interaction strength.

Keywords: Bose-Einstein condensate, pattern formation, dipole-dipole interaction,
parametric resonance, interaction effects

Research field: Physics

Research subfield: Condensed matter physics

UDC number: 538.9

vi



Pe3ume

Hakon nmuoHWpCKUX eKcliepuMeHaTa ca CHCTeMHUMa YATPaXJIaJHUX aToMa y KO-
juma je peasmzoBana boze-AjHmiTaju KoHaeH3aImja ca caboM KOHTAKTHOM HHTEP-
akiujom, Omiia je morpebHa dMTaBa JeleHuja Jia OU ce IMPeIU3HOCT eKCllepruMeHaTa
nosehaJjia m omoryhusia Mepemme edekara JIUI0JI-IATI0 HHTEPaKIIje KOja MMOCTOjU 13-
MeDy aroMa mjn MoJieKyJia ca IepMaHeHTHUM UM WHIYKOBAHUM €JIeKTPUIHUM WU
MarHeTHUM JunotHuUM MoMeHnToM. [IpBu TakaB ekcriepument je mssepen 2005. ro-
JINHE ca aTOMHUMa, XpOMa, & HaKOH TOra Cy YCJIEJIMIN €KCIEPUMEHTHU Ca JTUCITPO3U-
jymMoMm m epbujymMoM, aTOMUMa Ca jaKUM MarHETHUM JIUTOJHUM MOMEHTHMA, Kao W
ca TOJIAPHUM MOJIEKY/IUMA Ca JIaJIeKO BehUM eJIEKTPUIHUM U MArHETHUM JTUTIOJTHIM
MOMeHTHuMa. /0K je KOHTaKTHA MHTEepaKIlija CUMETPUIHA U KPATKOJIOMETHA, JTUIIOJI-
JITIOJNT MHTEpaKInja u3Mehy aToMa W MOJIEKYJa je aHU30TPOIHA U JIyTOJIOMETHA
U y3POK je YATABOI HU3a HOBUX OCOOMHA YJITPaXJIQHUX OO30HCKHX cucTeMa. AKO
y3MEMO y 003Up Jia ce y €KCIIEPUMEHTUMAa jauruHa KOHTaKTHE MHTEPaKInje MOXKE Me-
AT 0J1 jJaKo 0/I00jHe JI0 jako IpuBjadne kopuctehn Texuuky Perdax pe3oHaHIHN,
Kao ¥ TO JIa Ce jadnHa JUIOJI-IUION HHTEPAKIINje MOYKe KOHTpoJIcaTn momohy 6p3o
porupajyher MarseTHOr WM €JIeKTPUIHOL I0Jba, JIAKO je 3aK/byUUTU Jia MPUJIAro-
JIJBUBOCT U PA3HOBPCHOCT OCOOMHA JIUIIOJIHUX KBAHTHUX I'acoBa YMHU OBE CUCTEME

HEYTIOPEIUBUM 1 00ABE3HUM AJIATOM y WHXKEHHEPUHTIY KBAHTHUX ypehaja u ceHzopa.

['naBuu JlonpuHoc oBe jIucepTalyje je npoydaBaibe (penomena OapajiejeBux u pe-
30HAHTHUX TaJIaca I'YCTUHE Y YITPAXJIAIHIM OO30HCKUM CHCTEMUMA Ca KOHTAKTHOM
U JIUIOJI-IAII0 wHTepakimjoM. OBakBU TaJlacl HacCTajy Kao pe3yJITaT XapMOHH]-
CKe MOJlyJiallfje CUCTeMa W MPeJICTaB/bajy HeJMHeapHe eKCIUTAIje CUCTeMa yCJIes
MPUCYCTBA WHTEPAKIINja, CIIPe3aheM KOJEKTUBHUX OCIUJIAI]ja W IapaMeTapCKuX
pe3oHaHIy. ¥ OBOj JUCEPTAIUju CMO Y OKBUDPY TEOPHje CPEber I0Jba PA3BUJIN
BapUjallMiOHN IMPUCTYI 3a omuc jguHamuke PapajiejeBUX U PE30HAHTHUX Tajaca y
aumnosinnM KonjienzatuMa. OBaj mpuctyn je 3acnoBan na ['aycoBoMm Bapujarmonom
aH3ally KOju 3a IapaMeTpe nMa IIUPUHe KOHJIeH3aTa, KOHjyroBane gase, a YK/bydyje

1 MOJyJallje TYCTHHEe KaKO O OIMcao JUHAMUKY TaJaca I'yCTHHE.

vil



Kopucrehn pazsujenn Bapujarmonu MmMpuCTyIl, Ka0 U IIYH HYMEPUYKU ITPUCTYII,
JleTa/bHO CMO TIpOydYaBaJii 0cOOMHE Tajiaca I'yCTUHE Y JIMIIOJTHUM KOHJICH3aTHMa Ha
HYJITOj TeMIIepaTypH, TJie JIUIOJ-IUIION WHTEPAKINja UI'pa BayKHY YJIOry 300T Ha-
pyIiema CUMeTpHje ycJes aHn30Tponuje cucrema. 3Ben cmo jeqnadnne KpeTamba
KOje OINCY]y AMHAMUKY MOJLYJIMCAHOL JTUIIOJIHOI DO30HCKOI' CUCTEMa U UIeHTH(MUKO-
Ba/Ii HajHecTaOMJIHKje Mojie Koje ojiroBapajy PapajejeBuM 1 pe30HAHTHUM TaJIaCH-
Ma. /lasbe, Ha OCHOBY TOra, U3BEJM CMO aHAJUTUYKE U3pa3e 3a IPOCTOPHE IePHUo/ie
oba Tumna Tasaca I'yCTHHE, Ka0 U IbUXOBY 3aBUCHOCT OJ] jadlHe KOHTAKTHE W JTUTIOJI-
JIATIo)T nHTepakiuje. lobujene Bapujarmone pe3ysrare YIOPEJIUIn CMO Ca Pe3ysITa-
TUMa JIeTa/bHUX HyMEPUIKUX CUMYyJIalija Koje pemanajy jaunosny ['poc-Ilnraescku

jeHaunHy y TPU IPOCTOPHE JIMMEH3Uje U JOOW/IM CMO BeoMa JI00PO Cjiararbe.

Y 0BOj JucepTalyji MpOyvaBaJi CMO U YTHUIA] KOHTAKTHE W JIMIIOJI-TUIIOJ WH-
TepakKIije Ha CBOjCTBA OCHOBHOT CTarba W KOJIEKTUBHUX OCITAJIAIIN]a JTUITOJTHAX KOH-
nensara. /lok mopehame jaunHe KOHTAKTHE MHTEPAKIIMje YBEK JIOBOJH JIO HMIAPEHHA
KOHJIeH3aTa, CUTyallija je CJIOXKeHnja KaJa ce Merba jauuHa JIAIOJI- U0 NHTEPaK-
nuje. 3a 3aMKy y OOJIMKY IHrape y KOjoj Cy JUIIONN OPUjeHTHCAHU Y PaujaIHOM
cMepy, roBeharbe jaunne JIUIOJI-IATION HHTEPAKIIUje IOBOJIH JI0 MMUPEHa KOHJIEH3ATa
y JIOHTUTY/IMHAJHOM IIPABILY W y MPAaBILy IoJapusaliije, JOK ce IMupuHa y Tpehem
npasity cmamyje. [lope Tora, mpoydaBajiu cMO 1 PpeKBeHIje KOJEKTUBHUX MOJIa,
e ¢y epeKTH HHTePaKIja Mamke n3paxkenn. OBo ce moceOHO OTHOCH Ha MOHOTIOJTHY
(mumyhy) v KBaJpPYNmoJHy MOy, YHje BPEJIHOCTH MPAKTUYHO OCTAjy KOHCTAHTHE Y
1I€JIOM PACIIOHY €KCIIEPUMEHTAJIHO PeIEBAaHTHUX BPEIHOCTH jadnHa nnrepakimja. Ca
Jipyre cTpane, (bpEeKBEHINja PaJiijaHe KBAIPYIOJTHE MOJIE je OCET/bUBUja HA ITPOMe-
HYy jaunHe WHTEpaKImje, IoCeOHO jaunHe KOHTaKTHE WHTEPAKIIHje, JIOK IIPH ITPOMEHN

jaduHe JIUIOJI-IUII0] MHTEPaKIije I0Ka3yje HEMOHOTOHO ITOHAIIAbe.

Kibyune peun: Boze-Ajumiraju konjieH3aimja, GopMupame maTepHa, Um0~/ Ill-
0J1 MHTEPAaKIINja, IMapaMeTapcka pe3oHaHIla, eeKTH THTEPAKIII]je
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1 Introduction

According to the quantum statistical physics, there is a critical temperature below
which the weakly-interacting bosons populate the lowest energy state of the system,
which becomes macroscopically occupied. For temperatures well below the critical
one, the thermal excitations can be usually neglected, and the same applies to the
quantum fluctuations. The emergence of a macroscopically occupied ground state
represents one of the few macroscopic quantum phenomena and is known as the
Bose-Einstein condensation. It was experimentally realized for the first time in 1995
in dilute ultracold atomic gases of alkali metals, such as lithium “Li [1], rubidium
87Rb |2| and sodium ?*Na [3]. Theoretically, the Bose-Einstein condensate (BEC)
as a new phase of matter was predicted in 1924 by Indian physicist Satyendra Nath
Bose [4] and German physicist Albert Einstein [5]. The theoretical study of BECs
and a long quest for its experimental realization has significantly contributed to the
development of quantum statistical physics, condensed matter physics, atomic and
molecular physics, quantum optics, and laser physics, as well as to the other areas
of physics, such as quantum information, quantum field theory, high-energy physics,
and even the theory of general relativity. Such a wide applicability stems from the
fact that BECs represent almost ideal Feynman’s quantum simulators [6] for many

physical systems.

In typical experiments with BECs, an ultracold dilute atomic cloud has a number
density between 10 — 102! m™3, i.e., three to six orders of magnitude lower than
the density of air at room temperature and atmospheric pressure. The system is

usually confined in a magneto-optical trap that can be described by a harmonic



potential, which is experimentally realized by a six-beam laser setup, where two
counter-propagating beams in each spatial direction provide harmonic confinement.
Atoms of selected species are cooled down to the nanokelvin temperatures using a
combination of different techniques, such as the Zeeman slower, the laser cooling
and the evaporative cooling. In order to experimentally realize a BEC in a system
with weak inter-atomic interactions, it is essential that the gas is rarefied. If this is
the case, the system is close to the ideal gas of bosons, and the standard Bogoliubov
theory can be applied. In practice, the diluteness requirement can be expressed by
the condition [7,§]:

na < 1, (1.1)
where n is the number density and a, is the s-wave scattering length of atoms, which

characterizes atomic interactions, seen as scattering processes in a dilute gas. Fig-

ure 1.1 illustrates the experimentally measured momentum distribution of a sodium

Figure 1.1: The first experimental realization of a BEC in 1995 in a dilute ultracold
atomic gas of sodium 23Na. The three momentum distributions at different temper-
atures illustrate how the condensation sets in: well above T, we have the Maxwell-
Boltzmann distribution (left); at 7. the peak corresponding to the macroscopic
occupation of the ground state appears (middle); well below T, the thermal cloud
disappears and only the peak around p = 0 remains (right). Figure is taken from
Wikipedia and authored by NIST/JILA /CU-Boulder [NIST Image, public domain,

https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png].


https://commons.wikimedia.org/wiki/File:Bose_Einstein_condensate.png

gas at three different temperatures. The distribution on the left-hand side cor-
responds to the thermal (Maxwell-Boltzmann) distribution at a temperature well
above the critical one (T.), while the distribution in the middle represents the re-
sults for the system at the critical temperature 1. = 170nK. This distribution is
bimodal, containing both the thermal component and a peak that corresponds to
emerging condensed fraction of atoms. The distribution on the right-hand side is
obtained after an additional evaporative cooling brings the system down to the tem-
perature T' = 20nK < T,. Since the system is now significantly below the critical
temperature, practically all atoms are in the condensate, and the experimental mo-
mentum distribution exhibits a single-peak distribution that corresponds just to the

condensed fraction.

1.1 Role of interactions

Investigation of ultracold quantum gases is a very attractive research field that
involves a large number of theoretical and experimental groups worldwide. Such a
widespread interest comes from the fact that properties of the BEC systems can
be broadly tuned in an unprecedented range. In particular, this applies to the
strength of contact interactions that can be varied over many orders of magnitude
using the Feshbach resonance [9] technique. The existence of Feshbach resonances
is related to atomic bound states and can be practically manipulated by an external
magnetic field, thus adjusting the electronic structure of atoms. In this way, close
to a Feshbach resonance, the strength of the contact interaction can be dynamically
tuned over a wide range of values. Furthermore, not only the amplitude, but also
the sign of the interaction can be changed, i.e., the interaction can be tuned from

very repulsive to very attractive.

After pioneering experiments that realized BEC in systems with weak contact
interactions, it took a decade of work on accuracy improvement of experimental
techniques to enable measurement of effects of the dipole-dipole interaction (DDI)

that exist between atoms or molecules with a permanent or induced electrical or



magnetic dipole moment. The very first such experiment was realized in 2005 with
chromium atoms ®2Cr [10], while the experiments with atoms with much larger
magnetic moments, such as dysprosium 94Dy [11] and erbium %*Er [12] came after.
Furthermore, the dipolar condensates comprised of ultracold polar molecules with
much stronger electrical [13] and magnetic [14] dipole moment were realized some
years ago. While the contact interaction is symmetric and has a short-range, the
DDI between atoms or molecules is anisotropic and long-range. These features are
responsible for a whole series of new phenomena that appear in ultracold dipolar
gases [15]. For example, due to the attractive component of the DDI, an instability
exists, and the system is stable only for a number of atoms below the critical one.
This is closely related to the trap geometry, and if the system contains a number
of particles larger than the critical one, it may still be quasi-stable or collapse.
The stability of the system depends not only on the trap geometry, but also on its
interplay with the orientation of the dipoles. Note that in experiments the dipoles
are not randomly oriented, but usually follow a preferential direction, determined
by an external magnetic or electric field. If the system becomes unstable due to
changes in the geometry of the trap or due to a number of particles which is above
the critical, it undergoes a dynamical collapse during which interesting structures

appear [16-18|.

Although quantum fluctuations can be usually neglected, close to stability border
they may play a crucial role and lead to new states of matter, such as the quantum
droplets that were recently observed in dipolar condensates of dysprosium [19,20]
and erbium [21]|. In these recent experiments it was observed that the Rosensweig
instability [22] due to the DDI is compensated by the stabilizing effect of quantum
fluctuations. Note that the quantum droplets, emerging from the partial condensate
collapse, are arranged in a lattice that, under certain circumstances can behave as
the elusive supersolid state of matter [23|. Another interesting feature of quantum
droplets is that they can be considered to be made of an incompressible quantum

liquid.

The strength of the DDI can be also tuned using a fast rotating magnetic or



electric field [24,25]. Therefore, in experiments both the contact interaction and
the DDI strength can be varied and they represent the important parameters of
the system. We also note that the dimensionality of the system can be tuned and
considered as a free parameter. Namely, by manipulating the harmonic trap frequen-
cies, the geometry of the system can be transformed from the three-dimensional to
quasi-two-dimensional or quasi-one-dimensional. Furthermore, this can be also done
dynamically, during the experiment, at the same time as possible changes of the con-
tact interaction and the DDI. Due to all of these features, the versatility of dipolar
quantum gases is unparalleled and makes them obligatory elements of a toolbox for

engineering quantum devices and sensors.

1.2 Collective oscillation modes

The very first BEC experiments have focused on the measurement of frequencies
of low-lying collective oscillations modes of the system [26,27|. Until nowadays
such experiments remain the most accurate, and the frequencies of the collective
oscillations can be measured with the precision of few per mill. These experiments
are also the most natural once, since they measure the response of the system to
small perturbations. In a typical experiment, the system is prepared such that it
occupies the ground state for a given set of parameters and the trap geometry.
Afterward, the system is excited by a small perturbation of one of the parameters,
e.g., small variation of one of the trap frequencies, or moving of the trap origin, or
change of the interaction strength. Such a perturbation generates the dynamical
response of the system, which can be measured by imaging of the density profile of
the system. This is done by the time-of-flight imaging technique |7, 8], which allows
to measure the time dependents of the BEC properties, such as a center of mass
position, condensate widths, etc. The Fourier analysis of these time dependencies
reveals frequencies of the low-lying collective modes, typically breathing, quadrupole,

and radial-quadrupole.

However, this approach does not allow the specific collective modes to be iden-



tified with the corresponding frequencies. Only if we know how the system should
be excited in order to induce only one of the modes, it is possible to measure its
frequency. Even if this the case, BEC systems are nonlinear and different collective
modes are coupled. Therefore, although initially only one mode could be excited,
other collective modes will get excited over time through the transfer of energy.
Only a detailed theoretical modeling of the systems’ dynamics allows us to prop-
erly identify the frequencies with the corresponding collective modes. One of the
most conventional methods for this is the variational approach. Usually, variational
parameters include the condensate widths and their dynamics reveals not only the
frequencies, but also the type of the collective modes. The variational approach
leads to a set of nonlinear differential equations, which reflect the nonlinear nature
of BECs. The analysis of these equations allows to calculate not only the collec-
tive oscillation modes, but also to study the dynamics of the system. This includes
the response of the system to driving of one of the parameters and emergence of

parametric resonances.

