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FIZIČKI FAKULTET

Ivana B. Vidanović

NUMERIČKO PROUČAVANJE KVANTNIH

GASOVA NA NISKIM TEMPERATURAMA

Doktorska disertacija

Beograd, 2011



Thesis advisor, Committee member:

Dr. Antun Balaž
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Associate Professor

Faculty of Physics

University of Belgrade

Committee member:

Prof. Dr. Milan Knežević
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Rezime doktorske disertacije

Numeričko proučavanje kvantnih gasova
na niskim temperaturama

Koncept Boze-Ajnštajn kondenzacije je u fizici prisutan još od 1924. godine, kada

je prvi put uvedena Boze-Ajnštajn statistika za identične čestice celobrojnog spina

[1, 2]. Već prva teorijska kvantno-mehanička razmatranja sistema neinteragujućih

čestica su ukazala na mogućnost postojanja ovog fenomena. Poznato je da fizičke

osobine atomskih gasova jako zavise od temperature. Na sobnim temperaturama,

osobine ovih sistema su dobro opisane zakonima klasične statističke fizike i kvantni

fenomeni prolaze neopaženo. Snižavanjem temperature talasna dužina de Broljije-

vih talasa materije raste i dolazi do preklapanja talasa koji odgovaraju različitim

česticama. U tom slučaju, kvantna statistika preuzima presudnu ulogu za fizičke oso-

bine sistema. Česticama sa celobrojnim spinom, bozonima, zakoni kvantne statistike

dozvoljavaju naseljavanje istog jednočestičnog kvantnog stanja. Kako snižavamo

temperaturu, sistem teži konfiguraciji sa minimalnom energijom, a za bozone to je

upravo makroskopski naseljeno osnovno kvantno stanje. Na taj način ovo kvantno

stanje postaje dominantno, pa govorimo o makroskopskom kvantnom fenomenu i

razlikujemo fazu sa makroskopskom naseljenošću osnovnog stanja (Boze-Ajnštajn

kondenzat) i fazu bez ovog svojstava, koju nazivamo normalni gas. Fazni prelaz

izmedu ove dve faze naziva se Boze-Ajnštajn kondenzacija. I pored jake utemelje-

nosti teorijskog koncepta, do prve eksperimentalne realizacije ovog faznog prelaza je

došlo tek 1995. godine, a rezultat je nagraden Nobelovom nagradom za fiziku 2001.

Kao što smo ukratko objasnili, osnovni pojmovi o fenomenu Boze-Ajnštajn kon-

denzacije su uvedeni korǐsćenjem modela neinteragujućeg gasa. U realnim gasovima

je naravno nemoguće zanemariti interakcije, zbog kojih oni na veoma niskim tem-

peraturama prelaze u tečno ili čvrsto stanje. Zbog toga je za eksperimentalno pos-

tizanje Boze-Ajnštajn faznog prelaza neophodno koristiti slabo interagujuće gasove,

kao što su su, na primer, razredeni gasovi koji interaguju kratkodometnom, Van-

der-Valsovom interakcijom. U takvom sistemu, u kom je srednje rastojanje izmedu

čestica veliko zbog male gustine, kvantni fenomeni dolaze do izražaja tek na veoma

niskim temperaturama. Zbog mogućnosti efikasnog hladenja, za eksperimentalno



dobijanje kondenzata odabrani su atomski gasovi alkalnih metala (Rb, Li, Na, ...), u

kojima je fenomen Boze-Ajnštajn kondenzacije i ostvaren po prvi put [3, 4] za tipične

gustine čestica u opsegu od 1018 m−3 do 1021 m−3 (što je šest redova veličine manje

od tipične gustine vazduha) i temperature reda 100 nK. Postizanje ovako niskih

temperatura je zahtevalo razvijanje novih tehnika hladenja i čuvanja atoma, koji su

u eksperimentu zarobljeni u zamci napravljenoj od specijalno podešenog spoljašnjeg

električnog ili magnetnog polja. Posle intenzivnih dugogodǐsnjih napora, proizvod-

nja kvantnih gasova sačinjenih od raznih vrsta alkalnih atoma je danas standardni

proces u brojnim laboratorijama širom sveta.

Eksperimenti omogućavaju veoma detaljno testiranje fundamentalnih teorijskih

koncepata - kolektivnih ekscitacija Boze-Ajnštajn kondenzata, superfluidnosti (pri-

sustvo vorteksa kao odgovor sistema na spoljašnju rotaciju), osobina faznog dija-

grama [5]. Veoma važna i interesantna osobina ultrahladnih kvantnih gasova je

ekstremno velika mogućnost kontrole svih relevantnih parametara sistema - broja

čestica, gustine, temperature, dimenzionalnosti (promenom oblika spoljašnje po-

tencijalne zamke), a posebno je značajna mogućnost kontrolisanja jačine interak-

cija izmedu atoma tehnikom koja se naziva Fešbah rezonanca [6]. Jednostavnom

promenom spoljašnjeg magnetnog polja, efektivna interakcija izmedu atoma se može

menjati u rasponu od mnogo redova veličina, što čini ove sisteme zaista jedinstvenim.

U novijim eksperimentima, atomi su zarobljeni u periodičnim potencijalima, tzv.

optičkim rešetkama [7]. Zahvaljujući tome, sada je moguće na nov način reali-

zovati i proučavati sisteme koji su analogni sistemima poznatim iz fizike čvrstog

stanja, a koje još uvek ne razumemo u potpunosti (npr. visoko-temperaturna su-

perprovodljivost). Upravo zato se kaže da ultrahladni kvantni gasovi predstavljaju

Fajnmanove “kvantne simulatore” [8]. Intenzivan eksperimentalni razvoj i realizacija

nove ultrahladne faze materije predstavljaju snažan podsticaj za nova, interdisci-

plinarna teorijska istraživanja.

Osnovni cilj ove teze je podrobno razumevanje dva zanimljiva fizička scenarija

za manipulaciju hladnim bozonskim atomima, koja su predmet i nedavnih ekspe-

rimentalnih istraživanja. Prvo smo razmotrili fazni dijagram rotirajućeg idealnog

bozonskog gasa u anharmonijskom potencijalu, dok se druga noseća tema teze bavi

nelinearnim osobinama kolektivnih bozonskih moda, koje su pobudene harmonij-

skom modulacijom interakcije.

Da bismo ostvarili ove ciljeve, najpre smo u Poglavlju 2 razradili detalje nu-

meričkog metoda koji nam na efikasan način pruža informaciju o velikom broju



svojstvenih stanja kvantnog sistema. Tačno poznavanje energetskih nivoa nam je

neophodno radi preciznog odredivanja faznog dijagrama Boze-Ajnštajn kondenzata.

Metod koji smo koristili je zasnovan na egzaktnoj dijagonalizaciji evolucionog ope-

ratora [9], a da bi postigli njegovu optimalnu upotrebu, detaljno smo analizirali

greške koje nastaju pri korǐsćenju ovog metoda iz dva razloga: greške nastale usled

uvodenja prostorne diskretizacije, kao i greške pri računanju matričnih elemenata

evolucionog operatora. Jedan od naših glavnih rezultata je mnogo optimalnije

ponašanje diskretizacione greške ovog metoda u odnosu na standardni metod di-

jagonalizacije prostorno diskretizovanog Hamiltonijana. Detaljnim analitičkim i

numeričkim razmatranjem, pokazali smo da dijagonalizacija diskretizovanog evolu-

cionog operatora pokazuje neperturbativno malu diskretizacionu grešku, koja opada

eksponencijalno sa 1/∆2, gde je ∆ korak prostorne diskretizacije, dok standardni

metodi imaju grešku koja polinomijalno zavisi od ∆. Ovo je osnovni razlog zbog

kog je mnogo optimalnije koristiti dijagonalizaciju evolucionog operatora. Glavna

teškoća u primeni ovog pristupa - precizno računanje matričnih elemanata evolu-

cionog operatora, tj. amplituda prelaza, direktno se razrešava primenom ranije uve-

denog metoda efektivnih dejstava [10, 11], koja nam daju razvoj amplitude prelaza

po kratkom vremenu propagacije do veoma visokog nivoa. Veliku efikasnost ovog

metoda smo demonstrirali na nekoliko jednodimenzionalnih i dvodimenzionalnih

modela.

U poglavlju 3 primenili smo prethodno opisani metod na ispitivanje faznog

dijagrama rotirajućih bozona u nestandardnom spoljašnjem potencijalu. Naime,

najčešće korǐsćene potencijalne zamke su harmonijskog oblika, i o Boze-Ajnštajn

kondenzaciji u ovakvim zamkama se već puno zna. Rotacija kvantnog gasa je jedan

od načina da se ostvare jako korelisane faze materije [7] i od velikog je značaja.

Medutim, jedna od posledica rotacije je pojava dekonfinirajuće centrifugalne kom-

ponente u potencijalu, koja za velike frekvencije rotacije (veće of frekvencije har-

monijske potencijalne zamke) dovodi do razletanja čestica gasa i gubitka konden-

zata. Da bi se to izbeglo, u nedavnom eksperimentu [12] je upotrebljen dodatni

kvartični potencijal za formiranje potencijalne zamke. U zavisnosti od frekvencije

rotacije, ukupan efektivni potencijal menja oblik od konveksnog potencijala sa jed-

nim minimumom do potencijala koji ima oblik meksičkog šešira. Primenom egzaktne

dijagonalizacije evolucionog operatora, proučavali smo kako promena spoljašnjeg po-

tencijala utiče na temperaturu Boze-Ajnštajn kondenzacije, na raspodelu čestica u

zamci i na rezultate eksperimentalnih merenja.



Uticaj slabih interakcija na fenomen Boze-Ajnštajn kondenzacije je predmet raz-

matranja Poglavlja 4. Ovo poglavlje je preglednog tipa, i u njemu smo predstavili

Hartri-Fok opis bozonskog sistema. Hartri-Fok predstavlja jednu od aproksimacija u

teoriji srednjeg polja, i u okviru nje smo opisali sistem ultrahladnih bozona na nultoj

temperaturi, kao i u okolini Boze-Ajnštajn faznog prelaza. Za nultu temperaturu

smo izveli čuvenu Gros-Pitaevski jednačinu [13, 14] - nelinearnu parcijalnu diferen-

cijalnu jednačinu koja opisuje ponašanje makroskopse talasne funkcije kondnezata.

Za konačne temperature predstavili smo nekoliko često korǐsćenih implementacija

aproksimacije srednjeg polja i naveli njihove prednosti i nedostatke. Aproksimativni

metodi ove vrste se veoma često koriste u interpretaciji eksperimentalnih merenja,

što im daje veliki značaj. Nedavni eksperimentalni napredak u uočavanju efekata

koji su izvan opisa teorije srednjeg polja zahteva popravke standardno korǐsćenih

aproksimacija u najskorijoj budućnosti.

Jedan od osnovnih načina karaketrizacije faza materije, kako eksperimentalno

tako i teorijski, su osobine njihovog ekscitaciong spektra, a posebno su interesantne

i važne kolektivne mode. U sistemima hladnih gasova, kolektivne mode se obično

pobuduju modulacijom spoljašnjeg potencijala zamke, dok je u nedavnom ekspe-

rimentalnom radu [15] pobudivanje kolektivnih moda ostvareno novim pristupom

- harmonijskom modulacijom interakcije. U osnovi primenjenog eksperimentalnog

metoda je tehnika Fešbah rezonance, kojom se jačina kratkodometne interakcije

menja u vremenu usled modulacije spoljašnjeg magnetnog polja. Kao posledicu,

imamo oscilacije veličine bozonskog oblaka, koje su u eksperimentu merene. U za-

visnosti od vrednosti spoljašnje frekvencije upotrebljene za modulaciju interakcije,

možemo da dobijemo linearni odgovor sistema ili rezonantno ponašanje karakteri-

sano velikim amplitudama oscilacija. Kako je osnovna jednačina koja opisuje di-

namiku ovakvog sistema nelinearna, u slučaju velikih oscilacija očekujemo izražene

nelinearne efekte. U poglavlju 5 smo numerički simulirali dinamiku sistema i iden-

tifikovali nelinearne karakteristike dobijenih ekscitacionih spektara: pored osnovnih

moda, pojavljuju se vǐsi harmonici, kao i linearne kombinacije različitih moda, a

najizraženiji nelinearni efekati su pomeraji u frekvencijama ekscitovanih moda u

odnosu na vrednosti izračunate u linearnom režimu. Za kvantitativno objašnjenje

nelinearnih efekata razvili smo perturbativi pristup u kom je mali parametar ampli-

tuda modulacije. Razvijeni perturbativni pristup je baziran na Poenkare-Lindštet

metodu, i njegovom primenom smo našli analitičke izraze za nelinearne pomeraje

svojstvenih frekvencija u blizini rezonanci.
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Uža naučna oblast: Fizika kondenzovanog stanja materije

UDK broj: 538.9



Abstract of the doctoral dissertation

Numerical study of quantum gases
at low temperatures

The concept of Bose-Einstein condensation was introduced in 1924, at the same

time as Bose-Einstein statistics, applicable to the integer-spin particles [1, 2]. Al-

ready first theoretical quantum-mechanical considerations pointed to the existence of

this phenomenon. It is well known that physical properties of atomic gases strongly

depend on the temperature. At room temperatures the properties of these systems

can be described by the classical statistical physics, and quantum features are neg-

ligible. However, as the temperature decreases, the wavelengths of the de Broglie

mater waves increase, leading to the overlap of waves corresponding to different par-

ticles. In this case, quantum statistics plays a dominant role. According to the rules

of quantum statistics, integer-spin particles, bosons, are allowed to occupy the same

single-particle quantum states. With the decrease in the temperature, the system

seeks the minimal-energy configuration, and for bosons this is a macroscopically

occupied single-particle ground state. Such a quantum state becomes dominant and

the occurrence is designated as a macroscopic quantum phenomenon. Accordingly,

we distinguish a phase with a macroscopic occupation of the ground state (Bose-

Einstein condensate) and a phase without this feature, which is called a normal gas.

The phase transition between the two phases is Bose-Einstein condensation. In spite

of the firm theoretical foundation of the concept from the beginning, first direct ex-

perimental observation was achieved only in 1995, and the result was recognized by

the Nobel prize for physics in 2001.

As briefly explained, the basic notion of Bose-Einstein condensation was intro-

duced using a model of noninteracting gas. Of course, in realistic gases, interactions

can not be neglected and only due to them the gas becomes liquid or solid at low

temperatures. In order to remain close to the noninteracting gas description in

experiments, it is essential to use weakly interacting gases, such as dilute gases in-

teracting via short-range, van der Waals interaction. In this type of systems, with

long interparticle distances due to diluteness, the quantum phenomena become rel-

evant only at very low temperatures. Due to highly efficient cooling techniques,



the gases of alkali metals (Rb, Li, Na, ...) were selected as most suitable candidates

and Bose-Einstein condensation was observed for the first time [3, 4] in such systems

with the typical particle densities from 1018 m−3 to 1021 m−3 (six orders of magnitude

lower than the density of air) and temperatures of the order of 100 nK. In order to

reach this extreme low-temperature regime, it was necessary to develop many new

cooling and trapping techniques: in experiments, atoms are confined using specially

designed configurations of external magnetic or electric fields. After many years

of intensive experimental efforts, the achievement of Bose-Einstein condensation in

cold alkali vapors is nowadays a common technique in laboratories all over the world.

The experiments make possible very detailed tests of fundamental theoretical

concepts - collective excitations of a Bose-Einstein condensate, superfluidity (the

appearance of vortices as a response to rotation), the properties of a phase diagram

[5]. A very important and interesting feature of ultracold quantum gases is a possi-

bility to control relevant parameters of the system over many orders of magnitude.

Basically, all parameters can be tuned: number of particles, density, temperature,

dimensionality (by changing the shape of the external trap), and even the strength

of interactions between atoms using a technique called Feshbach resonance [6]. By

a simple modification of the external magnetic field, the effective interatomic inter-

action can be tuned in the range of several orders of magnitude and this feature

makes cold atomic systems really unique. In more recent experiments, atoms are

trapped in periodic potentials, the so-called optical lattices [7]. In this way, it is

now possible to study, in a very clean setup, systems which are highly relevant in

condensed matter physics, and which are not yet completely understood (with a no-

table example of high-temperature superconductivity). For this reason, it is widely

accepted that ultracold quantum gases represent Feynman’s quantum simulators [8].

Intensive experimental progress and realization of the new ultracold phase of matter

are strong stimuluses for further, interdisciplinary theoretical research.

The main subject of this thesis is a thorough understanding of two interesting

physical scenarios for the manipulation of cold bosonic atoms, which were also the

focus of recent experimental studies. First, we have explored the phase diagram of

a rotating ideal bosonic gas in an anharmonic trap, while the second main topic

deals with nonlinear features of collective modes excited by harmonic modulation of

interaction strength.

On the way to accomplish this, after introductory Chapter 1, in Chapter 2 we

have first worked out details of an efficient numerical method capable of providing



highly accurate information on energy levels of quantum systems. The precise infor-

mation on energy spectra is necessary for the characterization of the phase diagram

of a Bose-Einstein condensate. Method that we have used is based on the exact

diagonalization of the time-evolution operator [9]. In order to optimally apply it,

we have carefully analyzed numerical errors which arise for two reasons: numeri-

cal errors which stem from the spatial discretization, as well as the errors due to

the approximative calculation of matrix elements. One of our main results is highly

superior behavior of the dicretization error of the discretized evolution operator com-

pared to the common discretization error of the discretized Hamiltonian. Based on

the analytical and numerical considerations, we have shown that the diagonalization

of a time-evolution operator exhibits a non-perturbatively small discretization er-

ror, which vanishes exponentially with 1/∆2, where ∆ is the discretization spacing,

while standard discretization introduces errors polynomial in ∆. This is the main

reason that makes the diagonalization of the time-evolution operator the preferred

method. The main difficulty in the application of the method - precise calculation

of the matrix elements of time-evolution operator (transition amplitudes) can be di-

rectly resolved using previously developed effective action approach [10, 11], which

yields transition amplitudes as high-order expansions in the short time of propa-

gation. The efficiency of this method has been demonstrated on several one- and

two-dimensional models.

In Chapter 3 we have used the described numerical method to explore the phase

diagram of rotating bosons in a non-standard external potential. Widely used con-

finements are harmonic traps and many details of Bose-Einstein condensation in

such traps are already well understood. Rotation of a quantum gas is one way to

reach strongly correlated phases [7] and is therefore highly relevant. One of the con-

sequences of rotation is the appearance of the deconfining centrifugal component in

the potential, which in the case of a very fast rotation frequency (exceeding the trap-

ping frequency) leads to the deconfinement. In order to avoid this, recent experiment

[12] introduced an additional quartic potential to enhance trapping. Depending on

the value of the rotation frequency, the potential changes its shape from a simple

convex one to the Mexican-hat-shaped potential. Using exact diagonalization of the

time-evolution operator, we have studied how the modification of the external trap

influences properties of a Bose-Einstein condensate, such as condensation tempera-

ture, equilibrium density distribution of atoms and the expansion time of the cloud

after it is released from the trap.



The effects of weak interactions on the phenomenon of Bose-Einstein condensa-

tion are subject of Chapter 4. This chapter reviews the Hartree-Fock description

of a bosonic system. Hartree-Fock is one of the mean-field approximations and

within this framework we have described ultracold bosons at zero temperature, as

well as in the vicinity of the Bose-Einstein phase transition. At zero temperature

we have rederived famous Gross-Pitaevskii equation [13, 14] - nonlinear partial dif-

ferential equation, which governs the dynamics of the macroscopic wave function

of the condensate. For finite temperatures, we have scrutinized several widely used

implementations of the mean-field approximation, with the emphasis on their ben-

efits and their physical drawbacks. Approximations of this type are very often used

in the interpretation of the experimental data, which makes them highly relevant.

A very recent experimental progress in the observation of beyond-mean-field effects

demands further improvements of these standard tools.

One of the basic methods to characterize phases of matter, both experimentally

and theoretically, are properties of their excitation spectra, with collective modes

being of special interest. In ultracold gases, collective modes are usually excited us-

ing modulation of the parameters of the external trap. In the recent experiment [15],

however collective modes were excited using an alternative method - harmonic mod-

ulation of interaction. In its essence the experimental method relies on a Feshbach-

resonance technique, which enables modulation of interaction via a modulation of

the external magnetic field. As an outcome of this dynamical protocol, oscillations

of the condensate size were induced and measured. Depending on the value of the

external modulation frequency, either a linear response or resonant large-amplitude

oscillations were obtained. Since the main underlying equation is nonlinear, in the

case of large-amplitude oscillations strong nonlinear effects are expected. In Chapter

5 we have performed numerical simulations of the system dynamics and identified

main nonlinear features of the obtained excitation spectra: beside the basic modes,

higher harmonics appear together with their linear combinations. Most prominent

nonlinear effects are nonlinearity-induced shifts in the frequencies of excited modes.

In order to describe these results in an analytic way, we have developed pertur-

bative approach where the small parameter is given by the modulation amplitude.

The developed perturbative approach is based on the Poincaré-Lindstedt method,

and gives analytical estimates for the shifts of the eigenfrequencies in the vicinity of

resonances.
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Chapter 1 Introduction

1.1 Foreword

The essential ingredients of the quantum mechanical theory are dual particle-wave

nature of the matter, and the notion of identical particles. The quantum indistin-

guishability of particles has a profound impact on the statistical properties. While

particles with a half-integer spin (fermions) try to avoid each other due to the Pauli-

exclusion principle, particles with an integer spin (bosons) do not exhibit such re-

strictions and are actually, as a consequence of the minimal energy principle, trying

to occupy the same single-particle ground state. These effects are captured by two

different probability distributions that describe the thermal equilibrium in the two

types of physical systems. The Fermi-Dirac distribution for fermions was originally

derived in 1926 by its two authors independently, while trying to introduce quanti-

zation concepts into an ideal gas of particles obeying the Pauli exclusion principle.

The Bose-Einstein distribution for bosons was introduced in 1924 by the joint effort

of Bose and Einstein [1, 2]. At the time, it was a missing piece of knowledge for the

complete explanation of the Planck’s law of black body radiation.

In the high-temperature limit, both distributions are well approximated by a

common Maxwell-Boltzmann distribution. The condition necessary for the effects

of the quantum statistics to become observable can be roughly estimated as follows.

The noninteracting particles of the mass M affect each other if their thermal de

Broglie wavelength λT at temperature T ,

λT =

√

2π~2

kBTM
, (1.1)

is comparable to the inter-particle distance given by n−1/3, where n is a typical parti-

cle density. Naturally, the notion of the “high temperature” and “low temperature”

depends on the features of the considered system. For example, electrons in a typical
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metal at room temperature (300K) are quite accurately described by the Fermi-Dirac

distribution, making the Fermi-Dirac statistics widely present in our everyday ex-

perience. Originally, the Bose-Einstein statistics was developed for the photons.

Immediately after it was derived it was suggested that in the low-temperature limit

a macroscopic occupation of the single-particle ground state should emerge. A phase

exhibiting the macroscopic quantum phenomenon is denoted as the Bose-Einstein

condensate (BEC). An important necessity for the system to develop this type of

behavior is the conservation of a number of particles, and as the photons can be

spontaneously created and annihilated, a BEC doesn’t appear in this type of a sys-

tem. Although the concept of a BEC arises at the essential level of the theory, it

managed to escape our clear observation until the first breakthrough experiments in

1995 [3, 4]. Between 1924 and 1995 a BEC was mainly discussed in the relation to

the fascinating low-temperature phenomena of superfluidity and superconductivity

that include macroscopic quantum effects. On the other hand, sometimes it was

even considered as an artifact of a noninteracting description of a bosonic gas.

To explain why the concept of a BEC may seem elusive, we elaborate on stringent

requirements which are prerequisites to experimentally accomplish Bose-Einstein

condensation. As already discussed, two relevant length scales are the de Broglie

wavelength and the inter-particle distance. For the first scale to be large enough,

in experiments we need light particles at low temperatures. To make the second

length scale comparable to λT , the system of particles should be dense enough.

However, the upper limit of the density is set by a requirement to remain close to

the noninteracting gas description. Strong interactions could spoil the observation

of a BEC phenomena, by modifying the ground-state of the system significantly.

It is well known that at low temperatures most of the elements are in the solid or

liquid state, thus the noninteracting gas description loses its relevance. Eventually,

experiments [3, 16] reached the regime of a dilute weakly interacting gas of alkali

atoms, with typical densities of atomic clouds in the range 1018 m−3 − 1021 m−3 (six

order of magnitudes lower than the density of air) and typical temperatures of the

order of nanokelvin. The hallmarks of the Bose-Einstein condensation were unequiv-

ocally discerned in this range of parameters and the importance of the experimental

realization was recognized by a Nobel prize for physics in 2001.

With these experimental achievements, the window into unexplored landscapes

of the nature was opened. Since then, the subject has evolved into a more general

research field of ultracold atoms and we will mention only some of the topics cur-
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rently explored to illustrate the versatility of possibilities. Once that the properties

of a weakly interacting quantum gas were understood and explored to some extent,

more complex and interesting phases of matter came to the focus of experimental

research. Progress in the last decade has led to the realization of optical lattices

which practically allow simulations of condensed matter and other systems within

ultracold atoms framework, in the sense of Feynman’s quantum simulator [8]. Phase

diagrams of strongly interacting quantum gases with long-range dipolar interaction

are currently explored. Beside the equilibrium properties, non-equilibrium and dy-

namical phenomena in these systems are also major research topic. Most recent

advances include the realization of non-Abelian gauge fields, as well as bosonic sys-

tems with the spin-orbit type of coupling. Beside bosonic atoms, experiments are

now performed with ultracold fermionic atoms and even with ultracold molecules

(emergent field of ultracold chemistry). Even a photonic BEC has been produced

recently [17]. Of course, the exciting experimental developments are led and closely

followed by theoretical studies. Some of those will be presented in this thesis.

1.2 Few basic facts on Bose-Einstein condensation

To set up the stage and to sharpen our intuition on the facets of cold bosonic

gases, first we review a textbook knowledge on the Bose-Einstein condensation of a

noninteracting gas. Initial ideas about this type of phase transition were based on

the considerations of a homogenous gas of particles. However, as will be explained

later in this Chapter, all experimental realizations include an external confining trap.

Most widely used is a harmonic trap and hence here we consider thermodynamic

properties of harmonically trapped noninteracting bosons [18, 19].

1.2.1 Noninteracting bosonic gas in the harmonic trap

The average occupation of a single-particle state of the energy En at temperature T

in the gas of noninteracting particles is given by the Bose-Einstein distribution as

Bn(µ, T ) =
1

eβ(En−µ) − 1
, (1.2)

where β = 1/kBT is the inverse temperature and µ stands for the chemical potential.

Formally speaking, we use the grand canonical ensemble description and assume
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that the system can exchange both the energy and the particles with a reservoir. By

adjusting the value of the chemical potential µ, the average total number of particles

N can be tuned to the desired value, corresponding to the number of particles in

the system

N = N(µ, T ) =

∞
∑

n=0

1

eβ(En−µ) − 1
. (1.3)

From Eq. (1.3), by a careful inspection, we realize that µ increases as the temper-

ature gets lower. Also, we notice that, in order to have a well defined probability

distribution, the condition µ ≤ E0 has to be satisfied. It is this limitation that leads

to the conclusion that at the certain temperature, for which µ ≈ E0, the number of

thermally occupied states,

Nth =
∞
∑

n=1

1

eβ(En−E0) − 1
, (1.4)

becomes saturated. By lowering the temperature further, the number of atoms that

can be accommodated in the higher energy states decreases, yielding a macroscopic

occupation N0 of the ground state, N0 ∼ N . For a finite number of particles,

the condensation sets in once the saturation of a thermal states is reached and we

formally define the condensation temperature T 0
c from the condition N = Nth and

µ = E0. This yields

N =

∞
∑

n=1

1

eβ0
c (En−E0) − 1

, (1.5)

where β0
c = 1/kBT

0
c . Let us now focus on the harmonic trapping potential

V (~r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (1.6)

with well known energy levels E~n = ~
(

(nx + 1
2
)ωx + (ny + 1

2
)ωy + (nz + 1

2
)ωz
)

, where

~n = (nx, ny, nz), and indices nx, ny and nz take the integer values 0, 1, 2, . . . The con-

densation temperature can be found from Eq. (1.5), using µ = E~0 = ~

2
(ωx+ωy+ωz),

and we get the following implicit equation for T 0
c :

N =
∑

nx,ny,nz

1

eβ0
c ~(ωxnx+ωyny+ωznz) − 1

. (1.7)
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Summations in the last expression can be exactly performed only numerically, so in

order to proceed further in an analytic way, we use a semiclassical approximation [19,

5]. Practically, this means that we neglect the discretness of energy levels and replace

summations by the integrals over now continuous nx, ny and nz. Mathematically

speaking, the approximation is justified if the values of the functions which we

sum over do not vary significantly over the summation step. For the Eq. (1.7), the

mentioned condition translates into the high-temperature limit kBT ≫ (En+1−En),
where the thermal energy is larger than the typical spacing of energy levels. With

this simplification, we obtain:

N ≈
∫ ∞

0

∫ ∞

0

∫ ∞

0

dnxdnydnz
eβ0

c ~(ωxnx+ωyny+ωznz) − 1

=

∞
∑

m=1

∏

j=x,y,z

∫ ∞

0

dnje
−~β0

cmωjnj

=
1

(β0
c ~)3ωxωyωz

∞
∑

m=1

1

m3

=
1

(β0
c ~)3ωxωyωz

ζ3 , (1.8)

where we introduce the Bose function (the polylogarithm function) ζα(x) =
∑∞

n=1
xn

nα

and the abbreviation ζα ≡ ζα(1) for the Riemann zeta function. From the last

expression, we find that the condensation sets in for:

kBT
0
c =

~ω̄

ζ
1/3
3

N1/3 , (1.9)

where ω̄ is a geometric mean ω̄ = (ωxωyωz)
1/3. Consequently, we distinguish the

phase with a macroscopic occupation of the ground state and denote it as the con-

densate phase, and the phase without a macroscopic value of N0 that is designated

as the (normal) gas phase. However, the phase transition is well defined only in the

thermodynamic limit [5, 20] and hence in the case of finite-size systems we refer to

T 0
c as the condensation temperature instead of the critical temperature.