From a theoretical point of view, a BEC is usually studied in the formalism of
second quantization. The corresponding many-body Hamiltonian includes the two
body interactions between the particles, which are of two types: the short-range
contact interaction and the long-range DDI. Since the interactions are usually weak,
they can be treated perturbatively, and the mean-field theory gives a basic descrip-
tion of the system. At zero temperature, we can neglect thermal excitations, and the
mean-field theory yields the Gross—Pitaevskii equation (GPE). For dipolar systems,
the standard GPE has to be extended to include the corresponding dipolar interac-
tion term. These equations, which are also called nonlinear Schrédinger equations,
due to the presence of nonlinear interaction-induced terms, are capable of describing
practically all phenomena that appear in BEC systems, with a reasonable precision.
In particular, the GPE can be used as a basis for the variational approach, as out-
lined above. However, if a more precise description of the system is necessary, a
full numerical solution of the GPE may be required. Its analysis can be also used
to calculate the frequencies of the collective modes. Since the frequencies of the

collective modes are measured experimentally with high accuracy, they are used to



estimate the accuracy of all theoretical and numerical approaches for the modeling of
BECs. While the variational and other theoretical approaches enable the derivation
of functional dependencies of the collective mode frequencies on the system’s pa-
rameters, it is clear that their accuracy is limited by the selection of the variational
ansatz and by the approximation order in a perturbation expansion. On the other
hand, a full numerical approach is much more accurate. It allows direct solving of
the mean-field theory equations, or higher-order theories, but requires a numerical
simulation for each given set of parameters. Only a combination of analytical and
numerical approaches, and a comparison with experimental results, provides us with

full description and understanding of the system in a comprehensive way.

In addition to well-known low-lying excitations modes mentioned previously,
due to nonlinearity in ultracold quantum gases some other types of excitations can
emerge as well. An important example of nonlinear excitations are density waves,
which can be induced by a harmonic modulation of the trap frequencies or interaction
strength. The motivation for this comes from the classical phenomenon of Faraday
waves, which may appear on the surface of the shallow layer of liquid under certain
conditions. Namely, if the container with the liquid is harmonically oscillated in a
vertical direction, the wave patterns may emerge, depending on the ratio of the liquid
depth and the container size, as well as depending on the modulation frequency. This
phenomenon was first studied and described by Michael Faraday at the beginning
of XIX century [28]. The interest for such type of excitations arose again during the
1980s in the context of nonlinear liquids. In the context of ultracold gases, Faraday
waves were first investigated theoretically in 2002 by Staliunas [29]. After his first
theoretical and numerical results for the systems with contact interaction where
he assumed that the interaction strength is harmonically modulated, the Faraday
waves were first measured in the BEC experiments with rubidium atoms in 2007 by
Engels [30]. In the experiment the radial part of the harmonic trap was modulated
instead of interaction strength. However, qualitatively this leads to the same type
of density waves. Although in the case of nonlinear liquids the generated waves are
surface waves, in the literature the same name, i.e., Faraday waves is also used for

the density waves that emerge as result of the harmonic modulation in the realm of



ultracold quantum gases.

Faraday waves in ultracold gases are a consequence of the existence of paramet-
ric resonances in the system. While the spatial period of these waves depends on
the geometry of the system and other parameters, the frequency of their oscillations
is constant and is two times smaller than the modulation frequency. This is char-
acteristic to all parametric resonant phenomena, and in the variational approach
leads to the Mathieu-like differential equation that gives the observed ratio of the
frequency of Faraday waves and the modulation. The Faraday density waves with
half of the modulation frequency, are not the only nonlinear excitation of the sys-
tem. In a driven system there are always excitations corresponding to waves which
have the same frequency as the modulation. However, they become resonant when
the modulation frequency corresponds to one of the collective mode frequencies, or
their linear combination, or a multiple. The resonant waves develop in the system
and grow exponentially, much faster than the Faraday waves. Therefore, these two
phenomena can be easily distinguished, not only by comparing their frequencies, but
also the corresponding onset times. So far, Faraday and resonant waves have been
studied in single [29] and binary BEC systems [31], both with spatially homogeneous

and inhomogeneous contact interactions [32].

1.3 This thesis

The focus of this thesis is on the study of excitation modes of dipolar Bose-Einstein
condensates, including the collective oscillation modes, and density waves that
emerge as a result of driving of the system. In particular, the thesis investigates

the Faraday waves and effects of the contact and dipole-dipole interaction.

Chapter 1 gives introduction into the field of ultracold atoms and important
role that interactions play for the properties of Bose-Einstein condensates. It also
introduces collective oscillation modes, Faraday and resonant waves, and discusses

the theoretical approaches used for their description.



Chapter 2 describes in detail noninteracting Bose gases at zero temperature,
and presents a mean-field theory for weakly interacting Bose systems with the
short-range contact and the long-range dipole-dipole interaction. This chapter also

presents a variational approach for the description of static and dynamic properties

of dipolar BECs.

Ground state properties of dipolar condensates are explored in Chapter 3. Us-
ing the variational approach introduced in Chapter 2, the corresponding equations
for the ground state are derived, including the special cases of cylindrical symme-
try, and pure contact interaction. The variational results are compared with full
numerical results obtained by solving the three-dimensional dipolar GPE for three
atomic species that posses the magnetic dipolar moments: chromium, erbium, and

dysprosium.

Chapter 4 provides a variational description of the collective oscillation modes
and derives the expressions for their frequencies as functions of the contact and
dipole-dipole interaction strength, which are then verified by comparison with the

full numerical results.

The Faraday and resonant waves are studied in Chapter 5. At first, a variational
approach is developed, that is capable of capturing the emergence and dynamics of
density waves in dipolar condensates. Using the properties of Mathieu’s differential
equation, the most unstable modes are identified and the expressions for the spatial
periods of Faraday and resonant waves are derived. The phenomenon of density
waves is then studied numerically in detail for the three atomic species and the

obtained results are compared with the variational ones [33].

Chapter 6 presents details on the algorithm we use to solve the dipolar GPE and
the split-step semi-implicit Crank-Nicolson method. Finally, Chapter 7 summarizes
all results and gathers our conclusions. Appendices A — F present further analytical
and numerical details that are relevant for certain chapters, but would overburden

the main text.



2 Bose-Einstein condensation and dipole-dipole

interaction

BEC is usually described in the formalism of second quantization [7,8|. First, using
this formalism we will show that the macroscopic occupation of the ground state
leads to the spatial coherence in the condensate, i.e., to the off-diagonal long-range
order (ODLRO). The system is described in terms of the one-body density matrix,

which can be defined in the coordinate space by

p(r,r’) = (¥i(r) ¥ (r')), (2.1)
where @T(r) is a creation operator and \if(r) is the corresponding annihilation oper-
ator, and the averaging is performed over the ensemble. These operators describe a
creation or annihilation of a particle at the position r, and, in the case of bosons,

satisfy the bosonic commutation relations

A A A

(), W] = o ), [B) @) =0, [F@). P =0.  (22)

For the system consisting of /N identical bosons in a pure state, which is described
by the N-body wave function ¥, (ry,...,ry), the one-body density matrix can be

written as an integral
pu(r, ') = N/drz coedey U (r, 1, .., en) U, (Y e, L Ty, (2.3)

which motivates the name of the matrix p. In a more general case, for a system
in a mixed state in thermodynamic equilibrium, the one-body density matrix is

calculated as an ensemble average, where the weights are given by the Boltzmann
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distribution
1 _
p(r,r) = 7 E e PEn p(r,1') (2.4)

where n enumerates system’s eigenstates U,,, 8 = 1/(kgT) is the inverse temper-
ature, and Z = ) e PFn is the partition function. The diagonal elements of the

density matrix correspond to the particle density

~

plr,r) = (¥'(r) U(r)) = n(r), (2.5)
and the total number of particles can be calculated as N = [drn(r) = [drp(r,r).

Similarly, the one-body density matrix can be represented in the momentum
space

A

p(p,p') = (¥'(p) ¥(p)), (2.6)
where the field operator in momentum space can be obtained from the coordinate

representation by a Fourier transform

U(p) = W / dre #PT(r) . (2.7)

Again, the diagonal elements give the density of the particles, this time in momentum
space, n(p) = p(p, p), and the total number of particles can be calculated in a similar
manner, N = [ dpn(p). In a Bose-Einstein-condensed system, we have macroscopic
occupation of the ground state which means that the particle density in momentum

space has a form
n(p) = Nod(p) + 7(p), (2.8)

where the occupation Ny/N < 1. Let us see what consequences this has for the
density matrix. If we insert equation (2.7) into equation (2.6) for p = p’, we get
1 S AN
n(p)zw/desp<R+§,R—§> enPs, (2.9)
where R represents center-of-mass coordinate, and s the distance between the two
arguments in density matrix. For a uniform and isotropic system of volume V,
where we assume that in the thermodynamic limit N,V — oo the particle density

is constant n = N/V| the one-body density matrix depends only on the distance
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s, and not on the center-of-mass coordinate R, i.e., p(R+s/2,R —s/2) = p(s).

Therefore, the above equation for the density yields

p(s) = %/dpn(p) e iPE, (2.10)
For a normal system with a smooth momentum distribution n(p) at small momenta,
the one-body density vanishes in the limit s — oo, due to oscillatory nature of the
phase factor e~ P, However, the condensed system, which contains a delta function
at p = 0 gives surprising result that p(s) — Ny/N when s — oo. The fact that
off-diagonal elements of the one-body density matrix do not vanish even in the limit
s — oo, shows that the existence of the condensate lead to a coherence in the system,

i.e., the long range order.

To study excitations of the system, we use eigenstates of the density matrix
©i(r), where we assume, for simplicity, that the spectrum is discrete. In this basis,
the density matrix is expressed as

p(r,x') = Nogi(x)po(r') + ) Nii (t)pilr’). (2.11)

>0

Here ¢q represents the single particle ground state with the occupancy Ny, and N;
are occupancies of excited states. Note that the above equation leads to expression
(2.8) for the density n(p) using equation (2.9) and orthonormality of the eigenstates
@i(r). For a uniform system of non-interacting bosons the eigenstates are plane
waves pp(r) = e®*/"/\/V while in a general case the functions o; have to be
determined by solving the corresponding eigenproblem. Using this basis, the field

operator can be expressed as
Ur) = @i (2.12)

where new bosonic operators a; represent elementary excitations of the system and

obey bosonic commutation relations
la;,at) = 0;, lai,a;) =0, [af,al]=0. (2.13)

If the system is well below the critical temperature for Bose-Einstein condensation,

we can use a zero-temperature approximation and neglect thermal excitations. We
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can also assume that practically all of the particles are in the ground state, and that
only a small fraction is excited, which corresponds to the following decomposition
of the field operator

A

U(r) = Uo(r) + 60(r), (2.14)

where Uo(r) = @o(r)ao ~ Ny is the wave function of the condensate and
SU(r) = 3, 20 i(r) @; represents excitations due to quantum fluctuation. Note
that the ground-state operators ay and dg can be replaced by a c-number /Ny
due to macroscopic occupation of the ground state, and the fact that Bose-Einstein
condensation corresponds to breaking of the U(1) symmetry associated with the
phase of the wave function [8]. In other words, below the critical temperature the

order parameter does not vanish,

(o) = (ah) = /No #0. (2.15)

The time evolution of the system is determined by eiflt/ h where H is the Hamil-
tonian of the system, so the evolution of the ground-state wave function of the

condensate is given by

Wo(r,t) = Wo(r)e /", (2.16)
where
OF
p=E(No) — E(No— 1) = N v, (2.17)

is the system’s chemical potential.

2.1 Noninteracting Bose gas

Previously we have neglected the thermal excitations and have used the zero-tempe-
rature approximation. However, depending on the temperature, we may have to
take into account thermal excitations. For a uniform noninteracting Bose gas in a
box of volume V', the eigenstates are plain waves that satisfy the period boundary
condition and have a dispersion relation e¢(p) = p?/2m. According to the Bose-

Einstein distribution function, the number of atoms in thermal (excited) states is
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given by
1
Nun(T') = ; eBP?/2m—p) _ 1’ (2.18)
P

where m is the mass of an atom. Using a semi-classical approximation and replacing

the above sum with the integral, - — V/(27h)* [ dp, we obtain

Vo2 [ 2dx 1%
=3 =] TEma T3 Bu 2.19
)\%ﬁ o e Prer—1 )\% 93/2(6 ) ( )

Nn(T)
where Ay = /27h23/m is the thermal wavelength and g,(z) = Y77, 2!/IP is Bose
function. From the above equation we obtain the critical temperature 7T, at which

all atoms are in the thermal population, i.e., Ny, (T.) = N. This leads to

k2 ( n )2/3
kpT. = , 2.20
b m \ gs/2(1) (2:20)

where n = N/V is the density of the gas and g3/»(1) ~ 2.612. Note that the
chemical potential of a uniform system above the critical temperature can be taken
to be zero due to the dispersion relation, such that e®* = 1. Above the critical
temperate all particles are in the thermal cloud, and we have N = Vg3/2(1)/A%.
according to equation (2.19). On the other hand, below T, the number of thermal
atoms decreases, and we have Ny, (T) = (T/T,)?/? N, which is obtained by combining

equations (2.19) and (2.20). Therefore, the number of particles in the condensate is

No(T) = N [1 - (%)3/2

and becomes macroscopic for T' < T..

given by
, (2.21)

The situation changes in the presence of an external trapping potential. The
most frequently encountered and experimentally used potential is a harmonic trap,
given by

m. o 2

U(z,y,z) = 5( ST+ w§y2 +w?2?), (2.22)

where w;, i € {z,y, 2}, are the trapping frequencies. The temperature dependence

of the number of atoms in the condensate is now different and reads

No(T) = N [1 - (%)3 (2.23)
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This is illustrated in Figure 2.1, where the blue line represents the condensate frac-
tion for a homogeneous system, and red line the condensate fraction in the presence
of an external harmonic trap. Not only that temperature dependence is modified
by the presence of the trap, but also the critical temperature changes, and is now

defined as

I (%)w , (2.24)

1/3 i the geometric average of the trap frequencies, and ¢ (3) =

where w = (wywyw,)
g3(1) =~ 0.94. Note that the energy scale for the critical temperature is now given
by the trap energy Aw, and that T, now depends on the number of particles as N/3,

while for the uniform case it was N?2/3.
1.0

0.8

0.6 |

No/N
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T/:Z—‘(
Figure 2.1: The condensate fraction Ny/N as a function of the temperature 7'/T.. for

a noninteracting Bose gas: homogeneous case (blue line) and harmonically trapped

case (red line).

2.2 Weakly-interacting Bose gas

The ground-state energy of an ideal Bose gas is equal to zero, this leads to zero
pressure and infinite compressibility. However, the presence of interactions in the
system, even the weak ones, dramatically changes this. Here we briefly outline the
Bogoliubov theory to first order in the interaction strength, which is capable of
describing a dilute Bose-Einstein-condensed gas. Precisely such systems were exper-
imentally realized, and it was shown that only two-particle interactions significantly
contribute to the energy of the systems, while interactions of three and more parti-

cles can be neglected. Also, due to large inter-particle distances, the details of the
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two-body interactions can be neglected as well, i.e., they can be modeled just as
s-wave scattering processes in a dilute Bose gas, described by the s-wave scattering

length. The many-body Hamiltonian of such a system is given by

H= 2712 drV\ifT(r)V\if(r)—i—% / dr dr’ U (r) Ut (') Uy(r — )T (') U(r), (2.25)

m

where U.(r) represents the model potential for the above described contact interac-
tions. The field operator in the case of a uniform gas and in the basis of plane waves
reads U(r) = o ape™ /" /\/V where G, is the operator annihilating a particle in
the state with momentum p. Inserting this into the above Hamiltonian, we obtain
2
H = Z Qp_m apa Z Uc(q p1+q p2 alp10ps » (2.26)
p q P1,P2

where p; and ps denote momenta of the interacting particles before the collision,
q the exchanged momentum in the collision, while U.(q f Ue(r e~tar/hdy s
a Fourier transform of the interaction potential. For the temperatures below the
critical one, the main contribution of the interaction to the Hamiltonian is due
to the particles with small momenta, q ~ 0. If we denote the zero-momentum

component by g = U.(q = 0), the Hamiltonian of the system can be rewritten as
A= Z o il + S5 D b ipy (2.27)

P1,P2

Note that the above approximation is mathematically equivalent to replacing the real

inter-particle interaction potential with the modeled contact potential U.(r — r') =

go(r—r’').

As we have seen, below the critical temperature the order parameter does not
vanish and we can replace the operators ao and dg by a c-number /Ny, where
Ny = N at zero temperature, when all particles are condensed. If we restrict the
sums in equation (2.27) to zero momentum contributions, which yield the ground

state, we obtain for the ground-state energy

gN? 1
0 o 5 ng (2.28)

The interaction coupling constant g can be expressed via s-wave scattering length a

as g = 4mh*a,/m. Contrary to the noninteracting case, the pressure P of a condensed

16



weakly-interacting Bose gas does not vanish at zero temperature. Instead, it is given
by P = —0Fy/0V = gn?/2, and the compressibility is now finite, dn/dP = 1/(gn).
The compressibility is related to the speed of sound ¢ by a relation 1/(mc?) =

On /0P, according to this, we can derive the sound velocity in the condensate and

obtain ¢ = /gn/m.

The above zeroth order approximation is capable of providing us with the esti-
mates for the ground-state energy, but not more than that. In order to describe the
system in more detail, we have to go to the higher-order approximation such that
we include the operators ap and &L with p # 0. The Hamiltonian does not contain

the linear terms in ap, and the first non-trivial approximation is quadratic,
i = ababaoio + 3 2 afap + — <a$ ot + alal yaodo + agagapa_p> .
P

(2.29)
Luckily, quadratic Hamiltonians can be explicitly diagonalized, which we do here
following Bogoliubov prescription. As it was done in the zeroth order approximation,
in the terms in brackets of Equation (2.29) we replace the operators o and a/, with
v N, while for the first term we have to use a better approximation that is obtained

from the normalization djag 4+ 32 = N, which leads to

pséO p
ababaoto = N* — 2N Y " alay,, (2.30)
p#0
up to terms quadratic in ap. Note that the scattering theory [34], to the same
approximation order, requires the renormalization of the interaction strength ¢
g m
=91+ = |- 2.31
99 ( - ; p2> (2.31)

By substituting Equations (2.30) and (2.31) into the Hamiltonian (2.29), we obtain

it 1 L L L mgn
p#0

which can be diagonalized using the Bogoliubov transformation

S it o1
ap = upbp + v 0L, ay

+v_pb_p. (2.33)
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We require that new operators Bp and BL obey the same bosonic commutation rela-
tions as the operators ap and aj,, which leads to the condition |up|* — [v_p|* = 1.
From this, we see that the coefficients © and v can be parametrized as follows

up = coshay,, v_p =sinhay. (2.34)

In the above equation, the parameter ap has to be chosen such that non-diagonal

elements of the Hamiltonian (2.32) vanish. For such ap, the Hamiltonian becomes

H=FEo+ Y ep)bhby . (2.35)
p#0
where
~ 1 p* | m(gn)®
Ey=FEy+ - —gn — — 2.
0 o+2§[6(p) e (2.36)

with €(p) given by

e(p) = \/ (%)2 +ep? (2.37)

which is known as the Bogoliubov dispersion law. Here ¢ stands for the speed
of sound ¢ = \/W The diagonalization of the system using the Bogoliubov
transformation allows us to connect the system of interacting bosons with a nonin-
teracting system of particles with the energy ¢(p), whose annihilation and creation
operators are I;p and EL, respectively. Although this system is noninteracting, the
dispersion is modified and is not given by a free particle expression p?/2m. In the
limit of small momenta p < me, the dispersion (2.37) becomes €(p) = ¢p. From
this we see that elementary excitations of the system in the long-wavelength regime
correspond to sound waves. From symmetry point of view, these elementary excita-

tions can be thought of as the Goldstone modes that correspond to breaking of the

U(1) symmetry of quantum mechanics due to the Bose-Einstein phase transition.

Note that the ground-state energy E, is given by

N 128
e _— 3
Ey = Ey (1 + 15\/?/71@3) : (2.38)

which is expressed in terms of the perturbation parameter na?

o. Therefore, we see
that the Bogoliubov theory is valid if the previously introduced criterion (1.1) is
satisfied, such that the correction to the energy, given in brackets of Equation (2.38)

is small.
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2.3 Mean-field theory for dipolar Bose gas in a trap

Bose-Einstein condensation is experimentally realized with a dilute Bose gas trapped
in the external potential. Such a setup produces nonuniform system, which is ex-
perimentally necessary to provide confinement of the system. However, this changes
properties of the system and is responsible for new phenomena, such as collective os-
cillations. Here we briefly outline the mean field theory for a nonuniform Bose gas in
the external potential U(r, ), both for stationary and non-stationary systems. How-
ever, as outlined in Chapter 1, in this thesis, we consider not only the short-range
contact interaction U.(r —r’) = ¢gd(r — r’), but also the long-range dipole-dipole

interaction
pp di2—3(r-d)?
47 7D

where 1o is the vacuum permeability and d is the magnetic dipole moment. We

Udd(r) s (239)

assume that all dipoles are oriented in the same direction, as in experiments where,
due to the present magnetic fields, this is always the case. If the dipoles are oriented

in the z direction of the Cartesian coordinate system, the potential has the form

 popd 1 —3cos® 0
 4rm r3

Uaa(r) ; (2.40)

where 6 is the angle made by the vector r and the polarization direction z. The
angle 6 determines if DDI is attractive or repulsive. For instance, for § = 0 we
have an attractive DDI, while for § = 7/2 the interaction is repulsive, as illustrated
in Figure 2.2. Note that the strength of the DDI is usually defined by the dipolar

length
P Mo,ufim
W onp2

This is convenient since it allows us to express the DDI in a similar way as the

(2.41)

contact interaction strength is expressed in terms of the s-wave scattering length.

With all these ingredients, the Hamiltonian of the system in the Heisenberg
picture is given by
N h? N o A A
H = 2—/dr V(e t) VU(r,t) +/drx1ﬂ(r,t) Ulr, t) Wi, )
m

| (2.42)
+5 / dr de' Ut (e, )T (¢, 1) Upe (r — ') (2, )0 (x, 1),
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Figure 2.2: Illustration of dipole-dipole interactions of atoms whose dipole moments
are polarized along z-axis. In the middle we have generic case determined by relative
position between atoms r and angle between polarization axis z and vector r. On the
left-hand side is special case 8 = 0, which is usually called head-to-tail configuration,
when the dipoles attract each other. On the right-hand side is another special case,
corresponding to # = 7 /2, when the dipoles repel. This configuration is usually

called side-by-side.

where Upy(r) = Ue(r) + Uqa(r). The dynamics of the system is governed by the

Heisenberg equation

m%@(r,o - [@(r,t),ﬁ} . (2.43)

For the Hamiltonian (2.42), the above commutator can be readily calculated and we

obtain the equation of motion as follows

2
ih%lll(r,t) =| - ;—mVQ + U(r,t) + /dr’ U (', t) Ui (r — 1)

A

(', t)] T(r,t).
(2.44)
The mean-field theory is obtained, according to (2.14), when we replace the field

operator with the wave function of the condensate \if(r,t) = 1(r,t) and neglect
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quantum fluctuations, yielding the dipolar GPE in the form

0 n?

ihooth(x,t) = | = o =V2+ U(r ) + gl (r, 1)/
ot { (2.45)

+ /dr’w*(r',t)Udd(r — 1’ (' t) | (r, t).

The above equation is also called the nonlinear Schrédinger equation, where two
types of nonlinearities are present due to the two types of interactions, namely the

contact interaction and the DDI.

The dipolar GPE can be cast into a dimensionless form, which is useful for ana-
lytical and numerical considerations. This is done by choosing a reference frequency
w,, and by expressing all other physical variables in units defined by it, i.e., lengths
in units of harmonic oscillator length | = \/W, time in units of 1/w,, and

energy in units of Aw,. This leads to dimensionless variables

x y z as add
r— -, Yy— 5, Z—> 5, a —> —, Q44 — ——, t — wt,
l l l [ l (2.46)
1 1 :
¢(r7 t) - l3/2 ’QZ)(I', t) ) U(I‘, t) - U(I‘, t) ) Udd(rv t) — Udd(r7 t) :
hew, hew,
This rescales the harmonic trapping potential to the form
1 2.2
U(r,t) = 5('yx + 7y + N2 (2.47)

where v = w,/w,, ¥ = wy/w,, and A = w,/w, are the trap aspect ratios, which may

be time-dependent. Taking all this into account, the dimensionless dipolar GPE

reads
1
i 81/1((9;, B _ {——VQ +5 (7 + 0%y + X%2%) + dxNay [ (r, 1)
| 3eesd (2.48)
— O COS
N [ S W0 [vie).

where 6 is the angle between the vector r — r’ and z axis. The wave function here is
normalized to unity [ dr|¢(r,t)]> = 1, and the density profile is given by n(r,t) =
N |¢(r,t)|%. In the mean-field approximation, the many-body wave function can be

written as

\I/<I'1,...,I'N, H

=1

WY(r;, t) (2.49)

E\H
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The above time-dependent dipolar GPE describes the dynamics of the system.
Since the ground state wave function has a common phase, it can be chosen to be
zero, thus making the wave function real. The time-independent ground state wave

function 1 (r) satisfies the time-independent GPE, or the eigenequation

1 1
pbo(r) = [—EVZ + 3 (v’2® + °y* + N?2°) + 47 Na, lih(x) |

2.50
— 3cos?6 ( )

+3Nay / ' : (@) |w(e),

lr — /|3
where the chemical potential p is the corresponding eigenvalue. Both the time-
dependent and time-independent dipolar GPE can be exactly solved only numeri-
cally. In this thesis we will do so using the Crank-Nicolson split-step semi-implicit
method [35-37]. From the analytic point of view, we use the variational approach,

which is presented in the next section.

2.4 Variational approach

The dipolar GPE equation can be written as the Euler-Lagrange equation for the

following Lagrangian density
i : - 1,
£0,07) = 5 (¥ = ¥4 ) + 50"V3 - UJpP - 27Na, |yf*

. 2
-2 [ 2

2 r —r/|3

where the wave function of the condensate is a function of space and time variables
Y = ¢(r,t), and the trap potential U = U(r,t) is given by Equation (2.47). The
GPE (2.48) is obtained as the Euler-Lagrange equation with respect to ¢*, or as
the complex-conjugate of the Euler-Lagrange equation with respect to ). The above
Lagrangian can be used as a starting point for a variational description of the ground
state and the dynamics of a BEC. This is done by selecting a suitable ansatz for the
wave function, calculating the Lagrangian of the system L(t) = [ dr £, and deriving
the equations of motion for the variational parameters present in the wave function
ansatz. The variational approach is a valuable method to study the behavior and
properties of BECs and we use it to investigate the collective modes and density

waves.
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For the variational study we use the Gaussian ansatz [38-41|

1 _a 2 nd? LiygR ring?
U@,y 2 t) = gp————e % ¥ R (2.52)

/U Uy U

where the six variational parameters {u;, ¢;} are functions of time and represent

the condensate widths and conjugated phases, respectively. If only the ground state
is studied, then the phases ¢; can be omitted, and the condensate widths can be
assumed to be constant. However, if we want to study the systems dynamics, then
the phases are necessary and therefore we take them into account. The coefficient in
front of the exponent function is chosen so as to keep the wave function normalized

to unity.

Using the Lagrangian density (2.51) and ansaz function (2.52), by integration

we calculate Lagrangian of the system, consisting of five terms
L(t) = Ly(t) + Lo(t) + L3(t) + Ly(t) + Ls(t) . (2.53)

We calculate all term independently. The first one reads

)= [ (070 007) =5 (w4 udd, +02d) . (250

while the kinetic energy term gives

1 ) 1/1 1 1
Ly(t) = §/drw V3 = - (E Tt AuZ el + dulel + 4u§¢3) . (2.55)
x Yy z

The term corresponding to the potential energy yield
1
La(t) = — /drU 97 = =5 (P + v+ %) (2.56)

and the contact interaction term gives

Na,
V2T uguyu,

The DDI term is more complex to calculate. It reads

Ly(t) = —27rNa5/dr ]t = — (2.57)

Ly(t) = 20 / dr [(r) / dr' Ugar — ') [(") 2, (2.58)

where, in the rescaled units, the dipolar potential is given by

1 —3cos?d
r3 ’

Uga(r) = (2.59)
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The r’ integral can be calculated using the convolution theorem,

. 3Nadd

Lo(t) = =255 [ar o) PF {F U (9 F 0] 00} (). (200

where F stands for the direct and F~! for the inverse Fourier transform. The
above expression can be further simplified if we explicitly write the inverse Fourier
transform,

3NCde
2 (2m)3

Ly(t) = [k F a0 7 [08] 00 [dr e, o

The last integral is equal to F [W)m, which can be readily calculated,
F[[9P] (k) = e athmithpg th). (2.62)

The Fourier transform of the dipolar potential F [Ugq] (k) is calculated in Ap-
pendix A and reads

F [Uad] (k) = %ﬂ (3cos®d—1) = Am <3kz — 1) : (2.63)

3\ K?
If we put all these elements together, the DDI term of the Lagrangian is given by

3N6de /{33 1 E2u2+k2u2 4+ k242
“@:‘my/%(%ﬂWHﬁ—le““yyZ* (2.64)
z Yy z

and, as shown in Appendix B, can be expressed in terms of the anisotropy function

f

Nagq (um uy>
Ls(t) = ———f—,— | . 2.65
5() \/ﬁuxuyuzf Uy Uy ( )

The anisotropy function [42] is defined as

27 iy
1 3 22y? cos? 0
,y)=—— [ do [ dfsinb -1/,
J(z.9) A / 7 / o <(a72 sin? ¢ + 42 cos? @) sin? O + x2y2 cos? 0 )
0 0

(2.66)

and its solution can be expressed via elliptic integrals [43] of the first and the second
kind. Details on the anisotropy function and how it can be expressed for different
values of the arguments = and y are given in Appendix C. Now that we have calcu-
lated the Lagrangian of the system, we derive the Euler-Lagrange equations for the

variational parameters,

d (0L oL
E (a_(]z) - 8% = 07 q; € {Uxauy7uz7¢m7¢y;¢z}7 (267)
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that describe motion of the parameters. We first proceed with the equations for the

phases ¢;, which turn out to be

U

¢i = (2.68)

QUZ' .
The Euler-Lagrange equations for the condensate widths u; contain the phases ¢;

and their derivatives, which can be eliminated using the above equations. This leads

to the second order differential equations for the parameters u; in the form

.. 1 2 N Uy Uy Uy U
iy + 7 1ty — 3_\/j 2 [as—addf( )+add—f1( y)] =0
us T UG Uy U, u, U, u, U,

(2.69)

. 1 2 N Uy U Uy U
uy+V2“y_ 3_\/i 2 as —addf( y)+add—f2( y)] =0
U T U UL w, U, U w, U,

(2.70)

1 2 N Uy U U Uy U
. 2 x Yy x T Yy
u; T Ug Uy U uz Uy U, Uy Uy

(2.71)

where f; and f5 are partial derivatives of the anisotropy function with respect to
the first and the second argument. More details on these derivatives are given in

Appendix C.

The above equations are used to variationally study the dipolar BEC dynamics,
as well as the corresponding ground state. The algebraic equations determining the
ground state are obtained by assuming that the condensate widths are constant,

thus removing their second derivatives from the equations of motion.
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3 Ground state properties

In the previous section, we have seen that the condensation corresponds to the accu-
mulation of a macroscopic number of particles in the ground state. In the mean-field
theory at zero temperature, all atoms are condensed in the lowest single-particle
quantum state, while the ground-state wave function |[¢(r)]*> = n(r) determines
the density distribution of atoms. The wave function is a complex quantity, whose
square of the modulus describes the contribution of the condensate to the diagonal
elements of the density matrix p, and whose phase has a role in the coherence char-
acterization. The wave function is defined up to a constant phase factor, reflecting
the U(1) symmetry of quantum mechanics. For a system with a time-independent
Hamiltonian the condensation leads to a symmetry breaking, such that the whole
condensate is described by a constant phase, which can be set to zero. This can
be also seen as a consequence of the off-diagonal long-range order discussed ear-
lier. Since its phase can be set to zero, the wave function of the ground state can
be always taken to be real-valued. In BEC experiments, the ground state usually
represents the first step and is achieved by cooling an atomic or molecular sample
using a variety of techniques. The ground state can be reliably described by the
GPE [7,8], as discussed previously. In typical experiments, the dynamics of the sys-
tem is induced from the ground state by perturbing the system or changing some of
the system parameters, such as the interaction strength or the trap geometry. The

behavior of the system is then observed using the time-of-flight imaging or in-situ

measurements.
For a noninteracting system, the GPE reduces to a Schrédinger equation with a
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given trap potential. In case of a harmonic potential (2.22), the ground state of a
noninteracting bosonic system is determined by the lowest single-particle quantum

state, which is given by the Gaussian function
3/4 .
0l .2) = (2)" (g, ) B o) (3.1)
T

Therefore, in the weak-interaction limit a Gaussian function represents a good choice
for a perturbative or variational treatment of the system. In the other limiting case,
when the interaction is strong such that the kinetic energy term can be neglected,
one can use the inverted parabola of the Thomas-Fermi approximation as a starting

point for various analytic approaches.