The BEC phase transition is usually depicted in the phase diagram showing the

condensate fraction N0/N versus temperature. From Eq. (1.8), we infer that in the

condensate phase, the number of atoms in the thermal component is proportional
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to T 3 and that the condensate fraction satisfies

N0

N
= 1 −

(

T

T 0
c

)3

. (1.10)

Next, we address the local properties of a BEC and analyze density profiles in

two different phases. In the gas phase, the density profile is given by:

n(~r) = nth(~r) =
∞
∑

n=0

Bn(µ, T )|ψn(~r)|2 , (1.11)

while in the condensate phase, using µ = E0, we have

n(~r) = n0(~r) + nth(~r) = N0|ψ0(~r)|2 +

∞
∑

n=1

Bn(E0, T )|ψn(~r)|2 , (1.12)

where ψn(~r) are the single-particle eigenstates of the external trap potential. Sum-

mations over the complete eigenspectrum of the harmonic trap potential cannot be

performed analytically, even though we know the energy levels explicitely. Very

often, for the purpose of an analytical consideration, the density profile of the gas

phase is calculated within the semiclassical approximation where we use the classical

Hamiltonian H(~r, ~p) = ~p2/2M + V (~r) and count the number of states in the phase

space volume d~rd~p as d~rd~p/(2π~
3). Within this approximation, we calculate

nth(~r) =

∫

d~p

(2π~)3

1

eβ(H(~r,~p)−µ) − 1
=

1

λ3
T

ζ3/2(e
β(µ−V (~r))) . (1.13)

An important prerequisite, which guarantees the validity of this approximation, is

that the de Broglie wavelength λT of particles has to be smaller than the charac-

teristic length scale over which the external potential varies significantly [19]. The

approximation cannot be used for the ground state, which has to be treated fully

quantum mechanically. In addition, we emphasize that, in order for the Eq. (1.13)

to be well defined, the value of the chemical potential has to satisfy the condition

µ ≤ min~rV (~r) . (1.14)

The requirement for the achievement of a BEC can be rephrased in terms of

characteristic length scales using Eq. (1.13). It is easy to show that, at the onset of
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Figure 1.1: The hallmark of the Bose-Einstein condensation - a prominent density
peak appears below the condensation temperature. Density profiles of the expanded
cloud are shown at three different temperatures. From the left to the right we see
bosonic cloud right above the condensation transition, just below the condensation
transition and in the regime with almost a pure condensate. The experimental result
is originally presented in Ref. [3] and this figure is taken from Ref. [5].

the BEC, the relation

n(0)λ3
T ≈ ζ(3/2) ≈ 2.61238 (1.15)

holds. Not surprisingly, this condition is very close to the intuitive argument given

at the beginning of the Chapter.

The noticeable feature of the condensate phase in the harmonic trap, not present

in the gas phase, is a prominent density peak located at the trap center that reflects

macroscopically occupied ground state which has the symmetry of the trap potential,

superimposed onto the broad thermal distribution. This is illustrated in Fig. 1.1.

A bimodality of the density distribution is an important signature of the onset of

Bose-Einstein condensation.

An important and convenient aspect of the harmonic trap is that the single-

particle ground-state is localized both in the real and in the momentum space.

Hence, beside static density profiles of the trapped atoms, another possibility for

the experimental differentiation of the phases is free expansion of the gas from the

trap. Initially, the gas is in the thermal equilibrium in the trap, and then suddenly

the trap is switched off and the gas is allowed to expend freely. To describe the

thermal gas we use the semiclassical approximation. The density profile after the
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expansion time t is given by [21]

nth(~r, t) =
1

(2π~)3

∫

d~p d~r0
1

eβ(H(~r0,~p)−µ) − 1
δ3

(

~r − ~r0 −
~p

M
t

)

=
1

λ3
T

∏

σ=x,y,z

(

1

1 + ω2
σt

2

)1/2

ζ3/2

(

e
βµ−βM

2

„

ω2
xx2

1+ω2
xt2

+
ω2

yy2

1+ω2
yt2

+
ω2

zz2

1+ω2
zt2

«)

.

For long expansion times we find an approximate expression for the density distri-

bution of a thermal gas in the form [21]

nth(~r, t) ∼
1

λ3
T

ζ3/2

(

eβµ−
βMr2

2t2

)

. (1.16)

As we see, although the initial density distribution is anisotropic, after the expansion

of the thermal cloud, we obtain an isotropic density profile. Another important thing

that we learn from the result (1.16) is that expanded density profiles actually carry

information on the initial velocity distribution of the cloud. This becomes obvious

when we rewrite Eq. (1.16) as

nth(~r, t) ∼
1

λ3
T

ζ3/2

(

e
− Mv2

2kBT

)

. (1.17)

Now we compare this behavior with the expansion of a pure condensate (N = N0) in

the ground state of the trap (1.6). For the time evolution of a quantum mechanical

state, we have

ψHO(~r, t) = 〈~r|e−it ~̂p2

2M |ψHO〉 =

∫

d~p 〈~r|~p〉e−it ~p2

2M 〈~p|ψHO〉

=
1

π3/4

∏

σ=x,y,z

(

~

Mωσ

)− 1
4

(1 + itωσ)
− 1

2e
−σ2Mωσ

2~

1−itωσ

1+t2ω2
σ . (1.18)

From Eq. (1.18) we conclude that in the limit of long propagation times, the conden-

sate widths are given by (~ωσ/M)
1
2 t [19]. Obviously, the expansion of the ground

state is spatially anisotropic and the aspect ratio of the cloud is inverted during

the expansion. The behavior is substantially different from the isotropic expansion

of the thermal cloud and can be used as a diagnostic tool for the presence of the

condensate in the system.

Now that we have introduced the theoretical notations, in the next subsection
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we discuss in some detail the experimental realization of a BEC.

1.2.2 Experimental realization

As already mentioned, it was a pursuit of the clear physical realization of a very

fundamental concept of a BEC that triggered an enormous amount of the exper-

imental effort starting in the eighties of the last century. Although today BECs

of different atoms are readily produced in laboratories worldwide, the creation of

quantum degenerate atomic gases took many years during which many experimental

techniques at the forefront of technology were developed. In this subsection we give

a basic description of today’s typical experimental setup with a very brief historical

overview. The main reference we rely on is Ref. [21].

Already in the early experimental phase of the quest for nanokelvin temperatures,

possibility of storing atoms in any type of a vessel was ruled out. Instead, a proper

configuration of magnetic, optical or combined magneto-optical potential is used as

an external confining potential, usually called a trap. Atoms are trapped around the

potential minimum due to interaction of their induced magnetic or electric dipole

moments with external field. In most cases, harmonic potential

V (~r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (1.19)

is a reasonable approximation of the external trap potential. Different trap con-

figurations have been experimentally realized: for instance, highly elongated traps

(which can be considered as effectively one dimensional), or pancake shaped traps

(effectively two-dimensional regime). Beside this common type of a harmonic con-

finement, periodic external potentials (optical lattices) are widely used in nowadays

experiments. We will mainly consider an axially-symmetric harmonic trap potential,

with the radial trap frequency ωx = ωy = ω. The usual form of the potential is

V (~r) =
1

2
Mω2(ρ2 + λ2

zz
2) , (1.20)

where we introduce the trap aspect ratio λz = ωz/ω. Typical values of the trap

frequencies are of the order of 2π × (10− 100)Hz, with a typical length scale of the

order of several microns.

The initial attempts to realize a BEC, focused on the spin-polarized hydrogen.

The hydrogen was singled out among other atom types since it remains in the
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gas phase even at very low temperatures. Correspondingly, many techniques were

originally developed for the hydrogen samples. Yet, it turned out that alkali atoms,

such as Rb, Li, Na, K, have several advantages over hydrogen. First, they can be

cooled using laser cooling techniques [21, 22] by the commercially available lasers

whose wavelengths correspond to the transitions between energy levels of alkali

atoms. Second, stronger elastic collisions allow an improved cooling rate in the

process of evaporative cooling [21, 23]. Evaporative cooling can be performed in

several ways. Usually it is implemented by lowering the trap depth. In this way,

atoms with more than average energy are removed from the trap, hence allowing the

remaining atoms to equilibrate at lower temperature. Another way is to perform

the radio frequency forced evaporation by transferring internal state of energetic

atoms into the untrapped configuration. By varying the used frequency, the final

value of the temperature can be controlled. One of the crucial steps that finally led

to the achievement of the high phase-space density necessary for the observation of

a BEC was precisely the combination of the laser cooling and evaporative cooling

techniques.

Another vital experimental aspect is the characterization of a BEC once it has

been produced. In typical experiments, the sample has the size from 103 to 106

bosonic alkali atoms, trapped in the external field in the space volume of (100µm)3,

with a density in the range 1018−1021 m−3, and the temperature of 100 nK. How the

system can be probed to confirm that it really represents a BEC and has properties

predicted theoretically? As usual, the probe has to be “gentle” enough not to perturb

the system significantly, hence cold bosonic gases are mainly probed optically. There

are several widely used techniques, and we mention the most important ones.

From early experiments until today, the absorption imaging remains the most

used tool for characterization of a BEC. The sample is irradiated by a laser beam

resonant with an internal atomic transition and the shadow of the sample is mea-

sured by a CCD camera. Such a procedure may not produce the desired results

always, since the image can be blacked out by the high density of the sample. For

this reason, once the BEC regime has been reached, the trap is usually turned off,

the cloud is allowed to expand freely for several seconds, and then the absorption

imaging is performed. The procedure is denoted as the time-of-flight (TOF) mea-

surement. In general, the quantity which is measured in this way is the optical

density of the sample (responsible for the absorption). It is proportional to the

column particle density, which can be determined by this measurement technique.
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In the first papers [3, 4], the TOF approach was used to prove the presence of the

condensate in the sample based on the signatures discussed in subsection 1.2.1 for

the noninteracting gas in the harmonic trap. Time-of-flight images revealed the

emergence of density peaks on top of broad thermal distributions. Also, the peak in

the density became more and more prominent as the temperature decreased further.

In addition, the measured velocity distribution demonstrated stark contrast in the

regimes above and below condensation temperature, being isotropic in the former

case and highly anisotropic in the latter case, reflecting the anisotropy of the trap.

From the measured density profiles, other quantities can be also estimated. Usually,

noninteracting gas model is used for the extraction of the sample properties. For

example, the temperature of the sample is determined by fitting a function (1.16)

to the experimental data for the thermal cloud.

Obviously, the TOF measurements are destructive and make the observation of

the condensate dynamics quite complicated. With this technique a real-time mon-

itoring of a dynamical process requires many steps: initially, a BEC is produced,

then in the certain interval time some dynamical process happens, and finally the

BEC is destructively imaged. To obtain another piece of information on the dy-

namical evolution, for another value of the time of evolution, the whole procedure

has to be repeated, starting from the production of a BEC. Another difficulty arises

in the interpretation of experimental data. The noninteracting gas model for the

harmonic trap is simple enough to enable quantitative explanation, however, the

accurate description of the expanding interacting gas at finite temperature is far

more complicated. Very early [16], dispersive imaging techniques were utilized for

gathering in-situ information on the density profiles of cold gases in a nondestructive

way. One of the techniques used successfully for an in-situ imaging of dense samples

is a phase-contrast imaging. This procedure can be implemented through two dif-

ferent experimental protocols. In the first one, the light diffracted from the sample

is recorded, while in the second one, the interference patterns of the phase-shifted

incident light and the diffracted signal are measured. In this way, information on the

complex phase acquired by the non-resonant light in the atomic sample is extracted

[24]. Again, the quantity which is measured is the optical density along the line of

sight, yet the measurement can be performed even for a very dense samples. This

type of measurement allows multiple imaging of the same cloud, hence it is much

more convenient for studying condensate dynamics.

Up to now we have only considered a noninteracting gas of particles, because
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this is the system that was originally used to derive the Bose-Einstein distribution.

Of course, realistic systems require many-body approach including interactions and

the noninteracting description is only an approximation. Now we discuss the type

and strength of interactions in the dilute atomic systems, and later in the thesis we

will explain how they modify the noninteracting picture.

A predominant interaction in dilute cold atom systems is a two-body interaction,

typically in the form of scattering of atoms. In this thesis we consider only a short

range van der Waals interaction between charge-neutral atoms. A dipole-dipole in-

teraction is also present, but usually can be neglected in the case of alkali atoms.

However, it plays prominent role in recent experiments with 52Cr, where the effects

of long-range dipolar interaction become measurable [25]. Due to diluteness of the

system, a typical atom-atom distance is larger then the effective interaction range,

and details of the short-range interaction potential are not so important. In the

low-energy low-momentum limit, the potential can be parameterized by a single pa-

rameter a, representing the atomic s-wave scattering length. In the pseudopotential

description, the van der Waals interaction is replaced by a contact potential

Vint(~r − ~r ′) = gδ(~r − ~r ′) , (1.21)

where the interaction strength is given by

g =
4π~

2a

M
. (1.22)

The interaction is repulsive for g > 0 and attractive in the opposite case. It is known

that a BEC with attractive interactions is unstable toward collapse if the particle

density is high enough [5]. In this thesis, we confine the discussion to the repulsively

interacting BECs.

In general, scattering properties of atoms depend on their internal states. This

fact allows the adjustment of the s-wave scattering length by the control of the ex-

ternal parameters of the system. More specifically, several atomic species exhibit the

so-called Feshbach resonance - dependence of the scattering length on the external

magnetic field B, which is given by the expression

a(B) = aBG

(

1 +
∆B

B − B∞

)

, (1.23)
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where aBG is the off-resonant scattering length, B∞ is the resonance position and

∆B is the resonance width. Feshbach resonance is a very useful tool that allows

fine and versatile tuning of the interaction strength in the cold atom systems over

a range of several orders of magnitude from highly repulsive to highly attractive

regime. A phenomenon is well known in atomic and nuclear physics as Feshbach-

Fano resonance [26, 27]. Beside the original reference by Tiesinga et al. [28] which

analyzed the benefits of using the resonance in the experiments with ultracold atoms,

the underlying theory has been discussed in the review paper by Chin et al. [6] and

in several textbooks [19, 29]. Here we give only a brief explanation, based on a fact

that two atoms can interact via an energetically open or closed channel. These two

channels are coupled and include Zeeman terms. By tuning the external magnetic

field it is possible to make a bound state of a closed channel resonant with the

income energy in the open channel. In that case the scattering length diverges, as

given in Eq. (1.23) for B = B∞. The properties of Feshbach resonances are exploited

in many experiments and one of the topics in this thesis will explore some related

recent experimental results.

To summarize the subsection, the achievement of the BEC regime took a lot of

effort and many techniques had to be developed for this purpose. However, once this

has been achieved, the cold atomic systems have become the cleanest experimental

setting for studying macroscopic quantum phenomena. All parameters of these

systems are highly controllable and tunable: the geometry, temperature, density

and even the type and the strength of interaction. For this reason the field of ultra-

cold atoms is still in the process of strong expansion and cross-collaboration with

other fields, and further new important insights are expected.

1.2.3 Interacting bosons at low temperatures

After discussing physical characteristics of cold bosonic atoms, we are ready to write

down the Hamiltonian of the system:

Ĥ =

∫

d~r

(

−ψ̂†(~r)
~

2

2M
∇2ψ̂(~r) + V (~r)ψ̂†(~r)ψ̂(~r) +

g

2
ψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r)

)

. (1.24)

Here ψ̂†(~r) and ψ̂(~r) are bosonic field operators in the second quantized form, and

satisfy commutation relations [ψ̂(~r), ψ̂(~r ′)] = 0, [ψ̂†(~r), ψ̂†(~r ′)] = 0, [ψ̂†(~r), ψ̂(~r′)] =

δ(~r−~r ′). On the right hand side of Eq. (1.24) we have the kinetic energy term, poten-
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tial energy of particles in the external trap given by V (~r) and interaction term which

stems from
∫

d~rd~r ′Vint(~r − ~r ′)ψ̂†(~r)ψ̂(~r)ψ̂†(~r ′)ψ̂(~r ′) = g
∫

d~rψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r).

Hamiltonian given by Eq. (1.24) without the external trap potential was studied

in the early work of Bogoliubov in relation to superfluidity observed in 4He [30].

It represents the starting point in theoretical studies of a BEC. Here we give an

elementary exposition of main ideas of the Bogoliubov and, in parallel, we introduce

concepts important for the description of an interacting BEC.

In the homogenous case, a good quantum number of the system is the wavevector
~k. Therefore, we use the decomposition

ψ̂(~r) =
1

v1/2

∑

~k

ei
~k~râ~k , (1.25)

where â~k are annihilation operators in the occupation number basis, with single-

particle eigenfunctions in the form of plane waves. In the noninteracting limit, we

expect macroscopic occupation N0 of the ground state that we designate as |N0〉. If

we take into account the exact relations

â0|N0 >=
√

N0|N0 − 1 >, â†0|N0 >=
√

N0 + 1|N0 + 1 > , (1.26)

and the fact that N0 + 1 ≈ N0 − 1 ≈ N0, we arrive at the following approximations

which replace operators â0 and a†0 with c-numbers: â0 ≈
√
N0 and â†0 ≈

√
N0. The

error made by using this approximation is of the order of [a0, a
†
0] = 1, and can be

neglected compared to the macroscopic value of N0. Said another way, we have

approximated the expression (1.25) by

ψ̂(~r) ≈ ψ + δψ̂(~r) , (1.27)

where ψ = (N0/v)
1/2 = n

1/2
0 is a classical field, and the operator δψ̂(~r) corresponds

to quantum fluctuations around the classical value. The next step in the Bogoliubov

approach is to consider quantum fluctuations as being small and to keep only terms

up to the second order in δψ̂. With these simplifications we can find an appropriate

transformation which converts the quadratic approximation of the Hamiltonian into

the diagonal form. The final result is the Bogoliubov excitation spectrum of the
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system given by

ǫBog

(

~k
)

=

√

√

√

√

~2~k2

2M

(

~2~k2

2M
+ 2gn0

)

. (1.28)

In the limit of large |~k|, the spectrum yields excitations of a noninteracting gas. Col-

lective phenomena appear in the long wavelength limit where the collective phonon

mode is found [30]. The microscopic derivation of the excitation spectrum (1.28)

fits well with the Landau’s phenomenological description of the superfluid. An-

other relevant quantity that can be derived within the Bogoliubov framework is the

condensate depletion due to interactions at T = 0. The number of non-condensed

particles is proportional to
√
na3, which for the case of strongly interacting system

such as liquid 4He yields the depletion as high as 90%. For this reason, the super-

fluidity of 4He is considered only as an indirect manifestation of the Bose-Einstein

condensation.

In general, the relation between the condensation and superfluidity is a subtle

one. It can be shown that the macroscopic occupation of the ground state (1.27)

introduces the off-diagonal long range order (ODLRO) into the system [31]:

lim
|~r−~r ′|→∞

〈ψ̂†(~r)ψ̂(~r ′)〉 = n0 . (1.29)

However, long range correlations that are the manifestation of a superfluidity may be

present even without the condensation, as for instance in two-dimensional systems

[7].

In order to put the phenomenon of Bose-Einstein condensation into a broader

context, we emphasize that the decomposition (1.27) represents the spontaneous

breaking of the U(1) symmetry related to the conservation of the number of particles

in the system described by the Hamiltonian (1.24). Hence, ψ is the order parameter

that acquires nonzero value in the condensed phase [31, 32].

Quantitative tests of the theoretical concepts introduced in this subsection be-

came possible only with the experimental realization of Bose-Einstein condensation

in dilute vapors of alkali atoms. However, the experiments introduced an important

additional feature - the inhomogeneity of the system due to the trapping potential.

The first theoretical study of a interacting bosonic system in a harmonic trap was

presented in Ref. [33] in relation to the early experiments that were trying to pro-

duce hydrogen BEC. Since then, different approaches have been used to describe the
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condensation of interacting bosonic gas in an external trap potential. In this thesis

we will work in the mean-field framework, with an order parameter introduced in a

similar manner as in Eq. (1.27). The exposition of the mean-field framework for the

trapped system is given in Chapter 4.

Throughout the years, a lot has been learned about the phenomenon of a BEC by

a powerful combination of ingenious experiments and equally ingenious theoretical

modeling. Yet, despite the intensive progress in the field, there are still many open

questions related to the fundamental topics, as will be indicated throughout the

thesis.

1.3 This thesis

The main objective of this thesis is a thorough analysis and understanding of two

interesting physical scenarios for the manipulation of cold bosonic atoms that have

recently came into the focus of the experimental research. Namely, we will first

explore the details of the phase diagram of a rotating ideal bosonic gas in an an-

harmonic trap. As a second topic, we will investigate the nonlinear features of the

excitation of collective oscillation modes by a modulation of the interaction strength.

On the way to accomplish this, in Chapter 2 we work out the details of the

numerical method which is capable of providing us with a highly-accurate energy

spectrum of a few-body system. As we already saw in the subsection 1.2.1, the accu-

rate information on the energy spectrum of the system is required for the description

of a BEC phase transition. The method that we elaborate on is based on the exact

diagonalization of the short-time evolution operator and was introduced earlier in a

simplified form [9]. To understand the benefits of the method, we first analyze the

errors associated with space discretization of the time-evolution operator. Based

on analytical and numerical analysis, we show that the discretization error vanishes

exponentially with 1/∆2, where ∆ is the discretization spacing. This nonpertur-

bative behavior highly outperforms polynomial errors in discretization spacing ∆

which arises in the common real-space discretization of the Hamiltonian. The key

complexity of the method is the accurate calculation of the matrix elements which

are given by transition amplitudes. To address this requirement, we apply recently

introduced effective action approach [10, 11] for obtaining short-time expansion of

the propagator to very high orders. We demonstrate high efficiency of the method

on several one- and two-dimensional models.
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Having the efficient numerical method at our disposal, in Chapter 3 we study

properties of a rotating ideal gas. The introduction of the angular momentum into

the system is one way of reaching the highly correlated regime in the cold atom

setup. As will be explained, beside other effects, a rotation effectively introduces a

deconfining component into the trap potential. Particularly, in the regime of a fast

rotation, the gas may experience the complete deconfinement. Hence an additional

quartic potential was used for the trapping in the experiments from Ref. [12], but

the interesting regime of fast rotation has not been completely understood. Using

the exact diagonalization of a time evolution operator, we study numerically Bose-

Einstein condensation in the modified external potential which is a combination of

the harmonic and quartic component. The shape of the potential changes from

convex with a single minimum to the Mexican hat shape, depending on the rotation

frequency. We explore how the change of the trapping potential influences the phase

diagram properties. We also calculate the density profiles of the gas and time-of-

flight pictures in different regimes and find that typical time-scales for free expansion

are increased by an order of magnitude in the delicate regime of fast rotation.

In Chapter 4, we continue and expand a brief exposition of subsection 1.2.3, and

discuss several different mean-field frameworks for the description of properties of a

weakly interacting BECs. First we present the zero temperature mean-field descrip-

tion. We neglect quantum fluctuations and assume that all atoms are condensed at

T = 0. In that case, we show that BEC properties are captured by the effective

nonlinear equation, the famous Gross-Pitaevskii equation [34, 19, 13, 14]. Then we

move to the study of finite-temperature mean-field models of BEC. The relevance

of this aspect is two-fold: on one hand, mean-field models are widely used for the

interpretation of experimental data, and on the other hand, from the conceptual

point of view, it turns out that different models suffer from different unphysical

drawbacks. We review and compare the existing models by calculating density pro-

files within different approximations. To illustrate the influence of weak interactions

on the Bose-Einstein condensation, we re-derive the mean-field interaction-induced

shift of the condensation temperature.

Chapter 5 deals with the collective excitations of BEC in the nonlinear regime.

Characteristics of a BEC can be probed by monitoring its dynamical response to

the external perturbation. Usually, the ground-state BEC is produced and then

it is perturbed by a modulation of the external trap potential. A specific feature

of the recent experiment [15] is the harmonic modulation of the s-wave scattering
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length via a Feshbach resonance, yielding a time-dependent interaction strength

g = g(t). An external driving frequency Ω is used for the modulation, and depend-

ing on its closeness to some of the condensate eigenfrequencies, either a resonant or

non-resonant behavior can be observed. This is a new venue for studying nonlinear

dynamical regime, since the equation governing the condensate dynamics on the

mean-field level is nonlinear, and large amplitude oscillations are readily produced

in the resonant regime. By combining different analytical and numerical methods we

analyze how nonlinear effects influence the properties of the excited collective modes,

with implications on the interpretation of the actual experimental data. Prominent

nonlinear features, such as: mode coupling, higher harmonics generation, and sig-

nificant shifts in the frequencies of collective modes are found and quantitatively

explained using an analytic perturbative approach.

At the end of each chapter, we present possible future directions for extending the

study of research topics of this thesis. Finally, we summarize all results in Chapter

6. Additional material and derivations are organized in Appendices.
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Chapter 2 Properties of quantum systems via

diagonalization of transition amplitudes

Deep in the condensate phase, features of cold atoms are determined by low-lying

energy levels: ground state and few excited states corresponding to the thermal

cloud. On the other hand, thermodynamic properties and details of the BEC phase

transition are determined by the full energy spectrum. As we have seen in Chapter

1, the exact calculation of the condensation temperature, even for an ideal bosonic

gas, requires a summation over the whole energy spectrum of the system. Due

to its simplicity, the semiclassical approximation is widely used for this purpose.

In this Chapter we work out details of a numerical method based on the exact

diagonalization of a time-evolution operator that allows us access to a very large

number of numerically exact energy levels of few-body systems. Afterwards, in

Chapter 3, we use the method to find the condensation temperature of the fast-

rotating ideal gas in an anharmonic trap.

In the standard operator formulation of quantum mechanics, the description of

a physical system is based on constructing the Hamilton operator Ĥ. Properties of

quantum systems are then obtained by solving the corresponding time-independent

Schrödinger equation,

Ĥ|ψ〉 = E|ψ〉 . (2.1)

Exact solutions can be found only for a very limited set of simple models. A wide

variety of analytical approximation techniques has been developed in the past for

treatment of such problems. In addition, the last two decades have seen a rapid

growth in the application of different numerical methods for solving the Schrödinger

equation. Approaches based on real-space discretization start from some given finite-

difference prescription. Such methods have been extensively studied in the past, and

the main difficulties follow from the finite-difference representations of the kinetic

operator.

A numerical approach based on diagonalizing of the evolution operator, intro-
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2. Diagonalization of Transition Amplitudes

duced in Ref. [9], does not suffer from problems with the representation of differential

operators on real-space grids, and has substantial advantages in practical applica-

tions to few-body problems. Effectively, in this way the problem is transferred from

that of representing the kinetic operator on a real-space grid to the calculating of

corresponding transition amplitudes. Detailed analysis of the errors associated with

the implementation of this approach is the main objective of this Chapter. It pro-

vides full understanding of the method and allows its optimal use, as well as further

significant improvements within a generalized calculation scheme.

The advantages of the method discussed here [9, 35, 36, 37] follow from two key

properties. First, the objects being diagonalized are transition amplitudes, which are

well defined irrespective of discretization scheme, i.e. the exponential of the Hamil-

tonian effectively regularizes the kinetic operator, making possible representations of

the evolution operator that do not depend on the space grid. Second, the successful

diagonalization of the evolution operator exp(−tĤ) for any time of propagation t

immediately gives the solution of the eigenproblem for the Hamiltonian. Thus, the

time of propagation in this approach is just an auxiliary parameter. Said another

way, we use the time-dependent evolution operator to extract time-independent

information regarding the quantum system. If one could calculate transition am-

plitudes exactly, then the obtained results for the energy eigenproblem would not

depend on the time of propagation. However, in practical applications one uses some

approximation scheme to calculate the amplitudes, and in this case the precision of

the obtained results for energy eigenvalues and eigenstates does depend on time t.

The general applicability of the outlined method follows from the fact that one can

use short-time propagation amplitudes to obtain highly accurate results.

In order to complete this numerical method and make it generally applicable, it

is necessary to address the following key questions:

1. How to analytically estimate the effects of spatial discretization?

2. How to optimize the choice of evolution time t, so as to minimize errors?

3. How to accurately calculate transition amplitudes?

The authors in Ref. [9] have only briefly commented on the first two questions,

and numerically determined the values of parameters that can be used for precise

calculations of energy eigenvalues and eigenstates for several models. In this Chapter

we address the above questions, which have not been fully answered before. First we
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2. Diagonalization of Transition Amplitudes

present the method and notation, and identify the sources of the errors present in

real-space discretization approaches. Then we analyze in detail the above questions

1 and 2, and discuss the effects of discretization on the numerically calculated values

of the observables for a given physical system. We analytically derive estimates for

errors stemming from space discretization coarseness, finite size effects, and choice of

the evolution time parameter t. All the analytically derived results are numerically

verified to hold on several instructive models.

Errors associated with the time of evolution parameter t (question 3 above) must

be carefully taken into account and may substantially limit the precision of numer-

ical calculation in the diagonalization method. This problem was not addressed at

all in Ref. [9], but has been addressed recently [38, 39, 40, 41, 42] using various ap-

proaches. We significantly improve the method by applying the recently introduced

effective action approach [43, 44, 10, 45, 46, 11] to completely resolve the prob-

lem formulated in question 3. We stress that use of higher-order effective actions

represents an efficient and numerically inexpensive way to calculate transition am-

plitudes, and leads to many orders of magnitude increase in precision of calculated

properties of the system. We will demonstrate on several lower-dimensional models

how use of higher-order effective actions significantly reduces numerical errors and

systematically improves the obtained energy eigenvalues and eigenstates.

This Chapter gives a complete analysis of the method based on the diagonaliza-

tion of transition amplitudes, providing us with necessary analytical knowledge to

estimate errors of all types associated with this method and to numerically very ac-

curately calculate large numbers of energy eigenvalues and eigenstates. This invites

various applications of the method to the study of few-body quantum systems, some

of which are discussed throughout the thesis.