3.1 Variational description of the ground state

To describe the ground state variationally, we rely on the Gaussian ansatz (2.52). In

the static case, the dynamical equations of motion (2.69) - (2.71) have the following
\/5 Na, \/5 Nadd Uy Uy \/fNadd f U Uy _
T uZu,u, uzuyuz U, U, T Uy Uyyu2 "\, )
(
\/5 Nayg \/ENadd Uy Uy \/ENadd f Uy Uy _0
T upulu, u$u2uz w, U, T Uy Uy U2 N w, )
\/5 Nayg \/5 Nadd Uy Uy N 2 Naddf Uy Uy
T uxuyu2 T uzuyu?’ \u, u, T uyu’ u, U,

2Nad§f (%7%) =0.
T Uy U, U, U,

(3.4)

form

The ground state of the system is characterized by the constant condensate widths
u;, © € {x,y,2z}. Solving the above system of nonlinear algebraic equations we
directly obtain the widths of the condensate. In some special cases, this can be
done analytically. For example, if we neglect the dipole-dipole interaction by setting

aqqa = 0, and if the system is cylindrically symmetric, such that u, = u, = u,, the
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variational equations reduce to

2 Nagu,

2,4
=1 = 3.5
VU =144/~ w2 (3.5)
2 Na,
uy =1+ — (3.6)

Because the number of atoms in the system is much larger than 1, the first term

in the above equations can be neglected and the widths of the condensate can be

>N 1/5 5 1/5
Qs
Uy A (\/; i ) .U, N (\/%N@ﬂ) : (3.7)

As we can see, if we have only the contact interaction, the size of the condensate

expressed as

increases in all directions with the increase of the interaction strength as ar®. We
also see that the condensate width u, in the direction of weak confinement is always

larger than u,, since u,/u, = 1/7 > 1.

If we now take into account the dipole-dipole interaction, the system of equations
(3.2) - (3.4) cannot be analytically solved anymore. However, it can be simplified
when the direction of weak confinement matches the direction of the dipoles’ polar-
ization. Assuming cylindrical symmetry of the trap, the anisotropy function satisfies
the following limit

(2 + 2%) f,(2)

o (3.8)

limz fi(z,y) = limy fo(x,y) =
y—T y—z

where fs(z) = f(x,z) is the cylindrically symmetric anisotropy function which is

defined in Appendix C. Using this the variational equations (3.2) - (3.4) lead to the

system
2 Nu
up =1 =—"[as — aqa Az 3.9
Ve =144/~ a2 a5 — aaa Aa(K)] (3.9)
2N
up =1+ v las — aqa A,(K)] , (3.10)

where £ = w,/u,, while functions A,(x) and A,(k) are defined by

2 — Tk? — 4k + 9kt d(k)
Aal) = 2(1 — K2)2 ’

(3.11)
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1410k — 962 d(k) — 2K*

A,(K) (1—K2)? '

(3.12)
with
(k) tanh™' /1 — K2
K) = )
V1 — k?

In the limit of small x, the above functions have limits A,(k) = 1, A (k) — 1, with

(3.13)

k2d(rk) — 0. If we again neglect the first term in Equations (3.9) and (3.10) due to
N > 1, this system can be solved analytically in the zeroth order in x. The solutions
are the same as (3.7), with a, replaced by as = as — aqq. However, depending on the
value of k, the corrections of the order x and higher could be important, such that
the system (3.9) and (3.10) has to be solved without applying £ — 0 approximation.
In this case, the above equations cannot be solved analytically and the numerical
approach is necessary. As we are considering a case when the dipoles are oriented in
the 2z direction and the cylindrical symmetry is not present anymore, we have to use
the full set of variational equations (3.2) - (3.4) in order to determine the ground

state widths.

Note that the above equations for the ground state widths, with or without
cylindrical symmetry, can be used to assess the stability of the system as well.
Namely, we know that even in the absence of the dipole-dipole interaction the system
can become unstable if the contact interaction is attractive (a5 < 0). This happens if
the number of atoms is sufficiently large, such that the right-hand sides of equations
(3.2) - (3.4) become negative. The situation is more complex in the present of the
dipole-dipole interaction, which is anisotropic and can lead to instability due to
the trap geometry, even for a large and positive contact interaction. The onset of
instability in the solutions of the above equations can be detected by the appearance

of negative condensate widths.

3.2 Ground state of °’Cr, 'Er and Dy BECs

Now we will explore how the ground state looks like for condensates of atomic

chromium *2Cr, erbium '®FEr, and dysprosium '$*Dy, using a numeric and a varia-
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tional approach for the system which parameters are given in detail in Appendix D.
As outlined in Chapter 6, the numerical calculation of the ground state relies on
the imaginary-time propagation. As a starting point we always use a Gaussian
wave function that corresponds to the noninteracting case (3.1), i.e., the variational
ansatz (2.52) with u; = 1/y/wi/w, and ¢; = 0, given by Equation D.3. Starting
from such a state, depending on how far from the ground state it is, the imaginary-
time propagation evolves it exponentially fast to the ground state. Figure 3.1 shows
the ground-state condensate density for N = 10* atoms of the considered atomic
species, together with the chosen Gaussian initial state. We plot the corresponding

integrated densities
o) = [ [ dydzlotas. P, (3.14)
(o) = [ [ dzdelotey. )P, (3.5)
n(z) = //d:vdy|@/)(x,y,z)|2, (3.16)

where blue line represents the corresponding initial, Gaussian state density n;, and
red line the numerically obtained ground state density n;. The trap weakly confines
the atoms in the = direction, and therefore the condensate density ny(x) is much
more elongated than the other two densities. This can be seen in Figure 3.1 for
all species, with the corresponding width for 2Cr of around 35.706 pm, while for
168 Er and 94Dy the widths are around 23.201 pm and 23.339 pm, respectively. Here
the widths w;, i € {z,y, 2} are defined as two times the root-mean-square of the

corresponding coordinate, i.e., 24/(x2), 24/(y?), 2/(22). Note that for the initial

states we have w; = 2u; = 2/ \/m The differences in the numerically obtained
values of w, are mainly the result of the contact interaction, i.e., a combination of
the s-wave scattering lengths and masses of atoms. The values of a, for all three
species are quite similar, and therefore the main difference in the ground state widths
comes from the mass difference, while the dipole-dipole effects are very small due
to the small density n(z). It is one order of magnitude smaller than the densities
in other directions, as can be seen from Figure 3.1. However, the dipole-dipole
interaction significantly changes the densities in the y — z plane. Although the

trap is cylindrically symmetric in that plane, the dipole-dipole interaction breaks
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Figure 3.1: Integrated ground-state densities (red lines) of BEC of N = 10* atoms of
chromium **Cr (first row), erbium ®*Er (second row), and dysprosium %Dy (third
row). The initial Gaussian wave function that corresponds to the noninteracting
case (blue) is propagated in the imaginary time for 100 ms to obtain the ground
state (red line). The first, second and third column give the corresponding integrated
densities in x, y, and z direction, respectively. The observed significant elongation of

the condensate in the z—direction is due to the trap geometry defined in Appendix D.

this symmetry, which can be seen by comparing the middle and the right-hand side

column in Figure 3.1.

In recent experiments it was demonstrated that the strength of the dipole-dipole
interaction can be tuned by applying a fast-rotating magnetic field, or for electric
dipoles, a fast-rotating electric field [24,25]. In our description, this corresponds
to changing the value of the parameter aqq. If we set agq = 0, then the system is
reduced to a BEC with only the contact interaction. Note that this can be effectively

achieved if the external field that orders the dipoles is switched off. To compare how
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Figure 3.2: Integrated ground-state densities of BEC of N = 10* atoms of chromium
»2Cr (first row), erbium '®Er (second row), and dysprosium %Dy (third row).
Red lines correspond to the densities obtained by taking into account the dipole-
dipole interaction, while blue lines are obtained for agq = 0. The first, second and
third column give the corresponding integrated densities in z, y, and z direction,
respectively. Table 1 gives relative differences in the condensate widths due to

dipolar effects.

the dipole-dipole interaction contributes to the ground state properties, Figure 3.2
gives the corresponding results for chromium *?Cr (first row), erbium %®*Er (second
row), and dysprosium %Dy (third row), with (red) and without (blue lines) the
dipole-dipole interaction. As expected, the figure shows cylindrical symmetry in the
y — z plane when the dipolar effects are neglected, while the asymmetry grows when
they are taken into account, from chromium to dysprosium, as the dipole moment
increases. Table 1 gives relative differences of the condensate widths due to the

dipole-dipole interaction, Aw;/w; = 1 — w;(0)/w;(aqq). Positive values correspond
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Table 1: Relative differences of the ground-state condensate widths due to the dipole-
dipole interaction. The values correspond to the integrated densities from Figure 3.2
for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; = 1 —
w;(0)/w;(aqa), i € {x,y,z}. A positive value represents an increase of the width,

and negative the opposite.

Species aga (ao)  Awg/w, (%) Awy/w, (%) Aw,/w, (%)
2Cr 15.126 0.959 -1.055 2.044
168 Ey 66.564 4.009 -10.987 13.469
164y 132.607 3.624 225457 20.748

to the increase of the width due to dipolar effects, and negative values the opposite.
As expected, the condensate elongates in the direction of the dipoles, while due to
the interplay of geometry and interaction effects, its width increases in the z and
decreases in the y direction. As noted earlier, the relative change in the z direction
is negligible, while in other directions it is quite significant for species with large

dipole moments.

As mentioned earlier, propagation in imaginary-time is used to calculate the
true ground state of the system starting from any initial state (provided that it
is not orthogonal to the ground state). The convergence to the ground state can

be detected by the convergence of all physical quantities that describe the system,

35 : 45 : 45
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Figure 3.3: Convergence of the chemical potential of a BEC of N = 10* atoms of
chromium 52Cr (left), erbium %*Er (middle), and dysprosium *‘Dy (right) during
imaginary-time propagation, with (red) and without (blue line) the dipole-dipole

interaction for the system parameters given in Appendix D.
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in particular its, chemical potential, energy, and expectation value of the size of
the system. Therefore, the convergence of these quantities is used as a criterion
in numerical simulations, which is illustrated in Figure 3.3. In the left panel we
can see the decrease of the chemical potential for chromium °2Cr, in the middle
panel for erbium '*®Er, and in the right panel for dysprosium 4Dy, both with and
without dipole-dipole interaction. The chemical potential is expressed in units of
hw,, where w, = 160.5 x 27 Hz is rescaling frequency. From Figure 3.3, we observe
that the dipole-dipole interaction increases the energy of the system. Furthermore,
this energy difference increases with the strength of the interaction aqq, and reads

306 hwy, 1444 hw,, and 2101 hw,, respectively for the listed atoms.

3.3 Interaction effects on the ground state

In this section we study the influence of the short-range contact interaction on the
ground state properties of dipolar condensates. For the first experimental realization
of BEC, it was possible to tune the strength of contact interactions over a wide range
using the Feshbach resonance technique [9]. By adjusting the external magnetic field
close to a Feshbach resonance, the contact interaction strength can be tuned from
large positive to large negative values, i.e., it is even possible to switch between
repulsive and attractive interactions. To model this, we keep fixed the dipole-dipole
interaction strength to experimentally measured values listed in Appendix D for each
species, and investigate the ground state properties when the contact interaction
parameter is varied in the interval from a, = 10 ag to a; = 200 ag for the condensate
of N = 10* atoms. It turns out that erbium '®*Er BEC is unstable for low values
of as, so we use the region from a, = 40a¢ to as = 200aq in this case. Similarly,
for dysprosium %Dy we use the interval from a, = 90 ag to a, = 200 ag. Figure 3.4
illustrates the contact interaction strength dependence of the condensate widths in
x, y, and z direction obtained from the numerical simulations (red) and variational
calculation (blue line). As expected, the increase of the repulsive contact interaction
leads to the increase of condensate widths in all directions. Results of numerical

simulations agree with the results of variational analysis with the relative error of
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Figure 3.4: Condensate widths as functions of the contact interaction strength for
a BEC of N = 10* atoms of chromium **Cr (first row), erbium '®®Er (second row),
and dysprosium %Dy (third row). Results are obtained for fixed dipole-dipole
interaction strengths given in Table 2. Red lines represent numerically obtained

widths, and blue lines the variational ones.

around 30%. As we can see from Table 2, which lists relative differences of the
ground-state condensate widths for two values of the contact interaction strength,
as = 90 ag and ay = 200 ag, the increase of the repulsive contact interaction increases
the condensate width in all directions and for all species. We also observe that
the dipole-dipole interaction suppresses elongation of the condensate in z direction,

where it is attractive.

Although more difficult, it is also possible to tune-down the strength of the
dipole-dipole interaction for magnetic atomic species using a fast-rotating magnetic
field [24,25]. The maximal possible values are defined by the permanent magnetic

moment of the corresponding species. To investigate effects of the dipole-dipole in-
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Table 2: Relative differences of the ground-state condensate widths due to the
contact interaction. The values correspond to the condensate widths from Fig-
ure 3.4 for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; =
w; (200 ag) /w;(90ag) — 1, i € {z,y, z}.

Species aga (ao) Awz/w, (%)  Awy/w, (%) Aw,/w, (%)
2Cr 15.126 16.917 9.748 7.957
168 Ey 66.564 15.361 14.612 5.353
164Dy 132.607 17.446 21.554 2.139

teraction on the ground-state properties, we numerically and variationally calculate
the condensate widths of chromium *?Cr, erbium '®*Er and dysprosium %Dy in the
interval from aqq = 0ag to agqa = 170 ag, keeping the contact interaction strength
fixed. Due to instability of erbium and dysprosium condensates for large values of
aqq, we have used the interval from aqq = 0ag to agq = 140 ag for those two species.
Figure 3.5 illustrates the striking effect of the dipole-dipole interaction which has a
non-monotonous behavior of the condensate width in x direction, causes decrease
in y direction, and increase in z direction. The agreement between numerical and
variational results as quite reasonable, with the error of arround 30%. Table 3
gives relative differences of the ground-state condensate widths for agq = 0 and

agqa = 100 ag. As we see, the change is most prominent in y and z direction. With

Table 3: Relative differences of the ground-state condensate widths due to the dipole-
dipole interaction. The values correspond to the condensate widths from Figure 3.5
for a BEC of N = 10* atoms. The differences are calculated as Aw;/w; = 1 —
w;(100 ag) /w;(0), i € {z,y, z}. A positive value represents an increase of the width,

and negative the opposite.

Species as (ag)  Awg/w, (%)  Aw,/w, (%) Aw,/w, (%)
2Cr 105 5.004 -12.180 14.676
168y 100 4.290 -17.326 17.388
164Dy 100 4.308 -17.205 17.336
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Figure 3.5: Condensate widths as functions of the dipole-dipole interaction strength
for a BEC of N = 10* atoms of chromium *?Cr (first row), erbium '®Er (second
row), and dysprosium '%4Dy (third row). Results are obtained for fixed contact
interaction strengths given in Table 3. Red lines represent numerically obtained

widths, and blue lines the variational ones.

an increase of the dipole-dipole interaction, the size of the condensate increases in z
direction, and decreases in y direction. This is expected, since it is well known that
the condensate elongates along the direction of maximal attraction of the dipole-
dipole interaction. On the other hand, the increase of the size in x direction is also

observed, but is much smaller.
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4 Collective oscillation modes

Calculation of the system’s ground state is usually the first step in analytical and
numerical approaches. The same applies in the experimental studies, where obtain-
ing and characterizing the ground state represents the first and necessary step before
proceeding to further measurements. The characterization of the ground state in-
cludes measurement of its density profile and condensate widths, as we have seen
in the previous section. In addition to these static properties, an important way
to probe the system is to study its low-lying excitations or collective modes. Such
excitations can be generated from the ground state by a small perturbation of the
system’s parameters. This results in small oscillations of the condensate density
and its widths, which can be experimentally observed using the time-of-flight imag-
ing or some of the in-situ techniques. The analysis of experimental results, as well
as the results obtained in numerical simulations, includes the Fourier analysis of

condensate widths, which yields the frequencies of the collective modes [44-46].

It is well known that the collective oscillation modes of a noninteracting Bose gas
are disentangled, i.e., independent in each spatial direction, with the frequency equal
to twice the corresponding trap frequency. The presence of interactions in the system
couples different modes, which results in the appearance of the breathing mode,
quadrupole mode, radial-quadrupole mode, etc. Their frequencies are shifted with
respect to the noninteracting case, and study of these interaction-induced frequency
shifts represents one of the important characterization methods used to describe
the ground-state properties. From the experimental point of view, probing of the

collective excitations is one of most accurate measurements that can be performed in

38



ultracold atom systems, with the precision of the order of one per mille. Therefore,
a comparison of numerically or analytically obtained estimates for the frequencies of
collective modes is an excellent method to check the validity and level of confidence
of the models used. As in our case there are two types of interaction in the system,
both of them independently affect the collective modes and their frequencies, which

we study in this section.

In the case of externally driven systems, which is necessary to generate the den-
sity excitations, such as Faraday waves, one can expect the appearance of resonances
in the system. This usually happens when the driving frequency is close to one of
the frequencies of the collective modes, or their linear combination. In some cases
this leads to the emergence of the Faraday waves, while sometimes resonant waves
appear, as we show in Chapter (5). Therefore, it is essential to understand well the
collective modes of the system, to either avoid resonant behavior or to induce it

when necessary.