The expressions written throughout the second and third section are, for com-

pactness of notation, for one particle in one dimension. Extension to more parti-

cles and dimensions is straightforward, just as with the above short-time transition

amplitude. Note that we are working in imaginary time, which is well suited for

numerical calculations and does not affect in any way calculated energy levels nor

other time-independent properties of the system. We have also set ~ to unity in this

Chapter.
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2. Diagonalization of Transition Amplitudes

2.1 Space-discretized Schrödinger equation

In the coordinate representation the time-independent Schrödinger’s equation takes

the form
∫

dy 〈x|Ĥ|y〉 〈y|ψ〉 = E 〈x|ψ〉 . (2.2)

The standard way to numerically implement exact diagonalization is to go from

continuous coordinates x to ones living on a discrete space grid xn = n∆, where

∆ is a given spacing and n ∈ Z. Integrations in the above equation are performed

using the simple rectangular quadrature rule, or some higher-order finite-difference

formula. This completes the transition to the space-discretized counterpart of the

continuous theory, however, to represent this on a computer we still have to restrict

the integers n to a finite range. This is equivalent to introducing a space cutoff L, or

putting the system in a infinitely high potential box. For example, the rectangular

quadrature rule leads to the following space-discretized Schrödinger equation

Ncut−1
∑

m=−Ncut

Hnm〈m∆|ψ〉 = E(∆, L) 〈n∆|ψ〉 , (2.3)

where Hnm = ∆ · 〈n∆|Ĥ|m∆〉, Ncut = [L/∆], and square brackets represent the

integer part of the argument. As a result, we have obtained a 2Ncut × 2Ncut matrix

that represents the Hamiltonian of the system. The eigenvalues of this matrix de-

pend on the two parameters introduced in the above discretization process: cutoff

L and discretization step ∆. Continuous physical quantities are recovered in the

limit L → ∞ and ∆ → 0. The outlined procedure is very useful in dealing with

spatially localized physical problems, such as electronic structure calculations in

semiconductor and polymer physics [47].

The two approximations involved in the discretization procedure, characterized

by parameters ∆ and L, are common steps in solving eigenproblems of Hamiltoni-

ans in e.g. electronic structure calculations [47], and as such have been extensively

analyzed. The imposed constraint on the values of spatial coordinates to the finite

interval (−L,L) is a valid approach for capturing information on localized eigen-

states. In this approximation the system is effectively surrounded by an infinitely

high wall, and as the cutoff L tends to infinity, we approach the exact energy levels

always from above, which is a typical variational behavior. Therefore, we designate

errors associated with the cutoff L as variational. The effects of the discretization
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2. Diagonalization of Transition Amplitudes

step ∆ are more complex, and follow from the fact that the kinetic energy opera-

tor cannot be exactly represented on finite real-space grids. For example, a typical

naive discretization of the kinetic energy operator gives in our notation the following

Hamiltonian matrix elements [48]

Hnm =











1/∆2 + V (n∆) if n = m

−1/(2∆2) if |n−m| = 1

0 otherwise.

(2.4)

Note that in the absence of a potential term V in the Hamiltonian, the above defini-

tion corresponds to a tight-binding model [48]. This prescription leads to numerical

results for eigenvalues which in the ∆ → 0 limit converge to the exact continuum

values as ∆2. The errors associated with this approach have non-variational behav-

ior, i.e. the obtained results are not always upper bounds of the exact energy levels.

Several papers discuss this issue and analyze the behavior of errors in the direct di-

agonalization approach (for more details, see Refs. [49, 50] and references therein).

The state-of-the-art in this approach is a set of systematically improved prescrip-

tions for discretization of the kinetic energy operator, which speeds up convergence

to the continuum limit to higher powers of ∆2. However, within this approach con-

vergence is always polynomial in ∆. Some recent results [51] also exist on extensions

of this approach that provide effective variational behavior of the discretized kinetic

energy operator.

As outlined in the Introduction, we focus on an alternative approach, based on

solving the eigenproblem of the corresponding transition amplitudes as proposed in

[9]. The central equation is

e−tĤ |ψ〉 = e−tE|ψ〉 , (2.5)

or in the discretized form

Ncut−1
∑

m=−Ncut

Anm(t) 〈m∆|ψ〉 = e−tE(∆,L,t) 〈n∆|ψ〉 , (2.6)

where Anm(t) = ∆ ·A(n∆, m∆; t) = ∆ · 〈n∆|e−tĤ |m∆〉. In this approach the time of

evolution t plays the role of an auxiliary parameter. This parameter is not related

to the discretization, and in a continuous theory it does not affect the obtained

eigenvalues and eigenstates. However, in a discretized theory the numerically calcu-
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2. Diagonalization of Transition Amplitudes
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Figure 2.1: Harmonic oscillator transition amplitude as a function of coordinates x
and y for t = 1.

lated eigenvalues and eigenstates will necessarily depend on this parameter as well,

as emphasized by the right-hand size of Eq. (2.6). Therefore, the original problem

is now transformed into the eigenproblem of the matrix Anm(t), whose indices take

all integer values in the range −Ncut ≤ n,m < Ncut, where Ncut = [L/∆].

Fig. 2.1 shows how a typical transition amplitude, in this case that of a harmonic

oscillator, depends on coordinates x and y. The transition amplitude of a harmonic

oscillator with the Hamiltonian ĤHO = p̂2/2 + x̂2/2 can be calculated analytically

and is given by explicit the expression:

AHO(x, y; t) =

√

1

2π sinh t
exp

[

− 1

2 sinh t

(

(x2 + y2) cosh t− 2xy
)

]

. (2.7)

Note that the consideration is general since non-trivial mass and frequency of the

harmonic oscillator can be easily taken into account by a simple rescaling of the

coordinate and momentum. As can be seen from the figure, transition amplitudes

are spatially well localized. This is particularly simple to understand for the short

times of propagation that we consider for a general case in the external potential.

For a very short propagation times, transition amplitudes can be roughly calculated

as:

A(x, y; t) ≈ 1√
2πt

e−
(x−y)2

2t
−tV (x+y

2
). (2.8)

From the last expression, we see that the kinetic term exponentially localizes the

transition amplitude matrix to the vicinity of the main diagonal. Similarly, the
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2. Diagonalization of Transition Amplitudes

potential brings about exponential localization along the main diagonal around its

minimum. The localization of dominant values of the transition amplitude to a

small area in the x − y plane gives practical justification for introduction of space

cutoff L in this approach.
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Figure 2.2: Eigenspectrum of a free particle in a box. Eigenvalues Ek are given as
a function of level number k. The solid line gives the exact parabolic dispersion
Ek = π2(k + 1)2/8L2, while the dashed line presents results calculated in the tight-
binding approximation. The graph also shows numerical results obtained by the
diagonalization of transition amplitudes for different values of time of evolution t.
All the numerical calculations are for L = 6 and ∆ = 0.25, hence Ncut = L/∆ = 24.

In the continuum theory, the transition amplitude eigenproblem is mathemat-

ically equivalent to the Schrödinger equation. It is important to stress, however,

that the procedure of space discretization introduces important differences between

eigenproblems (2.3) and (2.6). In particular, as we will show in the next section, the

procedure based on the diagonalization of transition amplitudes leads to much faster

(non-polynomial) convergence. An illustration of the relation of these two calcula-

tion schemes is shown in Fig. 2.2 which compares the exact parabolic dispersion of

a free particle in a box with numerical calculations based on diagonalizations of the

Hamiltonian and of the transition amplitudes. From the figure we see that the time

parameter t in the transition amplitude approach plays an important role. Increase

of the evolution time t gives better agreement with the exact dispersion relation.

25



2. Diagonalization of Transition Amplitudes

2.2 Discretization effects

The free-particle transition amplitude

Afree(x, y; t) =
1√
2πt

e−
(x−y)2

2t (2.9)

satisfies the relation
∫

dxAfree(x, y; t) = 1 . (2.10)

The consequence of this is conservation of probability. In the space-discretized

analogue of this model x = n∆, y = m∆, and the transition amplitude is Afree
nm(t) =

∆Afree(n∆, m∆; t). Using the Poisson summation formula

∑

n∈Z

e−αn
2

=

√

π

α

∑

n∈Z

e−
π2

α
n2

, (2.11)

we find that the space discretized free particle amplitude satisfies

∑

n∈Z

Afree
nm(t) =

∑

n∈Z

e−
2π2

∆2 n
2t ≈ 1 + 2e−

2π2

∆2 t . (2.12)

Conservation of probability is thus obtained only in the continuum limit ∆ → 0.

Note that the effect of discretization is non-perturbative in discretization step ∆,

i.e. it is smaller than any power of ∆. The effect of discretization is also universal

in that it holds for all models, since the free particle transition amplitude is the

dominant term in the short time expansion of the transition amplitude of a general

theory.

To show this explicitly we use the short time expansion of the transition ampli-

tude of a general theory [44] to show that

∫

dxA(x, y; t) =
1√
2πt

∫

dx e−
1
2t
x2
∑

l

tlfl(x, y) , (2.13)

where f0 = 1 and the other functions fl are determined by the potential and its

derivatives. Writing the even part of fl(x, y) as g(x2, y) we find

∫

dxA(x, y; t) =
1√
t

∑

l

tlgl(2t
2∂t, y)

√
t . (2.14)
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Similarly, using the above Poisson summation formula, we find

∑

n∈Z

Anm(t) −
∫

dxA(x, y; t) =
2√
t

∑

l

tlgl(2t
2∂t, y)

√
te−

2π2

∆2 t . (2.15)

Performing the indicated differentiations the right hand side becomes exp(−2π2

∆2 t) ·
∑

l hl(y)t
l. One could now calculate the functions hl from the short time expansions

of fl. The p-level effective action gives a short time expansion, which is truncated

at order tp. As a result,
∑

l hl(y)t
l is a polynomial in time of order p. The dominant

short time behavior is thus given by the universal exponential term. As a conse-

quence, the transition of a general model to its space discretized form is given by

∑

n∈Z

Anm(t) −
∫

dxA(x, y; t) ∼ e−
2π2

∆2 t . (2.16)

This universal and non-perturbatively small deviation from the continuum indi-

cates that one should center numerical calculation schemes on transition amplitudes

rather than the Hamiltonian. By diagonalizing the transition amplitude for any

time of propagation t we obtain the energy eigenvalues and eigenfunctions

∫

dy A(x, y; t)ψk(y) = e−tEkψk(x) . (2.17)

To solve this numerically we first discretize space with discretization step ∆, and

second we introduce a spatial cut-off L such that |x| < L. Amplitudes are now

2Ncut × 2Ncut matrices whose diagonalization leads to 2Ncut eigenstates ψk and

eigenvalues e−tEk(∆,L,t).

As we have seen, discretization introduces a non-perturbatively small error in

transition amplitudes proportional to exp (−2π2t/∆2). We should therefore expect

the discretization error for energy eigenvalues to be

Ek(∆, L, t) −Ek ∼ −1

t
e−

2π2

∆2 t . (2.18)

We have numerically investigated this for a diverse set of models and have shown the

above relation to hold in all cases. It is also illustrative to verify this for analytically

tractable models. Using the known analytical expressions for transition amplitude

and energy eigenstates for a free particle in a box [52, 53], as well as the Poisson

summation formula in Eq. (2.11), we find that the energy eigenstates of the space
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discretized model satisfy

Ek(∆, L, t) − Ek = −2

t
e−

2π2

∆2 t cosh
π2(k + 1)t

L∆
, (2.19)
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Figure 2.3: Top: Plot of |E0(∆, L, t)−E0| for a free particle in a box as a function of
∆ for different values of time of evolution t and L = 6. For comparison, we also plot
the corresponding deviations of numerical results (designated by H) obtained using
direct diagonalization of the space-discretized Hamiltonian, defined by Eq. (2.4).
Bottom: This plot shows how the deviations |Ek(∆, L, t) − Ek| depend on t for
several energy levels k. The parameters used are L = 6, ∆ = 0.2. In both plots the
dashed lines represent discretization error estimates given in Eq. (2.19).
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Figure 2.4: Harmonic oscillator dispersion relation. The solid line gives the exact
linear dispersion Ek = k+1/2. The points correspond to numerically calculated en-
ergy eigenvalues Ek as function of level k. We show the results of the diagonalization
of transition amplitudes for several values of t. In this plot L = 12, ∆ = 0.25.

where Ek = π2(k+1)2

8L2 and k = 0, 1, 2, . . . As expected, the universal term gives the

dominant ∆ dependence. One obtains similar analytical results for the case of the

harmonic oscillator.

The non-perturbatively small effect of spatial discretization is the reason why

the new method highly outperforms direct diagonalization of the Hamiltonian and

leads to much smaller errors for the same size of discretization step ∆. In addition

to this the free parameter associated with the method, the time of evolution t, can

be used to further minimize errors. As illustrated in Fig. 2.2, while keeping ∆ fixed,

we can adjust time t to obtain much smaller errors and practically reproduce the

exact spectrum of the theory. This is also evident in Fig. 2.3, where we see that

by adjusting t, errors can be reduced by orders of magnitude for fixed value of

discretization step ∆.

We next consider a harmonic oscillator. Fig 2.4 shows how the presented method

may be used to obtain energy eigenvalues to high levels. The numerical calcula-

tions agree well with the well known linear dispersion of the harmonic oscillator.

Figs. 2.5(top) and 2.5(bottom) display respectively the ∆ and t dependence of the

deviations |Ek(∆, L, t) − Ek|, showing agreement with the analytically derived es-

timate of the discretization error given in Eq. (2.18). In order to achieve such a
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Figure 2.5: Top: Plot of |E0(∆, L, t)−E0| for a harmonic oscillator as a function of
discretization step ∆ for different values of time of evolution t with L = 12. For a
comparison, we also plot the corresponding results (designated by H) obtained us-
ing direct diagonalization of the space-discretized harmonic oscillator Hamiltonian.
Bottom: Plot of the deviations |Ek(∆, L, t) − Ek| given as a function of time t for
several levels k. The parameters used are L = 12, ∆ = 0.1. In both plots the dashed
lines correspond to the discretization error estimate for E0 given in Eq. (2.19).

high accuracy of numerical results as presented on all graphs, we have used the

MATHEMATICA software package [54].

Fig. 2.5(bottom) shows how the deviations |Ek(∆, L, t) − Ek| depend on t for

several levels k. The plot corresponds to the harmonic oscillator but is typical
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of a general theory. The saturation of errors for large t comes about when the

discretization error, given by the universal estimate in Eq. (2.18), becomes smaller

than the error due to space cutoff L. Analytical estimates for cutoff error are given

at the end of this section. At this point we just mention that the finite size effects

can already be seen in Fig. 2.4, where for high values of level number k numerical

results start to move away from the linear dispersion characteristic of a harmonic

oscillator to the parabolic dispersion characteristic of a box potential.

We end the section by looking at finite size effects, i.e. errors related to intro-

duction of space cutoff L. For any theory with non-trivial potential, the cutoff L

is artificially introduced and it affects the obtained energy eigenvalues, as we have

already discussed. To estimate the effects of the cutoff, we first note that they are

closely related to the spatial extent of the potential V , as well as the spatial extent

of eigenfunctions of the system: errors in the corresponding energy eigenvalues can

be considered small only if the eigenstates ψk(x) are well localized in the interval

|x| < L.

The effects of space cutoffs have been previously studied for continuous-space

theories [55, 56]. The shift in energy level Ek(L)−Ek is found to be positive in this

case, and approximately given by the formula

Ek(L) − Ek = Ck(a)

(
∫ L

a

dx

|ψk(x)|2
)−1

, (2.20)

where a is an appropriately chosen value of coordinate x such that it is larger than

and well away from the largest zero of ψk(x) but smaller than and well away from the

space cutoff L. The constant Ck(a) depends on the normalization of eigenfunction

and the choice of parameter a. For example, the ground state has no zeros, and we

can always choose the value a = 0. In that case, constant C0(0) is given by

C0(0) =

(
∫ L

−L

dx |ψ0(x)|2
)−1

, (2.21)

where we assume that the eigenfunction ψ0(x) is normalized,
∫∞

−∞
dx |ψ0(x)|2 = 1.