4.1 Variational description of collective modes

For the variational study of the collective modes, we use the Gaussian variational
ansatz (2.52), and equations of motion (2.69) - (2.71) derived in Section (2.4). The
system is perturbed from the ground state by a small change of one of its parameters,

such that the condensate widths become time dependent,
wi(t) = wio + ou;(t), i€ {x,y, 2}, (4.1)

where u;o are the constant ground-state widths, and du;(t) are small oscillation
amplitudes, |du;(t)] < u. If we insert the expression (4.1) for the condensate
widths into the equations of motion (2.69) - (2.71), and linearize the system by
expanding it in the small parameters ou;(t) and keeping only the terms of the first
order, we obtain a coupled system of ordinary linear differential equations of the

second order, which can be expressed in the matrix form as
du(t) + Méu(t) =0. (4.2)
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Here du(t) is a vector [0u,(t) du,(t) du.(t)]”, and elements of the matrix M are

calculated from the Lagrangian of the system (2.53),
9?L(u)

(9uz- 8Uj u=ug

. 1) €{xy 2} (4.3)

To calculate the frequencies of the oscillations induced in the system, we write the

solution of equation (4.2) in the following form
Su(t) = due™t, (4.4)

where du is a constant vector, and w denotes a collective mode frequency. If we insert
this into the matrix equation (4.2), the collective mode frequencies are eigenvalues

of the matrix M, i.e., solution of the following eigenproblem

det(M — w?*I) =0. (4.5)

The above eigenproblem can be analytically solved in a simple way in some
special cases. For example, if the system is cylindrically symmetric, such that u, =
u, = u,, the problem is essentially two dimensional leading to additional symmetry
in the matrix M, which now has the form

myp My My
M= my my ms| - (4.6)
mg Mz Mo
Due to this, the corresponding the eigenproblem can be fully solved in a closed form.

The frequencies of the collective modes in this case are

m1+m2—|—mg+\/(mg—f—mg—ml)2—|—8m?1

2
— 4.7

wh = m1+mz+ms—\/<w213+mz—m1>2+8mi7 (4.8)
Who = M2 — M3, (4.9)

with the corresponding eigenvectors

T
uB:[m1—m2—m3+\/(223;+m2—m1)2+8m421 1 1} , (4.10)
T
ug = |:m1*m2*m3*\/(2inni+m2*ml)2+8mi 1 1:| , (411)
1 T
URQ:E [O —1 1} . (4.12)
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In the above expressions, index B denotes the breathing mode, Q the quadrupole
mode and RQ the radial-quadrupole mode. The modes can be identified by analyzing
the corresponding eigenvectors. In the first case, all three components of ug are
positive, which means that it corresponds to the breathing mode. In the second case,
the longitudinal component of ug is of the opposite sign of the radial components,
thus it represents the quadrupole mode, and in the third case, the longitudinal
component of upg is zero, while the two radial components are of the opposite sign,

which means that this mode can be identified with the radial-quadrupole mode.

Next, we consider the system with contact interaction only. If we set aqq = 0,

the derivatives (4.3) of Lagrangian (2.53) yield the following elements of matrix M

3 2 Na,
Uz 7Tu:zroupo
3 2 Nag
Upo Wuxoupo
2 Nayg
My =)= — (4.15)
T Uy Uy

2 Nag

where w;, i € {x,p} are the ground-state condensate widths given by equations
(3.5) and (3.6). Using the above expressions in (4.7) - (4.9), we can calculate the
frequencies of the collective modes as functions of the contact interaction streingth
ag, the number of particles N, and the trap aspect ratio . For the noninteracting
system, in the limit a;, — 0, we obtain for the collective mode frequencies wg = 2,
wg = 27, and wrg = 2. These frequencies are given in dimensionless units, while
the physical values are obtained by multiplying them whith the referent frequency
Wy = wy = w,, such that wp = 2w,, wg = 2w,, and wrg = 2w,. As mentioned
earlier, in this special case we obtain the collective mode frequencies equal to twice

the trap frequencies.

If the contact interaction are present in the system, then the collective mode
frequencies depend on its strength a,. Figure 4.1 shows this dependence, obtained

from the variational approach for a BEC of N = 10* atoms of chromium *2Cr,
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Figure 4.1: Frequencies of the breathing (left), quadrupole (middle), and radial-
quadrupole (right) collective mode as functions of the contact interaction strength
for a BEC of N = 10* atoms of chromium *?Cr. Results are obtained using the

variational approach, and neglecting the dipole-dipole interactions.

where the dipole-dipole interaction is neglected. As we can see, when the contact
interaction parameter is varied in the interval from a, = 0 to a, = 200 ag, frequency
of the breathing mode slowly increases, while the frequency of the quadrupole mode
slowly decreases. The decrease in the frequency of the radial-quadrupole mode is
more prominent than in the case of the quadrupole mode. From this figure we
can also observe that in the noninteracting limit wp and wgg tend to 321 x 27 Hz

= 2 x 160.5 x 2m Hz, and that wg tends to 14 x 27 Hz = 2 x 7 x 27 Hz.

In order to compare the variational results with experiments, we use the values
obtained in Reference [44] for a BEC of N = 1.5 x 107 atoms of »Na. For a trap
with the frequencies 16.93(2) x 2r Hz and w, = 230(20) x 27 Hz, the experimentally
measured value of the quadrupole mode frequency was wg = 1.569(4) w,, which
in excellent agreement with our variationally result wg = 1.581w,. For the same
parameters, the results of numerical simulations yield the frequency wg = 1.575 wy,
which is in even better agreement with the experimental value. Therefore, we con-
clude that the above variational and numerical approach can be reliably applied to

study ultracold atomic systems.

While it is still justified to neglect the dipole-dipole interaction for atomic species
such as *?Cr, for species with larger values of the dipole moment it is necessary to
take it into account. We now present the variational calculation of the collective

mode frequencies for the case of cylindrically symmetric system with the dipoles
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oriented in the direction of weak confinement. In this case, the elements of matrix
M again have the form given by Equation (4.6). We have calculated the ground-
state widths (3.9) and (3.10) for such a system in the previous section, which allows

us to calculate the elements of matrix M as follows

i = 4 u%o N 2\/2 usi\; p (0, () (4.17)
me =1+ U%o + 2\/2%2\;;%0 (as — aggA,p(K)) , (4.18)
ms = \/g%f)\;éo (as — aggAzp(K)) , (4.19)
- \/g#uiﬁo (as — dagA e (K)) | (4.20)

where £ = wy0/uz0, and functions A;;(x), i, j € {z, p} are defined by

 4kS — 126" — 9kMd(K) + 51K? — 36K7d(K) + 2

Az (k) 21— ) : (4.21)
32k% — 99k8d (k) + 141K* — 36k*d(k) — H4K? + 16
16K5 — 45k d(k) + 51k — 30K2 + 8
A, (k) = : 4.23
P(’i) 8 (1 _ H2)3 ( )
4K5 — 36K* + 45K d(K) — 15K + 2
A = 4.24
with
tanh™" /1 — K2
d(k) = 2 = (4.25)

V1— k2

During the calculation of the matrix elements (4.21) - (4.24), in addition to (3.8),

we have used the following identities satisfied by the anisotropy function

9[(4+2?) fi(z) —2(1 — 2?)]

lim x,y) = lim T,Y) = , 4.26
e fu(z,y) e fa2(2,9) S(1— 22 (4.26)
, , 8+ 8x2 —xh) fo(x) —2(4 — ba? + 2

lim fia(z,y) = lim for (2, ) = ) Jelw) ~2( ) o)

Yy—x Y—T 12 (1 _ 1’2)

where fs(x) = f(x, ) is the cylindrically symmetric anisotropy function, and f;; are

second partial derivatives,
82

fij(ilil,l’Q) = Mf(l'l,ﬂﬁg) . (428)

In the limit of small x, which corresponds to the cigar-shaped trap geometry that

we consider (7 < 1), the above functions can be approximated in the zeroth order by
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Apr(K) = App(k) = Agp(k) = Ape(k) — 1, with k2d(k) — 0. In this approximation,
the matrix elements can be cast in the same form as Equations (4.13) - (4.16), just
with as replaced by as = as — aqq. The corresponding collective mode frequencies
are given again by Equations (4.7) - (4.9), which are evaluated using the above

approximated values of m;.

We now consider the experimentally relevant system when the dipoles are ori-
ented in the z-direction, such that the cylindrical symmetry is not present anymore,
although the trap remains cylindrically symmetric. In this case the matrix M is
just a symmetric matrix, without the additional symmetry we had before. After a

lengthy, but straightforward calculation, we obtain

3 2 N [ Hiz
YA T S T - | e
Uz T UpoUyoUzo L 2
3 2 N r szz
M22: 1 +T+2 3 as_add(f_/fyzf2+ Y fgz)] , (430)
uyO m U’-’EOuyOuZO - 2
3 2 N r
Mzg = 14+ 424/ ————5 |5 — daa (f + 264 1 + 2Ky, fot (4.31)
’LLZO T Umouyouzo L
ﬁiz KQZ
’i:pz/iyzfm + Tfn + Tyfgz)] 5 (432)
2 N r
My, = ;UQ w2 as — Gdd (f - "fxzfl - fiyzf? + /faczﬁyzf12>i| 5 (433)
z0 “y0 %20 -
2 N i 2
M13 = ;—u2 " u2 as — Qdqd (f - /‘izzfl -+ Hyzfg — /ﬂ?leﬁlyzflg — K’:czfll>:| s (434)
20 %y0%20 -
2 N )
Moz = P S as — adqd (f + Kgo f1 — Kyzfo — KazKysfi2 — K,yzf22>:| , (4.35)
z0%y0%20 -

where we have used abbreviations k;; = uio/ujo, f = f (Kez, £y2), and

0 0?

fi= an(/@xz, "‘Jyz) ) fij = f(’ixza KyZ) . (4'36>

Gmiz 8I£jz

4.2 Interaction effects and the collective modes

The usual low-lying collective oscillation modes, such as the breathing, quadrupole,
and radial-quadrupole mode, are direct consequences of the existence of interactions

in the system. In the absence of interactions the many-body physics is reduced to a
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one-body problem, and for bosons this amounts to simple disentangled oscillations
along the trap axes as the normal modes, with the frequencies equal to twice the
corresponding trap frequencies. In this noninteracting case, although each atom
would oscillate independently with the corresponding frequency even if no other
atoms are present, the fact that the atoms are identical and that all of them would
perform the same type of oscillations makes their dynamics practically a collective

mode.

The presence of interactions, even if quite weak, changes the situation dramat-
ically and allows the emergence of the well-known collective modes [44]. In the
previous section, we have derived the variational expressions for the frequencies of
those collective modes and we now study how they are affected by the strength of
the contact and the dipole-dipole interaction. We have already seen in Figure 4.1,
where the frequencies of the collective modes are calculated variationally as func-
tions of the contact interaction strength by neglecting the DDI, that the breathing
and the quadrupole mode frequencies depend very weakly on a,, while the radial-
quadrupole mode is more sensitive. Figure 4.2 presents numerical and variational
results for all three atomic species, where we take into account the DDI, both numer-
ically when solving the dipolar GPE and variationally, using the expressions derived
in Section 4.1. Not surprisingly, the breathing and the quadrupole mode frequencies
still exhibit the flat behavior, while the radial-quadrupole mode shows significant
dependence on a,. Therefore, the contact interaction strength, which can be tuned
in experiments in a very broad range, can be considered as control parameter only
for the radial-quadrupole mode, whose frequency can be adjusted this way, although

in a limited range.

From Figure 4.2, we see that our variational approach properly captures func-
tional behavior of all the modes and gives frequency values which are in very good
agreement with the numerical ones. The absolute errors are of the order of few Hz,
which makes them practically negligible for the breathing and the radial-quadrupole
mode, while in the case of the quadrupole mode, due to its low value of around 12 Hz,

the relative error amounts to 10%.
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Figure 4.2: Effects of the contact interaction on frequencies of collective oscilla-
tion modes: the breathing mode (left column), the quadrupole mode (middle col-
umn), the radial-quadrupole mode (right column), for a BEC of N = 10* atoms of
chromium *?Cr (top row), '®Er (middle row), and '**Dy (bottom row), for a fixed
dipole-dipole interaction strength given in Appendix D. Red upper triangles are
numerically obtained values using the FFT analysis, and blue lines are variational

results from Section 4.1.

Next, we focus on the effects of the dipole-dipole interaction strength, presented
in Figure 4.3. The results for the breathing and the quadrupole mode are quite
similar, although one can see a slight increase in the breathing mode frequency and
a slight decrease in the quadrupole mode frequency as agqq increases. However, the
radial-quadrupole mode frequency shows a nonmonotonous behavior, albeit in even
more limited range. The variational approach works equally well here as in the case
of the contact interaction, and in particular it properly describes the nonmonotonous

behavior of the radial-quadrupole mode.
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Figure 4.3: Effects of the dipole-dipole interaction on frequencies of collective os-
cillation modes: the breathing mode (left column), the quadrupole mode (middle
column), the radial-quadrupole mode (right column), for a BEC of N = 10* atoms
of chromium **Cr (top row), '®Er (middle row), and '®*Dy (bottom row), for a fixed
contact interaction strength given in Appendix D. Red upper triangles are numeri-
cally obtained values using the FFT analysis, and blue lines are variational results

from Section 4.1.

The precise knowledge of the collective oscillation mode frequencies is essential
not only for comparison with the experiments, where measurements of these fre-
quencies are the most precise and can be used for testing of various theoretical and
numerical approaches, but also for deeper understanding of the dynamical response
of the system in many experimental situations. This is of particular interest for
driven systems, where resonances may appear close to frequencies of collective os-
cillation modes. This is also relevant for the study of Faraday waves, which can be
generated only by modulating the system at non-resonant frequencies, as we will see

in Chapter 5.
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5 Faraday and resonant waves

In the previous section, we have seen that a small perturbation of one of the system
parameters generates collective oscillation modes, which we have analyzed using the
spectral analysis of the condensate widths. We demonstrated that frequencies of the
collective modes depend on the geometry of the system, as well as on the strength of
contact and dipole-dipole interactions, but we did not discuss the spatial period of
the induced waves since it was much larger than the size of condensate. Therefore,
one can assume that the condensate density is only slightly spatially modulated in
the presence of collective modes. However, if the perturbation is performed period-
ically, i.e., if one of the system parameters is harmonically modulated in time, the
spatial period can become small enough to produce observable density patterns in
the condensate. The classical phenomenon of Faraday waves inspired this line of
research [28], and although oscillations of a shallow layer of liquid generate surface
waves, while periodic modulation of one of the system parameters of a quantum fluid
produces density waves, both share the common name in the literature — Faraday

waves.

Bose-Einstein condensates are usually termed quantum fluids, which encom-
passes a broader range of physical systems where quantum effects are either domi-
nant or very much pronounced. Despite their name, some of quantum fluids do not
share the trademark property of classical fluids, incompressibility. In fact, the BECs
are made of rarefied gases, but their fluid-like behavior stems from the quantum co-
herence of such systems. Therefore, while in classical fluids density modulations

can be excited only under extreme conditions, in quantum fluids the density waves
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represent one of the natural collective excitations. Parametric driving of system
parameters can lead to pattern formation not only in BECs, where Faraday waves
are experimentally observed in cigar-shaped rubidium [30] and lithium [47] conden-
sates, but also in helium cells [48]. The actual experimental observation of this
phenomenon in 2007 was preceded by numerical studies starting in 2002 [29,49-53,
all focusing on systems with short-range, contact interactions. More recently, Fara-
day waves have been studied in dipolar [33,54-56] and two-component condensates,
including the systems with spatially-dependent contact interaction [31,32]. Nu-
merical studies of Faraday waves have also been extended to mixtures of Bose and
Fermi gases [57], as well as Fermi gases exhibiting superfluid behavior [58,59]. An
interesting phenomenon of Bose fireworks [60] is related to Faraday waves, but ap-
pears during the free expansion of the system, when density patterns may also

emerge [61-63].

Parametric modulation of a BEC system generically leads to the emergence of
the Faraday waves, however resonant behavior can be also observed if the system is
modulated at one of its collective mode frequencies [64]. In that case, the Faraday
waves are suppressed and resonant waves emerge on a much shorter time scale.
Interestingly this can happen not only by modulation of the interaction strength,
but also by the modulation of the trapping potential or even the spatial modulation

of the trap [65-79].

In the context of dipolar BECs, the study of Faraday waves was limited mostly
to their excitation spectrum in one-dimensional and two-dimensional systems [54],
while the properties of resonant waves were not studied to the best of our knowledge.
Here, we focus on analytical description of Faraday and resonant waves in dipolar
condensates [33]. In particular, we study how such waves develop in ultracold system
of three dipolar species: chromium [10], erbium [12], dysprosium [11]. We consider
the system with the parameters specified in Appendix D, with the dipoles oriented
along z direction and the cigar-shaped trap in the weakly confined z direction. The

radial (y — z) component of the trap is harmonically modulated,
wy(t) = w,(t) = Qo(1 + esinwy,t), (5.1)
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where € = 0.1 — 0.2 is the modulation amplitude and w,, is modulation frequency.

These are typical values taken from the experiment of Reference [30].

In this chapter, we develop a variational approach for the study of the dynamics
of a driven dipolar BEC and identify the instability of the system leading to the
emergence of Faraday and resonant waves. Using this approach, we calculate the
dependence of wave properties on the strength of the contact and the dipole-dipole
interaction. The analytically obtained expressions for the spatial period of Faraday
and resonant waves are compared to results of the extensive numerical simulations,

which solve the full three-dimensional mean-field equations for a dipolar BEC.