In practical applications, when we use diagonalization of the discretized tran-

sition amplitudes, the errors in energy level will necessarily also depend on the

parameter t and other discretization parameters. Here we give a simple estimate

of ground energy errors that follows from the spectral decomposition of diagonal
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Figure 2.6: Deviations Ek(∆, L, t) − Ek for a harmonic oscillator as a function of
space cutoff L for different values of time of evolution t. The discretization step is
∆ = 0.1. Solid thin lines give the dominant behavior of Eq. (2.23). The dashed
thick lines correspond to the error estimate in Eq. (2.20).

amplitudes. For large t we have A(x, x; t) ≈ |ψ0(x)|2e−E0t. Integrating this we find

an approximate result for the ground energy of a system with cutoff L

E0(L, t) ≈ −1

t
ln

∫ L

−L

dxA(x, x; t) , (2.22)

In the L → ∞ limit we recover the exact ground energy, so that a simple estimate

of finite size effects on E0 is given by

E0(L, t) − E0 ≈
1

t

∫

|x|>L

dx |ψ0(x)|2 . (2.23)

Although the above equation is just a rough estimate of the errors introduced by a

space cutoff L, Fig. 2.6 shows that it is in good agreement with numerical results

for the harmonic oscillator. In order to clearly demonstrate L-dependence of errors

in this graph, we have used small value of the discretization step ∆, such that

discretization errors can be neglected. The dashed lines in the figure represent error

estimates given by Eq. (2.20).

Using the data from Fig. 2.6 we can now fully explain the saturation of errors

observed in Fig. 2.5(bottom). The value of the cutoff L used to obtain this data
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was L = 12. As can be seen from Fig. 2.6, this value of the cutoff parameter yields

an error of the order 10−65 for the ground-state energy for t ∼ 0.1, and of the order

10−40 for energy eigenlevel E14. These values exactly correspond to the saturated

errors in Fig. 2.5(bottom).

Although in the general case the eigenstates that come into Eqs. (2.20) and

(2.23) are not known, we can still use them in conjunction with other approxima-

tion techniques to estimate finite size effects. We also see that, due to the larger

spatial extent of higher energy eigenstates, the cutoff-related errors are minimal for

the ground energy. Note however that one is not really interested in the precise

calculation of finite size errors, but only needs to estimate the minimal size of the

cutoff L for which finite size effects are negligible. For that purpose one can use

either of the above approximate formulas.

2.3 Effective actions

So far we have considered only integrable models, i.e. models for which we know the

exact transition amplitudes. As a result we have thus far encountered and analyzed

only two sources of errors: those associated with discretization step ∆ and cutoff

L. The vast majority of models are not integrable. The outlined method is still

applicable if one uses some approximation for calculating transition amplitudes.

As we can see, the precise calculation of transition amplitudes is essential for

practical applications of this method. In Ref. [9] all calculations are based on the

naive approximation for transition amplitudes

A(1)(x, y; t) ≈ 1
√

(2πt)d
e−

(x−y)2

2t
−t

V (x)+V (y)
2 , (2.24)

which is correct only to order O(t), and is for this reason designated by A(1). If one

uses the naive approximation for transition amplitudes, then times of propagation

must be very short for errors to be small enough. Practically, even for short times of

propagation, such errors are always much larger than the errors due to discretization,

and therefore significantly limit the applicability of the method. In addition to

this, the results obtained in the previous section on exactly solvable models suggest

that longer times of propagation generally give smaller errors in the diagonalization

approach. The trade-off between these effects and its implications on numerical

results have been documented in [9].
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To address this, in principle one can use Monte Carlo simulations [57, 58] to

calculate amplitudes A to high precision. Although this can effectively resolve the

problem in many cases, it is often numerically very expensive. More importantly,

resorting to the use of Monte Carlo practically limits further analytical approaches.

We will instead use the recently introduced effective action approach [44, 10, 45, 46,

11] that gives closed-form analytic expressions A(p)(x, y; t) for transition amplitudes

which converge much faster,

A(p)(x, y; t) = A(x, y; t) +O(tp+1/td/2) , (2.25)

where p is an integer number corresponding to the order of the effective action

used. For a general many-body theory effective actions up to p = 10 have been

derived, while for a specific models much higher values can be obtained, e.g. for the

anharmonic oscillator and other polynomial interactions, for which effective actions

have been calculated up to p = 144. So, if p is high enough, it is sufficient that the

time of evolution is less than the radius of convergence of the above series (t < τc ∼ 1)

and errors in calculated values of transition amplitudes will be negligible. This is

illustrated in Fig. 2.7 for the case of a quartic anharmonic oscillator. The use of

high-order expansion in the time of propagation of amplitudes will allow us to use

times of evolution up to τc, which are much longer than the typical times one can

use with the naive (p = 1) amplitudes. At the same time, the expansion up to very

high orders substantially decreases the errors associated with t, and may practically

eliminate them.

The analytic expressions for higher-order approximations for transition ampli-

tudes are based on the notion of effective actions, which are introduced by casting

the solution of the time dependent Schrödinger equation for the transition amplitude

in the form

A(x, y; t) =
1

√

(2πt)d
e−

(x−y)2

2t
−tW(x+y

2
,x−y;t) , (2.26)

where W (x, δ; t) is the effective potential, with the following boundary behavior:

lim
t→0

W (x, δ; t) = V (x) . (2.27)

As shown previously, the effective potential W (x, δ; t) is regular in the vicinity of

t = 0, enabling us to represent it in the form of a power series in short time of

propagation t. The coefficients in this series are functions of the potential and
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its derivatives. The truncation of the series for the effective potential up to order

tp−1, designated by W (p−1)(x, δ; t), gives the expansion of the transition amplitude

accurate to tp,

A(p)(x, y; t) =
1

√

(2πt)d
e−

(x−y)2

2t
−tW (p−1)(x+y

2
,x−y;t). (2.28)

The analytic expressions for higher-order effective actions therefore yield analytic

approximations for amplitudes with the convergence behavior given by Eq. (2.25).

We emphasize that although the structure of the effective action solution form (2.26)

is motivated by the path integral formalism, the expression for amplitudes obtained

in the above approach contain no integrals and can be used straightforwardly as

long as the time of propagation is below the radius of convergence of the short-time

series expansion.

For the exactly solvable case of a harmonic oscillator one finds that the radius

of convergence is τc = π. The radius of convergence is simply the distance in the

complex time plain from the origin to the nearest singularity of the propagator.

For the harmonic oscillator the singularities are located at ±ikπ, k ∈ N. The

consequence of these singularities is that the power series for the effective potential
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W (x, δ; t) converges only for t < τc. It is often difficult to analytically determine

the radius of convergence of the short time expansion of the transition amplitude.

However, numerically this is a very simple problem, since outside of the radius of

convergence the calculated approximative amplitudes rapidly tend to infinity (for

levels p for which the effective potential is not bounded from below; see Ref. [59]) or

to zero with the increase of p. From Fig. 2.7 we easily estimate radius of convergence

to be τc ≈ 1 for a quartic anharmonic potential V (x) = k2
2
x2+ k4

24
x4, with parameters

k2 = 1, k4 = 10. Such numerical determination of the radius of convergence for a

given level p is always done before practical use of the effective potential. Note that

we are not interested in the precise value of τc, just in its rough estimate which will

allow us to safely use times of propagation below τc.

To conclude the section, let us stress that the effective action approach can

be used only for sufficiently smooth potentials, i.e. those that have derivatives of

the required order, corresponding to the level p of effective action, as discussed in

Ref. [44]. For potentials that do not fulfill this condition (e.g. stepwise potentials),

the effective action approach cannot be directly used. However, one can replace

the original potential with some of its smooth deformations, perform numerical

calculations, and at the end take the limit of the deformation parameter in which

the original potential is recovered. The numerical results obtained in such a way

must be carefully cross-checked using other methods.

2.4 Numerical results for one-dimensional models

In this section we apply the approach outlined above to several d = 1 models

and demonstrate its substantial advantages for numerical studies of eigenstates of

various physical systems. We numerically analyze all sources of errors present in

this approach due to discretization parameters L and ∆, as well as the time of

propagation parameter t. We present the obtained numerical results for energy

eigenvalues and eigenstates. We also assess the quality of the obtained energy spectra

through comparison with the semiclassical approximation for the density of states,

which should be accurate at least for the higher regions of the spectrum.

The first model we study is the quartic anharmonic oscillator with potential

V (x) =
k2

2
x2 +

k4

24
x4 . (2.29)
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Figure 2.8: Plot of |E0(∆, L, t) − E0| for an anharmonic oscillator (2.29) given as a
function of ∆ for different values of time of evolution t. The parameters used are L =
6, k2 = 1, and anharmonicity k4 = 48. Dashed lines correspond to the discretization
error in Eq. (2.19). For comparison, we also plot the corresponding deviations of
numerical results (designated by H) obtained using direct diagonalization of the
corresponding space-discretized Hamiltonian.

For this potential the effective actions have been previously derived up to p = 144

[60], and here we will use various levels p to illustrate the dependence of errors on

the level p used in calculations. We will study the interesting regime of the strong

coupling k4, since there are various other techniques that can be successfully used

for small couplings.

Fig. 2.8 displays |E0(∆, L, t) −E0| as a function of discretization step ∆ for the

case of an anharmonic oscillator with potential (2.29). The parameters used in the

plot are L = 6, k2 = 1, and anharmonicity k4 = 48. The transition amplitude matrix

elements were calculated using p = 18 effective actions [44]. The high precision value

for the exact ground energy that we compare to was calculated in Ref. [61]. As we

can see, even though we are dealing with a relatively strong anharmonicity, the

numerically calculated values stay right on the dashed black lines corresponding to

the universal discretization error just as in the case of the previously considered

integrable models. This is in complete agreement with our analytical derivation of

the discretization error.

As can be seen from Fig. 2.8 the numerical results clearly demonstrate that the
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∆-dependence of errors within our calculation scheme highly outperforms the poly-

nomial dependence in ∆2 obtained by the direct diagonalization of the Hamiltonian.

This is true even for short times of propagation t. Although interaction terms in

the potential affect the numerical values of errors, diagonalization of the transition

amplitudes still substantially outperforms diagonalization of the Hamiltonian, and

is the preferred method. This success is a consequence of the non-perturbative be-

havior of the spatial discretization error within this calculation scheme. This leads

us to the key conclusion that discretization parameters can be always optimized so

that presented approach of solving eigenvalue problem of space-discretized transi-

tion amplitudes highly outperforms direct diagonalization of the space-discretized

Hamiltonian. The continuum limit ∆ → 0 is far more easily approached in the

first case and the corresponding discretization errors are substantially smaller for

the same discretization coarseness. From the numerical point of view, as the value

of parameter ∆ directly determines the size of the matrix to be diagonalized, the

computational cost for the same precision is significantly reduced.

Further analysis of various errors in the ground energy calculation for parameters

k2 = 1, k4 = 48 of the anharmonic potential (2.29) is given in Fig. 2.9. The

dependence of the error related to the introduction of the space cutoff L is illustrated

in Fig. 2.9(top), while Fig. 2.9(bottom) gives the dependence of ground energy errors

on the time of propagation parameter t for various values of the discretization step ∆.

On both graphs we see the results obtained with effective actions of different levels

p. Fig. 2.9(bottom) clearly shows that the errors due to the time of propagation

are proportional to tp, as expected when we use the effective action of the level p.

The errors in eigenvalues are of the same order as errors in calculation of individual

matrix elements, and for this reason we see the typical tp behavior of ground and

higher energy eigenvalues. It is already now evident that the use of higher-order

effective actions increases the accuracy of numerically calculated energy eigenstates

for many orders of magnitude.

The L-dependence of the error is analytically known [55, 56]. The saturation of

errors on the top graph for a given level p corresponds to a maximal precision that

can be achieved with that p, i.e. denotes the value of L for which errors introduced by

other sources become larger than the error due to the finite value of the space cutoff.

This can be easily seen if we combine the data from both graphs. For example, the

level p = 9 effective action has the saturated value of the error of the order of

10−14. For t = 0.02 we find that the error due to the time of propagation is of the
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same order if one uses sufficiently fine discretization (∆ = 0.05). Therefore, the

saturation of errors on the left-hand graph are caused by the errors due to the time

of propagation. However, if one uses discretization which is not sufficiently fine, the

saturation of errors can be also caused by the discretization effects. Such effects can
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Figure 2.9: Deviations from the ground energy |E(p)
0 (∆, L, t) −Eexact

0 | as a function
of the space cutoff L (top) and as a function of the time t (bottom). The ground
energy is obtained using different levels p = 1, 3, 5, 7, 9, 11, 13 (top to bottom) of
the effective action for the quartic anharmonic potential, with parameters k2 = 1,
k4 = 48, ∆ = 0.05, t = 0.02 on top graph, and L = 4 on bottom graph. The
exact ground energy Eexact

0 = 0.95156847272950001114693 . . . is taken from Ref. [61].
Dashed lines on the graph (b) correspond to the discretization error (2.19).
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Table 2.1: Low-lying energy levels of the anharmonic quartic potential, obtained
by diagonalization using level p = 13 effective action. The parameters are k2 = 1,
k4 = 48, L = 5, ∆ = 0.05, t = 0.01. For higher energy eigenvalues, errors are
estimated by comparison with the diagonalization results obtained from higher-
order effective actions, finer discretizations, larger space cutoffs, and lower values of
the propagation time t.

k Ek |∆Ek| δEk

0 0.9515684727295000111468(8) 5 × 10−23 6 × 10−23

1 3.292867821434465922691(67) 4 × 10−22 2 × 10−22

2 6.30388056744652609989(522) 2 × 10−21 4 × 10−22

3 9.72732317270370501553(448) 5 × 10−21 5 × 10−22

4 13.4812758360385893838(1489) 2 × 10−20 2 × 10−21

5 17.5141323992530709259(6206) 3 × 10−20 2 × 10−21

6 21.7909563917965158973(8744) 6 × 10−20 3 × 10−21

7 26.286125156056810490(92289) 2 × 10−19 7 × 10−21

8 30.979882837938369575(08213) 2 × 10−19 8 × 10−21

9 35.856438766665971146(24181) 3 × 10−19 9 × 10−21

be also analytically estimated to be proportional to −2 exp(−2π2t/∆2) cosh(π2(k +

1)/L∆)/t, as we have shown in the previous section.

Table 2.1 gives low-lying energy eigenvalues of the anharmonic oscillator for a

particular choice of the parameters of the potential and discretization parameters.

In principle, one can achieve arbitrary precision by the use of appropriately chosen

discretization parameters. Of course, for arbitrary precision calculations one has to

use one of the software packages able to support such calculations. For example,

we have used MATHEMATICA [54] in order to be able to achieve high-precision

results presented on the above graphs. The important conclusion is that even for very

moderate values of discretization parameters, the use of higher-order effective actions

leads to very small errors, which may be practically implemented with minimal

computing resources.

The analysis of errors such as the one presented in Fig. 2.9 is sufficient to estimate

optimal values of discretization parameters. In general, for a desired numerical

precision of energy eigenvalues, the optimal values of parameters are chosen so that

all types of errors are approximately the same. The overall error is always dominated

by the largest of all errors, and therefore it is optimal to have all errors of the same

order of magnitude.
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For specific calculations one can have additional constraints. For example, if one

is interested only in energy eigenvalues, then the optimal parameters are obtained

by minimizing all errors and minimizing the ratio Ncut = L/∆, which corresponds

to the size of the transition operator matrix S = 2Ncut that needs to be numer-

ically diagonalized. The minimization of Ncut is performed in order to minimize

computation time needed for the diagonalization, which roughly scales as N3
cut.

On the other hand, if one is interested in details of energy eigenfunctions, then it

might be necessary to have a fixed small value for the discretization step ∆, which

will allow all features of eigenstates to be visible. This is especially important for

studies of higher energy eigenfunctions which e.g. have many nodes, and in order

to study them it is necessary to have sufficient spatial resolution. In such case, the

value of ∆ is fixed and other parameters are chosen so as to minimize the errors to

a desired value. For example, with the discretization step of the order ∆ = 10−3 we

have been able to accurately calculate several hundreds energy eigenfunction of the

quartic anharmonic oscillator.

Table 2.2 gives eigenvalues of the double-well potential, obtained from the quartic

anharmonic potential (2.29) by setting the constant k2 to some negative value. As

can be seen, numerically obtained energy eigenvalues have the precision similar to the

previous case of the quartic potential without symmetry breaking. The double well

behavior of the potential does not present any obstacle in its numerical treatment

by this method.

Another situation in which one might be interested to keep the ratio Ncut = L/∆,

i.e. the size of the space-discretized evolution operator matrix as large as possible

is when a large number of energy eigenlevels is needed. The number of energy

eigenvalues that can be calculated by the diagonalization is limited by the size of

the matrix S = 2Ncut. Usually the highest energy levels cannot be used due to

the accumulation of numerical errors, and therefore one needs to have a matrix of

sufficient size in order to study energy spectra. In such cases it is necessary to use

highly optimized libraries for numeric diagonalization. We have implemented the

effective actions as a C programming language code [60] and used LAPACK [62]

library for numeric diagonalization to calculate large number of energy eigenvalues

and eigenfunctions.

Even when one uses such a sophisticated tool, the highest eigenvalues cannot

be used due to accumulation of numerical errors. In order to assess the quality of

the obtained results for higher energy eigenstates, it is necessary to compare the
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Table 2.2: Low-lying energy levels of the double-well potential, obtained by diag-
onalization using level p = 18 effective action. The parameters used: k2 = −1,
k4 = 12, L = 16, ∆ = 0.1, t = 0.05. The errors are estimated by comparison
with the diagonalization results obtained from higher-order effective actions, finer
discretizations, larger space cutoffs, and lower values of the propagation time t.

k Ek |∆Ek| δEk

0 0.328826502590357561530(2) 7 × 10−22 2 × 10−21

1 1.41726810105965210733(23) 5 × 10−21 4 × 10−21

2 3.0819506284815341204(849) 3 × 10−20 1 × 10−20

3 5.019323060355788021(7990) 2 × 10−19 4 × 10−20

4 7.186203252338934478(3958) 5 × 10−19 8 × 10−20

5 9.54285734251209386(72421) 2 × 10−18 2 × 10−19

6 12.06403774639116375(04211) 4 × 10−18 4 × 10−19

7 14.7314279571006902(462590) 1 × 10−17 7 × 10−19

8 17.5310745155383834(413592) 3 × 10−17 2 × 10−18

9 20.4519281359123716(968554) 5 × 10−17 3 × 10−18

numerical results with some known properties of the physical system. One such

property is density of states, defined formally as

ρ(E) =

∞
∑

k=0

δ(E −Ek) , (2.30)

assuming that the system has a discrete spectrum. This highly relevant physical

quantity can be directly calculated using the numerically obtained spectra. On the

other hand, it can be also analytically calculated using semiclassical approximation.

This approximation is valid at least in the high-energy region, and we can use it

to assess the quality of our numerical results. In semiclassical approximation, the

density of states in d spatial dimensions is calculated as

ρsc(E) =

∫

d~x d~p

(2π~)d
δ(E − H(~x, ~p)) . (2.31)

replacing the discrete spectrum with a continuous distribution of energy defined by

the classical Hamilton function H(~x, ~p). After integration over momenta, we obtain
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the well known result [52]

ρsc(E) =

(

1
2π~2

)d/2

Γ (d/2)

∫

d~x Θ(E − V (~x)) (E − V (~x))d/2−1 , (2.32)

where Θ is the Heaviside step-function and Γ is the Gamma function. For the quartic

anharmonic potential (2.29) in d = 1 the density of states can be expressed in terms

of the complete elliptic integral of the first kind K(k) = F (π/2, k) [63],

ρsc(E) =

√

2/π2~2

(k2
2/4 + k4E/6)1/4

K

(√

1

2
− k2/4
√

k2
2/4 + k4E/6

)

. (2.33)

In practical applications, especially in d = 1, it might be difficult to compare

directly semiclassical approximation for density of states and numerically obtained

histogram for ρ(E), since energy levels are usually not degenerated, so the spectrum

is very sparse. In order to have sufficient statistics for a reasonable histogram, one

has to use large value for bin size, and effectively the whole numerically available

spectrum is reduced to just a few bins. For this reason, it is more instructive to

study the cumulative density of states,

n(E) =

∫ E

Vmin

dE ′ ρ(E ′) , (2.34)

which counts the number of energy eigenstates smaller or equal to E. For quartic

anharmonic oscillator the cumulative density of states is given by the above integral

of the complete elliptic integral of the first kind, and can be calculated numeri-

cally. Fig. 2.10 gives comparison of cumulative density of states calculated from

our numerical diagonalization results and semiclassical approximation nsc(E). As

expected, the agreement is excellent up to very high values of energies, where nu-

merical diagonalization eventually fails due to the finite number of calculated energy

eigenvalues and effects of discretization. Such behavior can be improved by using

finer discretization (smaller spacing size), as illustrated by two different discretiza-

tion steps for k4 = 48, in Fig. 2.10. Such analysis can be used to assess the obtained

spectrum and determine the number of reliable energy eigenvalues. Typically we

can achieve up to 104 reliable energy eigenlevels with simulations on a single CPU.

In order to further demonstrate the applicability of the method, we also present
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Figure 2.10: Cumulative distribution of the density of numerically obtained energy
eigenstates for the quartic anharmonic (k2 = 1) and double-well potential (k2 = −1),
for t = 0.02, p = 21 and the following values of diagonalization parameters: L = 10
for k4 = 12 and L = 8 for k4 = 48. The discretization step is given on the graph by
the value of L/∆, top to bottom. Long-dashed lines give corresponding semiclassical
approximations for the cumulative density of states.

numerical results for the modified Pöschl-Teller model

V (x) = −χ
2

2

λ(λ− 1)

cosh2 χx
, (2.35)

which has only a finite set of discrete energy eigenlevels Ek = −χ2(λ− 1− k)2/2 for

integer k from the interval 0 ≤ k ≤ λ− 1. Energy eigenvalues and eigenfunctions of

this model are analytically known, and we will use them to further test our method.

Effective actions to very high order are available also for this potential [60], and

we use them for numerical diagonalization of the evolution operator. Naturally, the

diagonalization will give as many eigenvalues and eigenvectors as the size of the

matrix S, but only the first few can be interpreted as bound states of the potential,

according to the above condition 0 ≤ k ≤ λ− 1.

Fig. 2.11(top) gives the analysis of errors in the ground energy due to the space

cutoff, while Fig. 2.11(bottom) gives the corresponding analysis of L-errors for nu-

merical calculation of the energy level E5. As we can see, the behavior of errors is the

same as for the case of anharmonic oscillator, and we are again able to obtain high
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Figure 2.11: Deviations |E(p)
k (∆, L, t) − Eexact

k | as a function of L for k = 0 (top)
and k = 5 (bottom), for the modified Pöschl-Teller potential. Energy eigenvalues
are obtained using effective action levels p = 1, 5, 9, 13, 17, 21 and t = 0.1, with the
parameters χ = 0.5, λ = 15.5, ∆ = 0.02.

accuracy results. Fig. 2.12 gives the time dependence of errors in ground energy

obtained by numerical diagonalization using different levels p of effective actions.

The scaling of errors proportional to tp is evident from the graph, as well as the dis-

cretization errors due to the finite discretization step ∆. To ensure that the effective

potential is bounded from below, in this case we have to remove higher-order powers

of discretized velocity δ from the effective potential near x = 0, since such terms

have non-vanishing negative coefficients in the vicinity of x = 0, due to a peculiar

nature of the potential. In practical applications, one can use e.g. p = 1 effective

45



2. Diagonalization of Transition Amplitudes

 10-25

 10-20

 10-15

 10-10

 10-5

 1

 105

 0.001  0.01  0.1

| E
0(p

) 
(∆

, L
, t

) 
- 

E
0ex

ac
t  |

t

∆ = 0.05
∆ = 0.10
∆ = 0.20

Figure 2.12: Deviations |E(p)
k (∆, L, t) − Eexact

k | as a function of t for k = 0, for the
modified Pöschl-Teller potential. Energy eigenvalues are obtained using effective
action levels p = 1, 3, 5, 7, 9, 11, 13 and L = 5, with the parameters χ = 0.5, λ = 15.5,
∆ = 0.02. Dashed lines in correspond to the discretization error (2.19).

action (which does not depend on δ) near x = 0. As can be seen, this does not affect

the obtained numerical results.

Table 2.3(top) gives the obtained energy spectra for the modified Pöschl-Teller

potential with the parameters χ = 0.5, λ = 15.5. If necessary, the precision of

obtained energy levels can be further increased by appropriately changing the dis-

cretization parameters. Contrary to the situation for anharmonic oscillator, where

relative error of numerically calculated low-lying energy levels did not change sig-

nificantly, here we see that the increase in the error is substantial. This is caused

by the fact that this potential has only a small finite set of discrete bound states, so

energy levels k ∼ 10 correspond to the very top of the discrete spectrum. In practi-

cal applications such pathological situations are not encountered, but as we can see,

even this can be dealt with by the proper choice of discretization parameters. The

quality of numerically calculated eigenfunctions is assessed in Table 2.3(bottom),

where we give a symmetric matrix of scalar products 〈ψk|ψexact
l 〉 of numerically cal-

culated and analytic eigenfunctions. As we can see, the overlap between analytic

and numeric eigenfunctions is excellent, and they are orthogonal with high preci-

sion, which is preserved even for higher energy levels. We have also verified that for

parameters given in the caption of Table 2.3 and with the discretization step of the

order ∆ = 10−3 eigenfunctions of all bound states can be accurately reproduced.
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Table 2.3: Top: Low-lying energy levels of the modified Pöschl-Teller potential,
obtained by diagonalization using level p = 21 effective action. The parameters
used: χ = 0.5, λ = 15.5, L = 5, ∆ = 0.02, t = 0.1. Bottom: Symmetric table
of scalar products 〈ψk|ψexact

l 〉 of numerically calculated and analytic eigenstates for
k, l = 0, 1, 2, 3, 4.

k Ek Eexact
k |Ek − Eexact

k | δEk

0 −26.28125000000000000000000(174) −26.28125 2 × 10−24 7 × 10−26

1 −22.781250000000000000000(28812) −22.78125 3 × 10−22 2 × 10−23

2 −19.53124999999999999999(736443) −19.53125 3 × 10−21 2 × 10−22

3 −16.5312499999999999999(6571136) −16.53125 4 × 10−20 2 × 10−21

4 −13.7812499999999999(8195897101) −13.78125 2 × 10−17 2 × 10−18

5 −11.28124999999999(398393103608) −11.28125 6 × 10−15 6 × 10−16

6 −9.03124999999(8602255352218206) −9.03125 2 × 10−12 2 × 10−13

7 −7.031249999(773547728177905754) −7.03125 3 × 10−10 4 × 10−11

8 −5.2812499(74811672590174261082) −5.28125 3 × 10−8 5 × 10−9

0 1 2 3 4
0 1 − 4 · 10−12 1.2 · 10−13 2.8 · 10−6 7.4 · 10−14 3.0 · 10−7

1 1.2 · 10−13 1 − 1 · 10−11 2.1 · 10−13 4.5 · 10−6 4.6 · 10−14

2 2.8 · 10−6 2.1 · 10−13 1 − 2 · 10−11 1.3 · 10−13 5.9 · 10−6

3 7.4 · 10−14 4.5 · 10−6 1.3 · 10−13 1 − 4 · 10−11 3.1 · 10−13

4 3.0 · 10−7 4.6 · 10−14 5.9 · 10−6 3.1 · 10−13 1 − 5 · 10−11

2.5 Numerical results for two-dimensional models

In this section we illustrate the application of the numerical method based on the

diagonalization of transition amplitudes on two models in d = 2 spatial dimensions.

The first model is the anharmonic oscillator

V (x, y) =
k2

2
(x2 + y2) +

k4

24
(x2 + y2)2 , (2.36)

which is used for a description of the trapping potential used in a recent experiment

with fast-rotating Bose-Einstein condensate of 87Rb atoms [12, 64, 65].

The graphs in Fig. 2.13 are calculated for k2 = 0, when the potential is reduced

to a pure quartic interaction. The analysis of errors is very similar as in the one-

dimensional cases we studied in the previous section. The dependence of ground

energy errors on the space cutoff L is shown in Fig. 2.13(top), and we see the
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Figure 2.13: Deviations from the ground energy |E(p)
0 (∆, L, t)−E0| as a function of

the space cutoff L (top) and as a function of the time t (bottom) for the potential
(2.36) for k2 = 0 and k4 = 24. The discretization parameters are ∆ = 0.2, t = 0.1
on the top graph, and L = 3 on the bottom graph. Deviations are calculated using
the ground energy E0 = 1.47714975357799(4) obtained with p = 21 effective action.
The dashed line in the bottom graph corresponds to the discretization error (2.19).

usual saturation of errors for sufficiently large values of L. The saturated value

rapidly decreases (by several orders of magnitude) as we increase the level p of the

effective action used to calculate space-discretized matrix of the evolution operator.

Fig. 2.13(bottom) shows the time dependence of ground energy errors, which are
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Table 2.4: Low-lying energy levels of a d = 2 anharmonic potential (2.36), obtained
using the level p = 21 effective action. The discretization parameters are L = 14,
∆ = 0.14, and t = 0.2.

k Ek, k2 = −0.1025, k4 = kexp4 Ek, k2 = −0.1025, k4 = 103 kexp4

0 -1.1279858856602 1.1287297831435
1 -1.1169327267787 2.6161348497834
2 -1.1169327267787 2.6161348497834
3 -1.0842518375067 4.3476515279810
4 -1.0842518374840 4.3476515279812
5 -1.0311383813261 4.6528451852013
6 -1.0311383813261 6.2704552903671
7 -0.95910186300510 6.2704552903671
8 -0.95910186300478 6.7589882491411
9 -0.86968170695135 6.7589882491412

found to fully agree with the scaling law tp for sufficiently fine discretization. Again,

the discretization errors conform to the universal dependence given in Eq. (2.19).

Here there is an additional factor of 2 in the cosh term due to the dimensionality of

the system.