5.1 Variational approach

For a variational study of Faraday and resonant waves in dipolar condensates we use
a modification [31,32,49-53, 56,64, 80, 81] of the Gaussian ansatz (2.52) to capture

the induced density waves in the direction of weak confinement (z direction),

2 2 22

w(x7y7 Z,t) — Ae 2”2: 2’“% 271%

iwp2+iydd+izep?
Finda gy iz 1+ (a+ip)coskx] , (5.2)

where A = A(uy, uy, u,, @, B, k) ensures the normalization of the wave function to

unity,

B 1 V2
AN T V2+ 02 + B2+ dae a4 (o + B2) e R '

The above variational ansatz involves eight variational parameters {u;, ¢;, «, 8},

(5.3)

which are functions of time. The parameters u; represent the condensate widths,
while ¢; are the conjugated phases, which are necessary to properly describe the
system dynamics. Note that these phases can be omitted when we are interested
only in the ground state. The multiplicative factor 1 4+ (v + if3) cos kz describes
the density modulation along x direction, and the variational parameters v and [
represent the real and the imaginary part of the amplitude of the wave. The wave
vector k, which is related to the spatial period ¢ of the density waves by ¢ = 27 /k,
is not treated here as a variational parameter. We determine its value from the

condition for the instability emergence, which leads to Faraday or resonant waves.
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If we insert the modified Gaussian ansatz (5.2) into the Lagrangian density (2.51),
we obtain the expressions for the five terms (2.53) of the Lagrangian of the system.

The first term reads

i L N1 . : : _aﬁ—ﬁd
b= [ (s =4 (i 20) T
and the kinetic energy term is equal to
Lit) = 5 [ drvrviy
(a2 + B%) k? (5.5)

i il 4 2 2 4 242 4 2 2 _ )
4 \ug A A A N oy

1 /1 1 1
= —- + =5+
Uy
The potential energy term is calculated using the expression (2.47) for the potential,
yielding
1
Ls(t) = — /drU ]? = - (vVuZ + vPul + Nul) | (5.6)

while the contact interaction term reads

Na, (1 at +16a% + 20262 + 54)>
V2T gy, 2(2 4 a? + (?2)? .

Ly(t) = —27rNas/dr |t = —
(5.7)

The Lagrangian term that corresponds to the DDI is calculated following a procedure
similar to the one described in Section 2.4. However, due to the modulation term
in the modified Gaussian ansatz it is not possible to perform exact integration to

obtain Ls(t). Using the convolution theorem, the DDI term can be written as

. 3Nadd
2 (2m)3

Lo(t) =~ iyt [ dkF ) 0 F [0 (19 [ar [0 er, (53)
where the last integral is equal to F [|1/1|2} (k), and can be calculated exactly,
F Uw’ﬂ (k) _ Be—%(kiui—f—kiu%-&-k?ui) : (59)

where B = B(k,, ug, o, 5, k) is given by

B 4+ 4(e—§(k—2kz)ui 4 e—%(k+2kz)ui) o+ (2+ e k(h—ke)ui 4 e—k(k-‘rk‘x)u%) (a® + 32

2 [2 +de a4 (1 + e Ful) (a2 + 52)
(5.10)

Grouping all elements together, the DDI term of the Lagrangian becomes

3Nadd/ k2 9 _1(p2,2 2,2 1.2,,2
Ly(t) = — dk (3 ——=2—— — 1| B?ealkauathyuythzuz) 5.11
() =~ 5 ( 2R+ k2 ¢ (5.11)
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and cannot be exactly calculated. To proceed further, we take into account that
the condensate width in the weak confinement direction is large compared to the
order widths, as well as compared to the spatial period of the density waves, such
that ku, > 1. We also take into account that the wave amplitude is small imme-
diately after the waves emerge, such that a, 8 < 1. Therefore, we approximate the

expression for B2 in the following manner
2
o o
B*x~1 B? B2, 5.12
T v 1+(2—|—a2—|—52)2 2 (5.12)

where B} = Bi(ky,u,, k) and By = B3 (k,, ug, k) are given by

1 2 1 2 2
B} = 4 ik (gl _q)", (5.13)

B2 = 4 o= Fhlkt2ke)u? <e%kkzu§ _ 1>2 (ekkzug _ Geskheud o 1) ’ (5.14)

and correspond to the coefficients in front of the terms linear and quadratic in the
wave amplitude, respectively. Since the integral over k cannot be performed exactly
even for the approximate expression (5.12), we replace the coefficients B? and B3

by their averages over k,,

ok (B ) BB [k (35 1) Brei
(B}) = k2 Tlew 12 i (5.15)

After that, we obtain (B?) ~ 0 and (B3) ~ —8. Note that we have neglected all

—k2u2/8

terms proportional to e and its powers, as already argued that ku, is a large

quantity. Therefore, B? turns out to depend only on « and 3, and reads

8a?
11— . 5.16
(2+ a2+ %) (5.16)

If we look at the expression (5.11), we see that now B? can be put in front of the

integral sign, and integration over k can now proceed as in Section 2.4, yielding, i.e.,

the DDI term of the Lagrangian in terms of the anisotropy function f becomes
Nagq (ux u ) ( 8a’? )
Ls(t) = —— 44 g2z Zv) (1 — . 5.17
s(1) V2T uxuyuzf Uy U, (2+ a? + 2)? (5:17)

Let us compare the calculated Lagrangian terms (2.54)—(2.57) and (2.65) in Sec-

tion 2.4 with expressions (5.4)—(5.7) and (5.17), respectively. Except for the poten-

tial energy term L3(t), which remains unchanged, we see that all other terms are
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modified by an additional additive or multiplicative factor, arising due to additional
variational parameters o and 5. The Euler-Lagrange equations for the system are

given by

d (0L OL
% (aqz) - an - 07 q; S {umyuy7UZa¢$7¢y;¢z,O{,6}, (518)

where L is a sum of all five calculated terms. Assuming that the wave amplitudes «

and [ are small, such that their quadratic and higher order terms can be neglected,

the equations for the condensate widths, turn out to coincide with those obtained

in Section 2.4. The three equations for the phases ¢; yield, as in Section 2.4,
U

- 2u;

i

(5.19)

After elimination of the phases ¢; from the corresponding set of equations for the
condensate widths u;, we obtain again the second order differential equations (2.69)—

(2.71). The Euler-Lagrange equation for the variational parameters [ yields
2a
=2 (5.20)

which we use to eliminates S from the corresponding equation for the parameter
a, as was done with the phases. With this, the equation for o turns out to be the

second order differential equation,
k* 2 N .
d+{—+\ﬁ [aﬁaddf(“—,@)}k?}a:o. (5.21)
4 T Ug Uy U, Uy Uy

In the context of variational analysis of Faraday and resonant waves the above

equation of motion for the wave amplitude « is usually cast into the form of the

Mathieu-like equation
G+ [a(k) + eb(k)sin27]a = 0. (5.22)

This equation can be solved perturbatively in the small modulation amplitude e.

Assuming a solution in the form of a harmonic oscillator

a(T,€) = P(eT) cos <T a(k;)) + Q(eT) sin (7’ a(k)) : (5.23)

+iéT

we obtain that functions P and () are exponentials of the form e**”, where £ is a

complex number. The existence of the imaginary part of £ leads to the instability,
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e., to the exponential growth of the wave amplitude, which yields Faraday or
resonant waves. It was shown in Reference [82] that the nonvanishing imaginary
part of £ appears for a(k) = n?, where n € N, and this represents the mathematical

form of the instability condition.

In order to cast Equation (5.21) into the Mathieu-like form (5.22), we need to
take into account that the radial trap frequencies are modulated, such that the
corresponding trap aspect ratio is given by v(t) = A(t) = A\o(1 + esinn,,t), where
Ao = Qo/w, and 1, = wy,/w,. This generates the dynamics of the system and we
need to obtain approximate expressions for the condensate widths in order to get
explicit form of the quantities a(k) and b(k). We assume that the condensate width
u, slowly varies, and can be taken to be constant at the onset of instability. We also
assume that second derivatives of the radial widths u, and u,, with respect to time,
can be neglected, since they are proportional to the small modulation amplitude
€. Furthermore, for simplicity, we assume u, ~ u, = u,, which now satisfies the

modified equation (2.70) or (2.71),

=t E o 2 () (2)]

On the right-hand side of the above equation we assume that the ratio u,/u, is
constant and equal to the corresponding ration for the ground state, which can be
calculated as in Section 3.1. To derive Equation (5.24), we also use the following

limits of the anisotropy function

2+2*)filx)
2(1 — 2?) ’

lim f(o,) = —3 £Lfa),  lmafiloy) = £(1/2).

fi(@) = lima fi(z,y) = limy fo(z,y) =
e e (5.25)

If we express uz from Equation (5.24), and use it to estimate the quantity u,u, ~ uz

in Equation (5.21), as well as the above limits, that yield

Uy uy\ 1 u
f (u— u—y> =5/ (U—Z) : (5.26)

the equation for the variational parameter o can be written as

i + {T +AT]“2A( )] a=0, (5.27)
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where A is given by

N[ (2)

" : (5.28)
e {0 2 [ o (2) — ot ()]}

Inserting the explicit form for A(¢), we obtain

&+ la(k) + eb(k) sinnut]ja =0, (5.29)
where
4 A 2 A 2
a(k) = % + Aof . b(k) = A04k . (5.30)

In order to transform the above equation into the Mathieu-like equation (5.22), we

need to make a variable change 7,,t — 27, which finally yields the expressions for

the coefficients a = a(k) and b = b(k),

Kt NgAK?
_l’_

oAk
ConZ A B '

n?

;o bk)

(5.31)

As previously discussed, the instability condition for the Faraday waves reads

a(k) = 1, which can be used to calculate the wave vector of waves shortly after the

A 22
k:F:\/—A; +\/A°4 2, (5.32)

This represents the variational prediction for the wave vector k and the spatial period

emergence of the waves,

¢ =27 /k of the Faraday waves, which can be directly compared with numerical or
experimental results. Let us also stress that the above analysis is consistent with the
main characteristic of the Faraday waves, namely, that their oscillation frequency is
half that of the driving frequency. Since 7 = 1,,t/2, from Equation (5.22) we see
that indeed, the solution of the derived Mathieu-like equation oscillates with the
frequency 7,,/2, i.e., with the frequency w,,/2.

If the modulation frequency is close to one of the collective oscillation modes,
the system will exhibit resonant behavior, which is suppressed for an arbitrary value
of the modulation frequency. While the system’s dynamics will certainly include

the Faraday mode at the frequency w,,/2 even close to a resonance, the resonant
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mode with the frequency w,, will have a larger amplitude and will develop much
faster. Although it is clear that the analysis of this section would break down, the
condition for the emergence of resonant waves still corresponds to a(k) = 22, i.e.,

the wave vector of the resonant wave is given by

oA [A2A2
kR:\/—‘; A A (5.33)

In that case, according to 7 = n,,t/2 and Equation (5.23), the resonant density wave

will oscillate with the frequency whose aspect ratio is (7,,/2)V22 = n,,, i.e., with
the frequency w,,. Depending on the system’s parameters, higher resonant modes
can also appear corresponding to the conditions a(k) = n?, where n is an integer,

corresponding to the oscillation frequencies nw,y, /2.

5.2 Faraday waves in °>Cr, '®Er and '*“Dy BECs

In order to study Faraday waves in dipolar condensates, we have performed exten-
sive numerical simulations of the real-time dynamics and solved the dipolar GPE
using the programs described in Chapter 6. The parameters for these simulations
closely match the physical parameters of BECs of chromium *2Cr, erbium 68Er, and
dysprosium %Dy, which are given in detail in Appendix D. It is well known [65-79]
that Faraday waves can be expected as a main excitation mode of the system when
the modulation frequency w,, does not match any of the characteristic frequencies
of the system, i.e., when it is sufficiently far from any of the collective oscillations
modes or the trap frequencies. Therefore, we use the value w,, = 200 x 27 Hz, which
we know satisfies these conditions from our study of collective modes from Chapter

4, and the values of the trap frequencies listed in Appendix D.

Figure 5.1 shows time dependence of the integrated density profile in the weak
confinement direction n(x,t), which is obtained by integrating the condensate den-
sity over the radial coordinates y and z according to Equation (3.14). The emergence
of spatial patterns is clearly visible for all three atomic species after around 150 ms.

This is consistent with earlier experimental observations [30,47| and theoretical re-
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Figure 5.1: Time evolution of the integrated density in the weak confinement direc-
tion for a BEC of N = 10* atoms of chromium *2Cr (top), erbium %*Er (middle),
and dysprosium %Dy (bottom). The results are obtained for a periodic modula-
tion of the trap frequencies w, and w, according to Equation 5.1 with € = 0.2 and
wy, = 200 x 2 Hz. The contact interaction strength is a; = 150 ag and the DDI
strength is given in Appendix D for each species. The Faraday waves can be visually

observed after approximately 150 ms for all three species.
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sults [65-79]. The density waves in x direction from Figure 5.1 take time to develop
and are result of the transfer of energy from the modes that are directly excited in
the radial directions, where the trap is modulated. This can be seen in Figure 5.2,
where we show the corresponding time dependence of integrated density profiles in
y and z direction. The density waves in the radial directions emerge immediately

after the modulation is switched on at ¢ = 0, and their frequency is equal to the

n(y,t) (10 atoms/pm) n(z,t) (10* atoms/um)
45 o 6
3.0
1.5 4
£ oo
® s 2
-3.0
-4.5 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
t (ms) ¢ (ms)
n(y,t) (10% atoms/pm) n(z,t) (10* atoms/pm) X
______ 10
8 6
= 6 =
3 R R A R R L LA LR A Y e RN R R R R R R 4
> 4 N
9 2
0 0
0 50 100 150 200 250 0 50 100 150 200 250
t (ms) ¢ (ms)
n(y,t) (10% atoms/pm) n(z,t) (10* atoms/pm) o
10 .
]V\]L)‘\V
8 6
= 6 =
£ oo IR RN R R S R R I s 4
> 4 N

t (ms)

Figure 5.2: Time evolution of the integrated density in y direction (left column) and
in z direction (right column) for a BEC of N = 10* atoms of chromium **Cr (first
row), erbium 1% Er (second row), and dysprosium %Dy (third row). The results are
obtained for the same parameters as in Figure 5.1. The frequency of oscillations of
the condensate densities in the radial direction is equal to w,, = 200 x 27 Hz. We
see that, due to the dipole-dipole interaction, the width of the condensate is larger
in the direction parallel to the dipoles (z direction) than in the orthogonal direction

(y direction), in particular for *Er and %Dy, as already shown in Section 3.3.
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modulation frequency. Comparing left and right column in Figure 5.2, we can also
directly observe the DDI effects. As we know, the dipole-dipole interaction causes
the elongation of the condensate width in the polarization direction of the dipoles.
Although the trap frequencies in y and z direction are equal, we see in Figure 5.2
that the condensate widths in z direction for all three species are larger than the
corresponding y direction widths, and the difference increases as the strength of the

DDI increases from chromium to dysprosium.

In order to characterize the density waves we typically analyze their FFT spec-
tra in the time-frequency and in the spatial-frequency domain. This enables us to
determine the frequencies of the main excitation modes, as well as the spatial period
of the observed density patterns. However, instead of directly analyzing the density
profiles presented in Figures 5.1 and 5.2, for the FFT it is advantageous to have
a clearer signal, which can be obtained by considering only the density variations
compared to the initial state, i.e., the ground state of the system, before the mod-
ulation is switched on. The integrated density profile variation in the confined x
direction is shown in Figure 5.3, and the corresponding density profile variations in

y and z directions are presented in Figure 5.4.

As expected, the emergence of Faraday waves is now more easily discernible
in Figure 5.3, and the same applies to the oscillations of the density shown in
Figure 5.4. By looking at these two figures, we can even estimate the main oscillation
frequency, e.g., counting the number of maxima or minima in a given time interval.
For instance, in the last 50 ms in each of the panels in Figure 5.3 we count 5 periods,
which corresponds to the frequency 100 x 27 Hz = w,,/2. This is a distinguishing
characteristic of Faraday waves, and therefore we directly determine that in this
case the system develops this type of collective oscillations. On the other hand,
in Figure 5.4 we can count 10 periods (maxima or minima) in a given 50 ms time
interval, which corresponds to the modulation frequency w,,. Thus, in the radial
directions we observe as the main excitation mode the direct response of the system

to the harmonic modulation of the trap.

However, this way we can determine only the main excitation modes. The dy-
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Figure 5.3: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of chromium **Cr (top), erbium
18Er (middle), and dysprosium %Dy (bottom), for the same parameters as in
Figure 5.1. The variations dn(x,t) are obtained by subtracting the density profile
of the ground state n(x,t = 0) from the time-dependent integrated density n(z,t)

presented in Figure 5.1.
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namics of the system contains other modes as well, and over the time they can
develop and even start to dominate the behavior of the system. Therefore, it is
important to analyze the spectra in more detail. This is done in Figure 5.5 for all
integrated density profile variations from Figures 5.3 and 5.4. For simplicity, the
FFT analysis is performed for the profiles at the trap center. As expected, in the
weak confinement direction, left column in Figure 5.5, the main excitation mode

has a frequency w,,/2. In addition to this, we observe two other modes, at w,, and
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Figure 5.4: Time evolution of the integrated density profile variations in y direction
(left column) and in z direction (right column) for a BEC of N = 10* atoms of
chromium *2Cr (first row), erbium ®Er (second row), and dysprosium 64Dy (third
row), for the same parameters as in Figure 5.1. The variation in a given direction
y or z is obtained by subtracting the density profile of the ground state from the
corresponding time-dependent integrated density presented in Figure 5.2. The dif-
ference between the condensate widths in y and z direction, which was observed in

Figure 5.2, is also clearly visible here.
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3wy, /2. This is expected from the theoretical analysis in Section 5.1, but could not

be discerned directly from the density profiles or their variations.

In the Fourier spectra of the integrated density profile variations in the radial
directions, middle and right column in Figure 5.5, we see somewhat richer set of
excitation modes. In addition to the main mode corresponding to the trap mod-
ulation at w,,, we see that also the breathing mode is excited at the frequency
wp ~ 321 x 27 Hz, which was determined in Section 4.1. The spectra prominently
contain the second modulation harmonic at 2w, as well. We see some other peaks
in the spectra, for instance the small peak at around 120 x 27 Hz, which can be due
to the linear combination of the modes wp — w,,. However, such an identification
would require further theoretical and numerical analysis, which is out of the scope

of this thesis.

While the Fourier analysis in the time-frequency domain can be used to deter-
mine the character of the induced density waves (Faraday, collective, resonant), the
analysis in the spatial-frequency domain enables us to characterize the density pat-
terns and calculate their spatial period. This is illustrated in Figure 5.6 for Faraday
waves for all three considered atomic species. The integrated density profile varia-
tions are analyzed at appropriate times, which are determined to correspond to the
evolution stage when Faraday waves have fully emerged, but the system is still far

from the violent dynamics that inevitably follows after the long driving period.

In all three panels of Figure 5.6 the main peak corresponds to the wave vec-
tor kp of the Faraday waves, and we see significant differences: for *?Cr we obtain
kr = 0.57 um™!, yielding the spatial period ¢ = 27/kr = 11.02um; for '®Er we
get kp = 0.98um™! and ¢ = 6.41um; for %Dy we have kp = 1.10 um~! and
¢ = 5.71um. The variational analysis presented in Section 5.1 yields results which
are in good agreement with the numerical ones, namely kr = 0.51 um~! for *2Cr,
krp = 0.91 um~? for 1Er, and kr = 1.06 um~! for *Dy. These variational results
are shown in Figure 5.6 by vertical blue lines, which illustrates their agreement with
the Fourier analysis. The presented spectra also contain some additional peaks that

correspond to other geometrical features of the analyzed density profile variations,
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such as the condensate width and its higher harmonics, as well as the higher harmon-
ics of the Faraday waves periods, and linear combinations of all of these. However,

they are not of interest for our analysis and we will not study them further.

Note that the spatial period of Faraday waves can be also determined by directly
looking at the density profile variations in Figure 5.3, and estimating the spacing

between the consecutive minima or maxima at the appropriate evolution time. For
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Figure 5.5: The Fourier spectrum in the time-frequency domain of the integrated
1D density profile variations of Faraday waves at the trap center dn(z = 0,t) in x
direction (first column), én(y = 0,t) in y direction (second column), and dn(z =
0,t) in z direction (third column) for a BEC of N = 10* atoms of chromium °*Cr
(first row), erbium '®Er (second row), and dysprosium %Dy (third row). The
corresponding density profile variations are shown in Figures 5.3 and 5.4. Vertical
blue lines represent theoretical predictions, where w,,/2 corresponds to Faraday
waves, w,, and 2w, to resonant waves, and wp is the variational result for the

breathing mode frequency obtained in Section 4.1.
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Figure 5.6: The Fourier spectrum in the spatial-frequency domain of the integrated
1D density profile variations of Faraday waves in x direction on(z,t = 272 ms) for
2Cr (left), on(x,t = 225 ms) for '®Er (middle), and dn(z,t = 193 ms) for 61Dy
(right) BECs with N = 10* atoms. The corresponding density profile variations are
shown in Figure 5.3. Vertical blue lines represent theoretical predictions for the wave
vector kr of the Faraday waves, i.e., the variational result obtained in Section 5.1,

Equation (5.32).

instance, for chromium we count 3 minima over the spatial extent of 30 pum, yielding
an estimate ¢ ~ 10um. Similarly, for erbium we count 5 minima over the spatial
extent of 30 pum, yielding ¢ ~ 6um, and for dysprosium the count and the estimate
are the same. Obviously, these estimates are not as precise as the Fourier analysis
results, and therefore we rely on FFT spectra to systematically determine the spatial
periods of Faraday waves and their functional dependencies on the contact and

dipole-dipole interaction strength.

5.3 Interaction effects and properties of Faraday waves

In the previous section we have shown how the Fourier analysis can be used to
calculate the spatial period of Faraday waves. Now we systematically study the
interaction effects, i.e., how the contact and the dipole-dipole interaction strength
affect the properties of generated density waves. First we explore the influence of the
contact interaction on the emergence time and the spatial period of Faraday waves
for a fixed value of the dipole-dipole interaction strength, by varying the s-wave
scattering length in the experimentally relevant regime. In laboratory this can be

achieved by employing the Feshbach resonance technique, which allows to tune as
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by changing the external magnetic field, thus changing the electronic structure of

atoms and their scattering properties.

The existence of Faraday waves is a consequence of nonlinearity of the system,
i.e., the presence of the contact and the dipole-dipole interaction terms in the Hamil-
tonian. In a linear system, described by the pure Schrodinger equation, the harmonic
modulation of the trap in the radial direction would not be transferred into the longi-
tudinal direction. Therefore, the emergence time of Faraday waves (and other types
of density waves in the longitudinal direction) critically depends on the strength of
interatomic interactions. However, if interaction strengths become sufficiently large,
the emergence time is less sensitive to their changes. Since we are considering three
species where the dipole-dipole interaction is strong in erbium and dysprosium, we
can expect that the emergence time of Faraday waves significantly depends on the

contact interaction strength only in chromium, where a4q is small.

This is illustrated in Figure 5.7, where we see the density profile variations for
chromium for three different values of a,. Let us first note that the amplitude
of density variations is much smaller in the top panel for a; = 60ay than in the
middle panel for a;, = 80 ag, and significantly smaller than in the bottom panel for
as = 150 ag. This is also evident from the fact that in the top and middle panel we
can clearly see the quadrupole collective oscillation mode, which has a frequency of
around wg = 12 x 27 Hz. This can be estimated from the figure and compared to
the value obtained in Section 4.2 for chromium, Figure 4.2. When the interaction
is sufficiently large, the amplitude of Faraday waves is much larger than those of
the collective modes, and they cannot be even discerned in the bottom panel in
Figure 5.7. Only for a weak interaction the amplitude of the Faraday waves is
comparable to the amplitude of the collective modes, and this is the reason why we

can see them all for small values of a.

Like all other excitations, Faraday waves start to develop immediately after the
modulation is switched on. The question on their emergence time is related to their
amplitude, which is time-dependent and grows exponentially, as can be seen from

the solution (5.23) of the Mathieu-like equation that describes the dynamics of the
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Figure 5.7: Emergence of Faraday waves for different strengths of the contact in-
teraction: as = 60ag (top), as = 80ay (middle), and a; = 150ay (bottom) for a
BEC of N = 10* atoms of >2Cr. From these integrated 1D density profile variations
on(x,t), obtained for a fixed value of the dipole-dipole interaction strength given in
Appendix D, we observe that Faraday waves emerge faster as the contact interaction

strength increases.
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Faraday density oscillations. The imaginary part of the parameter £ in Equation
(5.23) is responsible for the exponential growth of the Faraday waves’ amplitude,
which is not the case for collective modes. Therefore, in practical terms, the defini-
tion of the emergence time of Faraday waves is always arbitrary and can be expressed
as a time needed for the density variations to reach a certain absolute or relative
(compared to the total density) value. One can even relate this to the experimen-
tal point of view, where there is a threshold for the density variations that can be
observed, due to measurement errors. However, in numerical simulations there are
no such limitations and one can easily use an arbitrary definition to estimate the
emergence time of density waves. The more relevant quantity to study would be
the exponent that governs the growth of the wave amplitude, which depends on the

interaction strength.

Now we turn our attention to spatial features of the Faraday waves. Figure 5.8
presents the dependence of the wave vector kr on the s-wave scattering length a, for
all three considered species. We also show the variational results for the dependence
kr(as) derived in Section 5.1. The agreement is very good, with errors of the order
of 10 - 15 %. We stress that the derived variational expression closely follows the
numerical results not only by their values, but, even more importantly, it follows

their functional dependence properly.
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Figure 5.8: Wave vector of the Faraday waves kr as a function of the contact
interaction strength for a BEC of N = 10* atoms of *2Cr (left), **Er (middle), and
164Dy (right), for a fixed dipole-dipole interaction strength given in Appendix D.
Red upper triangles are numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).
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Figure 5.9: Wave vector of the Faraday waves kr as a function of the dipole-dipole
interaction strength for a BEC of N = 10* atoms of *2Cr (left), '*Er (middle), and
164Dy (right), for a fixed contact interaction strength given in Appendix D. Red
upper triangles represent numerically obtained values using the FFT analysis as in

Figure 5.6, and blue lines are the variational results according to Equation (5.32).

Next, we study effects of the dipole-dipole interaction strength for a fixed value
of the contact interaction. Figure 5.9 shows the corresponding dependence of kz on
aqq- In contrast to the contact interaction dependence, where kr was a decreasing
function of ag, here we see that kr increases as the dipole-dipole interaction strength
is increased. Figure 5.9 also shows the variational results, where the level of agree-
ment with the numerically obtained results is different, with errors as small as 7 %
for chromium up to around 25 % for erbium and dysprosium for largest values of ayq.
Due to complex approximations made in the derivation of variational results, in par-
ticular those related to the dipole-dipole interaction term, the obtained functional
dependence is not as good as in the case of contact interaction, but still provides

reasonable estimates of the wave vector values for the Faraday waves.

5.4 Resonant waves

In the presence of interactions various excitation modes in dipolar BECs are coupled
and the energy pumped into the system by periodic driving can be transferred from
the driving direction to other, orthogonal directions. In the previous section we
have seen this for non-resonant driving, when the harmonic modulation in the radial
direction was transferred to the longitudinal direction in the form of Faraday waves,

which were the main excitation mode generated. The main distinguishing property
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of these excitations is halving of the oscillation frequency, i.e., the induced density
waves have the frequency w,, /2. Here we study the other important case, when the
modulation frequency is resonant, such that the induced density waves have the same
frequency. This happens when w,, is close to one of the characteristic frequencies
of the system, e.g., one of the frequencies of the collective oscillation modes or one
of the trap frequencies. Although Faraday waves and all other collective oscillation
modes are also excited in this case, the largest amplitude corresponds to resonant
waves with the frequency w,,. When generated, these resonant waves dominate the

behavior of the system and make all other excitations negligible for the dynamics.

Figure 5.10 shows the integrated density profile variation of '%*Er for a resonant
wave induced by a harmonic modulation of the radial part of the trapping potential
at wy, = wy, = w,, i.e., when the modulation frequency coincides with the radial
trapping frequency. The density waves in this case develop much faster than for

non-resonant modulation and are clearly visible already after 55 ms. Due to a

on(z,t) = n(z,t) —n(z,0) (atoms/um)
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Figure 5.10: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of erbium %8Er. The parameters
of the system are given in Appendix D, and the modulation frequency used is equal
to the weak confinement frequency, w,, = 160.5 x 27 Hz = w, = w,. We observe
resonant behavior corresponding to the first harmonic of the resonant frequency

wy = w,, which sets in after around 55 ms.
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violent dynamics that emerges in the system very fast, it is not easy to estimate the
frequency of the waves directly from Figure 5.10, as was possible before. Therefore,
we rely on the Fourier analysis in the time-frequency domain, presented in the left
panel of Figure 5.11. The obtained FFT spectrum clearly shows that the main
excitation mode has the frequency equal to w,,. We also see that the spectrum
is continuous, practically without distinct individual peaks, and only the second
harmonic at 2w, = 321 x 27 Hz yields a small local maximum. This demonstrates
that the system is far from the regime of small perturbations, where individual

excitation modes can be observed.

In the right panel of Figure 5.11 we see the Fourier spectrum in the spatial-
frequency domain, which yields the wave factor kg of resonant waves. The FFT

results give the value kr = 1.59 um™!

and the corresponding spatial period ¢ =
27 /kr = 3.95um for Er. In the figure we also present the variational result
kr = 1.40 yum™!, calculated using Equation (5.33). The agreement is again quite

good, which indicates that the variational approach we developed in this thesis can
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Figure 5.11: The Fourier spectrum of the integrated 1D density profile variations
on(x,t) at the trap center in the time-frequency domain (left), and of the density
profile variations in x direction on(z,t = 68 ms) in the spatial-frequency domain
(right) of resonant waves for a BEC of N = 10? atoms of ®*Er for the same param-
eters as in Figure 5.10. Vertical blue line in the left panel represents the modulation
frequency w,,, while in the right panel it corresponds to the theoretical prediction

for the wave vector kg of the resonant waves derived in Section 5.1, Equation (5.33).
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be reliably used not only for the Faraday waves, but also for the resonant waves.

This can be also concluded from Figure 5.12, which presents the results for
the dependence of the resonant wave vector kr on the contact and dipole-dipole
interaction strength. The agreement between the numerical and variational results
is of the order of 10 % over the whole experimentally relevant domain. We see
similar behavior for the resonant waves as for the Faraday ones, namely the wave
vector decreases as the contact interaction strength increases, while the opposite is
true for the dipole-dipole interaction. Again the functional dependence obtain from
the variational approach properly describes the numerical results, thus confirming

that Equation (5.33) can be used to calculate spatial period of resonant waves.

It is interesting to note that resonant behavior appears not only under conditions
mentioned above, when w,, is equal to one of the characteristic frequencies, but also
when it matches their higher harmonics. Figure 5.13 illustrates this for '*Er which
is harmonically modulated at twice the radial trapping frequency, w,, = 321 x 27 Hz.

In this case the amplitude of the resonant mode grows even faster and significant
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Figure 5.12: Wave vector of the resonant waves kg as a function of the contact
(left) and dipole-dipole (right) interaction strength for a BEC of N = 10* atoms of
168Er. The results in the left panel are obtained for a fixed dipole-dipole interac-
tion strength given in Appendix D, and similarly in the right panel a fixed contact
interaction strength from Appendix D is used. In both panels red upper triangles
represent numerically obtained values using the FF'T analysis as in the right panel of

Figure 5.11, and blue lines are the variational results according to Equation (5.33).
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Figure 5.13: Time evolution of the integrated density profile variation in the weak
confinement direction for a BEC of N = 10* atoms of erbium '®*Er. The parameters
of the system are given in Appendix D, and the modulation frequency used is equal
to twice the weak confinement frequency, w,, = 321 x 27 Hz = 2w,. We observe
resonant behavior corresponding to the second harmonic of the resonant frequency

wy = w,, which sets in faster than the first harmonic, already after around 30 ms.

density variations can be observed already after 30 ms. Therefore, we see that the
modulation at the second harmonic yields even more violent dynamics than the
first harmonic. The Fourier analysis in the time-frequency domain reveals that the
main excitation mode again has a frequency of 160.5 x 27 Hz, but the mode at
Wy = 321 x 2w Hz is also present. From the experimental point of view, resonant
driving is very dangerous and leads to the destruction of the system in a matter
of tens of milliseconds. While numerical simulations can be performed for longer
time periods, the atoms leave the condensate due to a large, resonant transfer of
energy to the system. As the condensate is depleted, the mean-field description of

the system breaks down and it cannot be anymore simulated by the dipolar GPE.
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6 Algorithm for solving the dipolar GPE

The existence of nonlinear terms in equations describing various physical systems is
usually a source of novel phenomena. However, their understanding requires detailed
and careful analysis, mainly because we can no longer rely on our intuition based
on linear equations and instinctively predict the evolution of the system. From the
experimental point of view, the analysis requires development and fine-tuning of
new methods that focus on particular phenomena in the condensate. On the other
hand, it is often necessary to establish or further develop an analytical or numerical
method to solve the corresponding set of equations, usually a set of nonlinear partial
differential equations. In case of a BEC with dipole-dipole interaction, we mostly

rely on the dipolar GPE.

A wide range of different numerical methods was developed in the literature.
Some of them are focused on the calculation of the ground state properties [83-86],
while others focus on the dynamics of the time-dependent GPE [87-95]. Also, there
are several methods able to calculate a numerical solution both for the ground state
and non-stationary dynamics of a BEC [87-95]. These methods can be divided into

several categories: finite difference, split-step, and spectral methods.

A finite difference method approximates the spatial and time derivatives with
finite differences, up to the desired order of accuracy, which is derived from the
Taylor series expansion. This approach introduces discretization of space and time,
with the time step denoted by At, and the space step denoted by Ah. Note that

the space discretization step can be different in different directions, in which case
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we denote the corresponding steps by Ah;, where j = 1,2,3. When dealing with
dipolar GPE, such discretization is usually implemented using a forward, backward,
or central difference scheme in time and a second-order central difference scheme
for space derivatives. An algorithm that implements a forward difference scheme
in time is known as an explicit method, a backward difference approach yields an
implicit method, and a central difference approach in time is a combination of the
two, and is designated as a semi-implicit algorithm, or the Crank-Nicolson semi-
implicit algorithm [35-37|. In its usual form, it introduces a quadratic error in the
calculation in the discretization steps, O(At?) + O(Ah?), both in the time and the
space steps. The fact that we are using a semi-implicit algorithm, i.e., that the space
derivatives are expressed as averages of their finite difference approximations in the
present and future time step, makes the Crank-Nicolson scheme unconditionally

stable [36,37]. We have used this method in all our implementations.

The split-step method relies on the splitting of the time evolution in each time
step into several sub-steps, which corresponds to splitting the Hamiltonian that gov-
ernance system’s dynamics into several parts, and then evolving the wave function
independently with respect to each of them. This method is usually combined with
the finite difference method, and practically realized by splitting the Hamiltonian
H =T +V into the kinetic energy part T and the potential energy part V, which
includes the trap potential and nonlinear terms corresponding to the contact and
the dipole-dipole interaction. In order to implement the splitting of the Hamiltonian
and calculate the time evolution of the system we use the Baker-Campbell-Hausdorff

lemma [96]

eAt(@ri—@z) _ eAtél eAt@g e—ATtQ[@1,@2]eATts(2[@2,[@1,@2]]+[@1,[@1,@2]]) o (61)

The above form of the lemma, know as the Zassenhaus formula [97|, expresses the
exponential of the sum of two operators O, and @27 that do not commute in general,
by a product of their individual exponentials and higher order terms that contain
quadratic and higher orders of the parameter At. If the parameter At is small we

can neglect these higher-order terms and use the splitting formula which, for the
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case of the time evolution of the Hamiltonian H = T + V reads
ef%HAt _ e—%(T—&-V)At _ efi,;bTAt ef%VAt + O(Atz) _ (62)

In this way, we make the error of the same order as the one due to the finite difference
scheme used to approximate time derivatives. In principle, we can go to higher orders
in the Zassenhaus formula, but this would be numerically very time-consuming. It
would also have to be accompanied by a higher order of approximation for the
time derivative. The numerical complexity of such a method would be even higher
due to this and therefore is rarely used. One can achieve the desired accuracy of
the calculation by using smaller values of the discretization steps. In addition to
split-step methods there are also other, direct methods for solving the GPE (or,
in general, partial differential equations) such as Euler or Runge-Kutta [98], where

time evolution is done in one step, avoiding the Hamiltonian division altogether.

Spectral methods rely on expressing the solution of the GPE in appropriately
chosen basis as a linear combination of orthonormal special functions. In this case,
the original equation is rewritten as a set of equations for the corresponding coeffi-
cients of the wave function expansion in the selected basis. For instance, if we use
the plane-wave basis we get the most common spectral decomposition of the wave
function. The kinetic energy part and the potential energy part of the Hamiltonian
are diagonal in the k-space and in the real space, respectively, and forward and back-
ward Fourier transformation enables us to compute the evolution with the respect to
the corresponding part of the Hamiltonian. Note that the spectral methods also be-
long to the category of split-step approaches and use the Zassenhaus approximation

(6.2).

Our numerical algorithm to solve the GPE combines the split-step approach
with the semi-implicit Crank-Nicolson method [35-37]. The ground state of the
system is calculated using propagation in the imaginary-time [84-86| starting from
an arbitrary initial state, while the system’s dynamics is obtained using the real-

time propagation from a given initial wave function. Our programs that practically
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implement the algorithm solve the dimensionally reduced form of the GPE

Z—% — {_%VQ +U(r,t) + 47 Na [y (x, )
(6.3)

+ 3Nadd/dr’ Uga(r — ') [ (c', 0)|* | 0(x, 1) .
Equation (6.3) is derived from the dimensional GPE (2.45) by choosing a reference
frequency w,, and by expressing all other physical variables in units defined using

this frequency

T Yy < as aqd

T = -, Y= 5, Z—=> 5, QG — —, Qg —> —, t = wl,
l z z l l (6.4
1 1 :
¢(r7t> - l3/21/}(1',t) ) U(I‘, t) - 7 U(I‘,t) ) Udd(r7 t) — h Udd<r7t) :

Here the unit of length [ is harmonic oscillator length | = \/h/(mw;) for the fre-
quency w, and the mass m of the atoms in the condensate. In order to transform the
numerical results obtained in simulations to the physical units, one has to perform

the inverse rescaling.

As a result of this, the trapping potential U(r,t) is transformed into a dimen-
sionless form

Ur,t) = = (v%2* + vy + X?2%) | (6.5)

N —

where 7 = w, /wy, ¥ = wy /wy, and A = w, /w, are the trap aspect ratios. For practical
reasons, we usually set one of the trap frequencies as the referent w,. Another
convenient choice is the geometric mean of the trap frequencies, w, = (w,w,w.)">.
Our programs allow to use all three trap aspect ratios independently, but in our
simulations, with the cigar-shaped condensates along the x-axis, we choose w, =

wy = w;, so that the trap aspect ratios v and A are equal to 1.

6.1 Split-step semi-implicit Crank-Nicolson method

The split-step semi-implicit Crank-Nicolson method introduces discretization of time
and spatial coordinates. The total time of simulation 7' is discretized into N equal
sub-steps At = T'/N. The simulation is performed in three spatial dimensions, and

we introduce a spatial mesh with N, N,, and NN, equidistant points in z, y, and 2
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direction, respectively. The corresponding spatial extents of the system (simulation
box sizes) are L, = N, Az, L, = N, Ay, and L, = N, Az, where Az, Ay, and Az
are the discretization steps. It is customary to place the coordinate system in the

center of the simulation box, such that the coordinates x, y, and z take values from

the intervals [—L,/2, L, /2|, [-L,/2, L,/2], and [—-L,/2, L, /2], respectively.

During the small evolution time At, the split-step approach of the algorithm
divides the Hamiltonian into the non-derivative (Hy) and derivative (Hy, H,, Hj)

parts, as follows

Ho = U(x: t) + 47 Nag |¢:(x;0)* + 3N aaq / dr' Uga(r — st) (s )%, (6.6)

2 2 2
i 0 0 0

1:@7 QZa_yQa H3:@7 (67)

where the Laplacian is split into three parts. Therefore, the initial dipolar GPE

given by equation (6.3) transforms into four sequential partial differential equations,

O(r;t)
ot

which are solved one after the other in the algorithm.

= Hjv(r;t), j=0,1,2,3, (6.8)

Starting from a preceding solution ¢™(r), obtained in the previous complete
time step, the time evolution with respect to H, in the current time step yields an
intermediate solution 1" */4(r) of equation (6.8) for j = 0. The superscript 1/4
denotes that this is a first of four sub-steps in the current time iteration. Since
H, has no derivatives, it is diagonal in real space and the solution can be written
exactly as

() = e M YN (v) = P(Ho) U (r). (6.9)

From this intermediate solution, using the semi-implicit Crank-Nicolson scheme,

the time propagation of the wave function continues and is calculated by solving the
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series of partial differential equations,

. ¢n+2/4(r) _ V,D”'HM(I‘)
1

A = DA ] (60

n+3/4 n+2/4
Z¢ i (r>A_t1/1 2/4(r) _ %1-:[2 [wn+3/4(r) _{_wn+2/4(r)] , (6.11)
iwnﬂ(r) _Azbn+3/4(r) _ %I:I;), [wnJrl(r) X ¢n+3/4(r)] ‘ (6.12)

On the left-hand side, partial derivatives in time are estimated by a two-point for-
mula, and on the right-side, the wave function is averaged over the current and the
future time sub-step, which is a characteristic for the finite-difference semi-implicit
Crank—Nicolson method. Equations (6.10) - (6.12) have a formal solution that prop-

agates the wave function to the next intermediate solution,

n+2/4 iﬁlAt/2 n+1/4 — DT n+1/4
G = R ) = PU) ), (619
n43/40\ _ _ZH2At/2 n4+2/4( N — DT n+2/4
YT (r) —1 LA 2 YU (r) = P(Ha) " (x) (6.14)
pr(w) = SR i = (i) ). (6.15)

1+ ZHgAt/z

The numerical algorithm for solving the above equations is worked out in Ap-
pendix E. Let us denote by w"ﬂ/ * the wave function value in the current time
iteration after sub-step 7 and at the position ¢ in the mesh in the corresponding spa-

tial direction. The algorithm determines the wave function by a recursive relation

wz—i—l( +1)/4 ]w”‘i‘ (J+1)/ + B”‘H/‘l (616)

for j = 1,2, 3, where j corresponds to spatial direction z, y, and z-direction, respec-

tively. The coefficients ag and 3! T/ are defined via backward recursion relations
1 1=V A_ (617)
B = o (A*ﬁ"”“ B (6.18)

7

where coefficients 77, A7, AF, A%, and B"/* are defined by relations

At At
j j 4AR2° BTNy 2AR3° (6:19)
At ' '
Byt = IAR2 CAGETair: 1/;”*”/4) + i, (6.20)
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where Ah; denote spatial mesh step in Az, Ay, and Az-direction for j = 1,2, 3,
respectively. The above backward recursion expresses the coefficients B;' /4 explic-
itly in terms of the wave function in the previous sub-step, thus disentangling the
semi-implicit form of equations (6.10) - (6.12). From the technical point of view,
we see that the coefficients Aji, Ag-), a{ , and ’yf do not depend on the wave function
(i.e., on the time step n), and therefore can be calculated before the time loop in
a particular simulation. In other words, these coefficients depend only on the dis-
+35/4

cretization parameters. Within the main time loop, only coefficients 3;' have to

be recalculated in each sub-step.

6.2 Dipole-dipole interaction

While the calculation of a potential and nonlinear contact interaction term within
the non-derivative part of the Hamiltonian (Hp) of equation (6.8) for j = 0 is
straightforward, the calculation of the nonlinear term corresponding to the dipole-
dipole interaction at each mesh point introduces additional convolution integral.
The integral can be easily solved by moving to the Fourier space, i.e., by treating

the dipole-dipole interaction term in momentum space as

/dr’ Udd(r - 1") |¢(r’)|2 =F! {]:[Udd] (k) F [Wﬂ (k)} (r) ) (6-21)

where F represents Fourier transform and F ! inverse Fourier transform, defined

respectively by

FUN00 = k) = [ dr firye e, (6:22)

A = 0) = gz [ e, (6.23

Implementation of the algorithm uses Fast Fourier transform (FFT) for calcula-
tion of Fourier transform of the density of wave function, while the Fourier transform

of the dipole potential is calculated analytically in Appendix A, yielding to

FlUa(k) = %ﬂ (3cos® —1) = %ﬂ (3k§ - 1> (6.24)
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where 6 is the angle between the orientation of dipoles and vector k, i.e., in our
setup, angle between z-direction and vector k. Within the same time step, orienta-
tions are constant, so the transformation is performed once per time step At. The
Fourier transform of density |¢(r)|> and inverse Fourier transform is evaluated nu-
merically by using a standard FFT algorithm. The FFT algorithm is carried out in
Cartesian coordinates, and the GPE is solved in 3D irrespective of the symmetry of

the trapping potential.

Successful implementation of the split-step Crank-Nicolson method using Fourier
transformation has to ensure that the wave function and the interaction term dis-
appear at the boundary of the discretization mesh. For the Fourier transform of the
long-range dipolar potential, this is not true, and equation (6.24) is undefined at the
origin in k-space, i.e., at boundaries in coordinate space. Since the same domain
is used for Fourier and inverse Fourier transform in treating the dipolar potential,
cutting of the k-space origin will affect space domain. Thus, boundary effects can
play a role when finding the Fourier transform, and a sufficiently large space do-
main has to be used to have accurate values of the Fourier transform involving the
long-range dipolar potential. Inspired by equation (A.10), it was suggested [99] that
this could be avoided by truncating the dipolar interaction conveniently at large
distances r = R so that it does not affect the boundary, provided R is taken to
be larger than the size of the condensate. Then the truncated dipolar potential
will cover the whole condensate wave function and will have a continuous Fourier
transform at the origin. This improves the accuracy of a calculation using a small
space domain. The Fourier transform of the dipolar potential truncated at r = R is

used in our implementation of the algorithm for solving dipolar GPE as

~ 4 (3 K? cos (kR) sin (kR)
Udd(k)z?(k? _1)[ SRR P TRR

(6.25)

The difficulty in using a large space domain is the most severe in 3D algorithms for
solving dipolar GPE by the split-step Crank-Nicolson method. The cut-off param-

eter R of equation (6.25) improves the accuracy of the calculation.
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6.3 Calculation of physical quantities

During the evolution of the system, the relevant physical quantities can be calcu-
lated using the obtained time-dependent wave function. Since the wave function is
obtained with the time resolution of At, we can calculate all physical quantities with
the same time resolution or choose to calculate them less frequently, to decrease the
computation time. Here we list the expectation values calculated by our programs

by default.

The size of the system in x, y, and z direction is expressed by the root-mean-

square of the corresponding coordinate
runs = V), () = [dra? o) (6.26)
s =V, () = [ ey o)l (6.27)
e <z2>:/drz2 b(r)? (6.28)

while the size of the whole system is estimated by the quadratic mean

Fems = \/ (22) + (2) + (22). (6.29)

For stationary states the wave function has a trivial time dependence ¢ (r,t) =
P(r) e ™ where u is the chemical potential. If we substitute this into Equation
(6.3), and multiply it by ¥*(r), taking into account that the wave function is nor-

malized to 1, we obtain the following formula for the chemical potential

= / dr [; V() + U() [ + dnNay [(0)]*
(6.30)
+3Nag / dr' Una(r — ) [ () [0 ()2 -

The above expression can be also used for non-stationary states, to obtain the ex-

pectation values of the Hamiltonian.

The following expression for the energy E is obtained by multiplying the inter-
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action terms by 1/2 in equation (6.30)

B = [ar [SIV0 + U [0 + 20, i) (6.31)

+;Nadd/dr'Udd(r—r')|¢(r')|2|w(r)|2 :

In a variational approach the GPE can be obtained by minimizing the above func-

tional with respect to the wave function.

The norm of the wave function is calculated by definition

[ e (6.32)

and in the real-time propagation it should be always equal to 1. The Crank-Nicolson
scheme conserves the normalization of the wave function, but its monitoring can be
used as an early check of the validity of the simulation. However, this is not the
case in imaginary-time propagation, since then the evolution operator is not unitary.

Therefore, it is necessary to normalize the wave function again after each time step

At.

6.4 Numerical integration and derivation

Numerical integration within the algorithm is implemented using Simpson’s rule
N/2

/dI f(z) ~ % Z (faic2 +4foi 1+ f2) (6.33)
i—1

where N is a number of equidistant points and Az the size of a spatial step.

In order to calculate the energy and the chemical potential we also need spatial
derivatives of the wave function. For this we used the Richardson extrapolation
formula of the fourth order. For instance, the spatial derivative of the wave function
in direction j is approximated with

ovr 1
oh; — 12Ah,

(V7 g — 8y + 8T — Uf,) (6.34)
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6.5 Algorithm wrap-up

Practical usage of the programs that implement the algorithm for solving the dipolar
GPE requires preparation of an input file that provides the parameter values of the
system of interest. This includes a number of atoms in the condensate, which is
typically between 10* and 10%. One also has to specify a unit of length [ in units
of Bohr radius (ag = 5.2917721092 x 107" m). For a chosen reference frequency w,
it is calculated as [ = \/W for atoms with mass m, and is typically of the
order of ym. Physical parameters of the system also include the s-wave scattering
length a4, which measures the contact interaction strength, and the dipolar length
a4q, which measures dipole-dipole interaction strength. Both are expressed in units

of Bohr radius within the input file.

In addition of physical parameters, we also have to supply discretization details
such us the time step At (in units of 1/w,) and the number of iterations N. Typical
values of the time step At we used for our simulations was between 1072 and 1073,
which corresponds to 1072 — 1073 ms after re-scaling with the frequency w, = 27 x
160.5 Hz. Therefore, for the simulation of the evolution for 250 ms, the number of

iterations IV has to be between 2.5 x 10* and 2.5 x 10°.

The spatial discretization is defined by the size of steps and the number of mesh
points in z, y, and z direction. In our simulations we have used equal number of
mesh point in all directions, N, = N, = N, = 500, with different step sizes, typically
Az = 0.5 and Ay = Az = 0.1, due to the cigar shape of the condensate. Such mesh

creates a simulation box of the volume of approximately 250 x 50 x 50 pm?.

Flowchart of the algorithm for solving the dipolar GPE is illustrated in Fig-
ure 6.1. Using the parameters specified in the configuration input file, the algorithm
in the very first step generates an initial wave function or reads its values from the
external file. This is represented by the operator f, which will initialize the wave
function matrix to be propagated within the main loop of the algorithm. In the

case of imaginary-time propagation, most frequently, the initial wave function will
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be generated in the form of a predefined Gaussian, or if it is explicitly defined in the
input file, it will be populated by the values from the external file. For real-time
propagation, the initial wave function is always read from the external file. Usually,
it is a wave function obtained from previous calculation, either in imaginary- or

real-time propagation.

Using the initial wave function, the algorithm in N equal time steps At prop-
agates the wave function. Each time step consists of four sub-steps, which are
implemented using the operators P(Hy), P(H,), P(Hy), P(Hs). After each step,
the operator M calculates the relevant physical quantities. In the case of imaginary-
time propagation, there is an additional operation in which we normalize the wave
function to 1 using the operator N. 