Table 2.4 gives the numerically obtained energy eigenvalues for different sets of

parameters of the potential (2.36). Motivated by the values of the experimental

parameters [12, 64], we introduce and use the constant kexp4 = 1.95×10−3. From the

analysis of discretization errors and errors related to the use of a chosen effective

action level p, we can estimate the errors in found energy eigenvalues to be of the

order 10−15. The results in the Table 2.4 are obtained by numerical diagonalization

based on the C SPEEDUP code [60] and the use of the LAPACK [62] library. The

estimated error in energy eigenvalues is smaller than the (relative) error which can

be achieved in typical C simulations, which is of the order 10−14. This is easily

verified, since for several different values of discretization parameters we get the

same stable results shown in the table. Therefore, this table gives certain digits

in all energy eigenvalues, and the error can be cited as implicit (half of the last

digit). This is good example for practical applications, where we have managed

to eliminate all types of errors below the limit that can be seen due to inherent

numerical errors of computer simulation. However, if such complete elimination of

errors is not possible due to the limitations in computer memory or computation
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time, the analysis of errors presented in Fig. 2.13 allows us to reliably estimate

numerical errors in energy eigenvalues.

Fig. 2.14 shows the numerically obtained ground state for this two-dimensional

potential for the case of k2 < 0. The ground state has the expected Mexican-hat

shape. The figure gives a three-dimensional plot of the ground state on the left,

and the corresponding density plot on the right, with values of the wave function

mapped to colors. Fig. 2.15 gives density plots of k = 1, 2, 3, 4 eigenfunctions for

the same values of parameters. The discretization is sufficiently fine (∆ = 0.25) so

that all features of calculated eigenfunctions are clearly visible.

As in the one-dimensional case, we will calculate the density of states ρsc(E)

in semiclassical approximation, and use it as a criterion for the reliability of high-

energy eigenstates. In d = 2, the density of states is given by a simple formula

ρsc(E) =
1

2π

∫ ∫

dxdy Θ(E − V (x, y)) . (2.37)

For the quartic anharmonic potential (2.36) the density of states can be analytically

calculated

ρsc(E) = −3 k2

k4

+

√

9 k2
2

k2
4

+
6E

k4

. (2.38)

Fig. 2.16(top) shows the comparison of semiclassical approximation for the density

of states, and the histogram for numerically obtained energy eigenvalues of the
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Figure 2.14: Ground state (as 3-D plot on the left, and as a density plot on the
right) of a d = 2 anharmonic potential (2.36) obtained using p = 21 effective action.
The parameters are k2 = −0.1025, k4 = kexp4 , L = 20, ∆ = 0.25, t = 0.2.
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Figure 2.15: Density plots of level k = 1, 2, 3, 4 eigenstates of a d = 2 anharmonic
potential (2.36) obtained using p = 21 effective action. The parameters are k2 =
−0.1025, k4 = kexp4 , L = 20, ∆ = 0.25, t = 0.2.

potential (2.36). Due to the high degeneracy of energy eigenstates in d = 2, the

histogram of numerically found energy levels contains enough statistics over the

whole region of energies, and therefore can be used for assessment of the quality of

numerical spectra. As we see, the agreement is better and better when we use finer

space discretization. Depending on the needed number of energy levels and maximal

value of the energy considered to be relevant for the calculation we can choose

appropriate values of discretization parameters that will provide reliable numerical

results up to desired energy value. For example, for the choice of discretization

parameters L = 14, ∆ = 0.14, we can reliably use energy levels up to E ≈ 120.

Fig. 2.16(bottom) shows the comparison of cumulative density of states n(E)

calculated for numerically obtained results and in semiclassical approximation, by
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Figure 2.16: Distribution of the density of numerically obtained energy eigenstates
(top) and cumulative distribution of the density of numerically obtained energy
eigenstates (bottom) for a d = 2 anharmonic potential (2.36), calculated with the
level p = 21 effective action. The parameters are k2 = 1, k4 = kexp4 , t = 0.2, while
discretization parameters are given on the graph, corresponding to the curves top
to bottom. Long-dashed lines on both graphs give the corresponding semiclassical
approximations.

integrating the expression (2.38), which can be calculated analytically. The compar-

ison of numerical and semiclassical cumulative density of states in Fig. 2.16(bottom)

verifies our conclusions from Fig. 2.16(top), and again sets the same limit of reliable

energy levels for chosen discretization parameters.
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2. Diagonalization of Transition Amplitudes

The second two-dimensional model we have studied numerically is a sextic an-

harmonic oscillator,

V (x, y) = Vx(x) + Vy(y) + Vxy(x− y) , (2.39)

where Vi(x) = Vi0 (aix
2 + bix

4 + cix
6). The values of the coefficients used are given

in Table 2.5. The study of this potential is motivated by Ref. [66], where it has been

used to investigate the transition from regular to chaotic classical motion. Fig. 2.17

shows the numerically obtained ground state for this two-dimensional potential, as

a three-dimensional plot on the left, and as a density plot on the right. Fig. 2.18

gives density plots of k = 1, 3, 7, 8 eigenfunctions for the same values of parameters.

The discretization is sufficiently fine (∆ = 0.04) so that we can resolve all details in

the presented eigenstates.

Table 2.5: Parameters of the sextic potential (2.39).

i Vi0 ai bi ci

x 100 1.56 -0.61 0.32
y 100 0.69 -0.12 0.03
xy 100 -1.00 0.25 0.08
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Figure 2.17: Ground state (as 3-D plot on the top, and as a density plot on the
bottom) of a sextic anharmonic potential, obtained by diagonalization using the
level p = 21 effective action. The parameters of the potential are given in the text.
The diagonalization parameters: L = 4, ∆ = 0.04, t = 0.01.
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Figure 2.18: Density plots of level k = 1, 3, 7, 8 eigenstates of a sextic anharmonic
potential, obtained by diagonalization using the level p = 21 effective action. The
parameters of the potential are given in the text. The diagonalization parameters:
L = 4, ∆ = 0.04, t = 0.01.

We have demonstrated that the presented approach can be successfully used for

numerical studies of lower-dimensional models. Note that in d = 3 the complexity

of the algorithm and sizes of matrices to be diagonalized may practically limit the

applicability to the calculation of only low-lying energy levels. Also, in this case it

might be difficult to numerically obtain three-dimensional eigenfunctions on finer

grids, since even moderate grids with 50-100 points in one dimension would require

exact diagonalization of extremely large matrices.

At the end, let us compare the complexity of the presented approach and di-

rect diagonalization of the space-discretized Hamiltonian, as well as finite-element

methods. The main difference in the complexity of algorithms is related to the expo-
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2. Diagonalization of Transition Amplitudes

nential growth in the size of analytic expressions for the effective potential with the

increase of the level p, as discussed in Ref. [44]. Therefore, the required CPU time

for construction of the matrix to be diagonalized in the presented approach grows

exponentially with the level p, while in other methods the construction of such a

matrix does not require a significant amount of time. However, the time for exact

diagonalization far outweighs the time needed for construction of even large matri-

ces with moderate levels p of the order 10-20. The significant benefit of practically

eliminating errors associated with the time of propagation therefore fully justifies

the use of the effective action approach. Of course, in practical applications one has

to study the complexity of the algorithm and to choose the optimal level p which

will sufficiently reduce the errors, while keeping the complexity of the calculation on

the acceptable level.

2.6 Conclusions and outlook

In this Chapter, we have dealt with the thorough understanding and optimization

of the method of the calculation of the properties of quantum systems based on the

diagonalization of transition amplitudes, previously introduced in Ref. [9]. First,

we have focused on analyzing the errors associated with real-space discretization

and finite size effects. In particular, we have shown that within this calculation

scheme spatial discretization leads to a universal and non-perturbatively small dis-

cretization error. This highly outperforms the usual polynomial behavior of errors

in approaches based on the diagonalization of space-discretized Hamiltonians. A

key problem in practical applications of this approach - accurate calculation of tran-

sition amplitudes, matrix elements of the space-discretized evolution operator, has

been resolved using recently introduced effective action approach [44], which gives

systematic short-time expansion of the evolution operator.

The derived analytical estimates for all types of errors, including errors due to the

approximative calculation of transition amplitudes, provide us with a way to choose

optimal discretization parameters and to reduce overall errors in energy eigenvalues

and eigenstates for many orders of magnitude, as was demonstrated for several one-

and two-dimensional models. We have shown that numerical diagonalization of the

space-discretized evolution operator can be successfully applied for studies of many

interesting lower dimensional models. The approach allows exact numeric calcula-

tion of a large number of energy eigenvalues and eigenstates of the system. Due to
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2. Diagonalization of Transition Amplitudes

the superior behavior of discretization and other errors in this method compared

to methods based on diagonalization of the discretized Hamilton operator and re-

lated methods, the presented approach is a method of choice for numerical studies

of lower-dimensional physical systems. An application of the approach for numer-

ical investigation of properties of fast rotating Bose-Einstein condensates is given

in Chapter 3. Further interesting line of research would be to combine the present

method with the density matrix renormalization group (DMRG) approach [48, 67].
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Chapter 3 Thermodynamics of a rotating ideal BEC

The behavior of a BEC under rotation is essential for understanding many fun-

damental phenomena [68, 7, 19]. The response of a quantum fluid to rotation rep-

resents one of the seminal hallmarks of superfluidity characterized by a nucleation

of vortices with a quantized circulation. In the past, quantum vortices were studied

experimentally in the superfluid helium and in type-II superconductors. An impor-

tant advantage of the cold atomic gases for studying vortices is that the typical size

of a vortex core is 3 orders of magnitude larger than in the superfluid Helium, and,

even more importantly, it is large enough to be observed optically [69, 7]. Early

experiments with rotating cold gases explored different regimes: for slow rotation a

small number of vortices was observed [70, 69], while the triangular Abrikosov lattice

[71] composed of about 100 vortices was detected in the case of a higher rotation

frequency [72]. Eventually, in the case of a very rapid rotation it is expected that

bosons would go from the superfluid phase into a strongly correlated phase that is

related to the quantum Hall physics [73].

The equivalence of the rotation and the motion of a charged particle in a magnetic

field can be easily understood by considering the Hamiltonian of a single particle in

a harmonic trap in a rotating reference frame with the rotation frequency ~Ω = Ω~ez

[68]:

Ĥrot = Ĥ − ~Ω · ~̂L
=

1

2M
(p̂2
x + p̂2

y + p̂2
z) +

1

2
Mω2(x̂2 + ŷ2 + λ2

z ẑ
2) − Ω~ez · (~̂r × ~̂p)

=
1

2M
(p̂x +MΩŷ)2 +

1

2M
(p̂y −MΩx̂)2

+
1

2
M(ω2 − Ω2)(x̂2 + ŷ2) +

1

2M
p̂2
z +

1

2
Mλ2

zω
2ẑ2, (3.1)

where ~̂L is the angular momentum and all the variables in the last expression are

given in the rotating reference frame. From Eq. (3.1), we see that in the limit Ω → ω,

the Hamiltonian becomes formally equivalent to the one describing particles in the
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3. Rotating ideal BEC

magnetic field ~B = 2M~Ω.

However, once harmonically trapped Bose-Einstein condensate is rotated crit-

ically, i.e. the rotation frequency becomes so large that it fully compensates the

radially confining harmonic trapping, the system turns out to be radially no longer

confined. In the absence of additional potential terms, the condensate would start to

expand in directions perpendicular to the rotation axis. For an overcritical rotation,

this expansion would even be accelerated by the presence of a residual centrifugal

force. This poses a severe problem to the experimental achievement of strongly cor-

related bosonic states. In order to reach experimentally this delicate regime, Fetter

suggested in Ref. [74] a small quartic term to be added to the harmonic trap po-

tential, which would provide a confinement in the radial direction in the case of a

critical and overcritical rotation.

The proposal has been experimentally realized in Paris by the Dalibard group for

a BEC of 87Rb atoms [12, 7], by superimposing to the magnetic trap an additional

Gaussian laser beam propagating in the z-direction,

U(x, y) = U0e
− 2(x2+y2)

w2 . (3.2)

In the previous equation, w denotes the laser beam waist and U0 is the intensity of

the beam. Within the laser beam waist, the potential can be approximated by:

U(x, y) ≈ U0 − 2U0
x2 + y2

w2
+ 2U0

(x2 + y2)2

w4
, (3.3)

and this is how the quartic term is brought about. An additional laser beam that

creates a small anisotropic potential in the x− y plane is used for stirring the pure

BEC at the rotation frequency Ω. After the angular momentum has been introduced

into the system, the rotation is stopped and the condensate is allowed to equilibrate.

Taking into account Eqs. (3.1) and (3.3), the resulting axially-symmetric trap with

a small quartic anharmonicity in the x− y plane, seen by individual atoms, has the

form

VBEC =
M

2
(ω2 − Ω2)(x2 + y2) +

M

2
ω2
zz

2 +
κ

4
(x2 + y2)2 , (3.4)

with the trap frequencies ω = 2π × 64.8 Hz, ωz = 2π × 11.0 Hz, and the trap

anharmonicity κ = κBEC = 2.6 × 10−11 Jm−4. The rotation frequency Ω, measured

in units of ω and expressed by the ratio η = Ω/ω, represents the tunable control

parameter, which could be experimentally varied in the range between 0 and 1.04.
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Figure 3.1: Images of a rotating BEC along the rotation direction for different
rotation frequencies Ω/2π. The linear size of each image is 306µm. The results are
taken from Ref. [12].

To probe the system, the TOF absorption imaging is performed. Typical results

of the measurements for different rotation frequencies are presented in Fig. 3.1. It

is obvious that up to Ω = 2π × 68 Hz the radius of a trapped cloud increases

with increase in Ω. For Ω = 2π × 66 Hz and Ω = 2π × 67 Hz the radial density

profile of the cloud follows the Mexican-hat shape of the potential, however number

of observed vortices in this case is smaller than expected for such a large rotation

frequency. Several possible schemes are discussed as a possible explanation of the

observed features.

In order to contribute to the understanding of the experimental results, we study

the BEC phase transition of an ideal Bose gas in the trapping potential (3.4), mod-

ified by the presence of a quartic term and a rotation with respect to the common

harmonic trap (1.6). Depending on the value of the rotation frequency, the shape of

the potential changes from convex with a single minimum to the Mexican-hat shape,

which significantly influences the properties of a condensate. To study these effects,

in the rest of this Chapter we calculate the condensation temperature, condensate

fraction and density profiles of the cloud in the trap (3.4) and also simulate a free

expansion of the condensate, corresponding to the TOF imaging.

As long as we approximately describe the system with the ideal Bose gas, all

of its many-body properties in the grand-canonical ensemble can be derived purely

from single-particle states. When considering the thermodynamic limit, usually the

semiclassical approximation is applied, where the single-particle ground state E0

is retained and treated quantum mechanically, while all other excited states are

treated as a continuum [19, 65]. The validity of the semiclassical approximation

can be rigorously justified in some regimes of the relevant parameters. As briefly

mentioned in Chapter 1, the semiclassical approximation is justified in the high-

temperature limit, when the thermal energy is larger than the typical spacing of

energy levels, kBT ≥ (En+1 − En). Also, it remains reasonable good irrespective
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3. Rotating ideal BEC

of the rotation frequency Ω once the total particle number N is large enough and

the trap anharmonicity κ is small enough. The latter condition implies that the

underlying potential (3.4) has a small curvature around its minimum, and hence

the corresponding density of energy levels is sufficiently high. However, in this

context the question arises how accurate the semiclassical approximation is, for

which system parameters it is not anymore sufficient for a precise description of

BEC phenomena, as well as when it finally breaks down, requiring a full quantum-

mechanical treatment of the system.

In order to analyze the problem more quantitatively, it is mandatory to determine

the single-particle energy eigenvalues and eigenfunctions fully quantum mechani-

cally. In this Chapter we show how the exact diagonalization of a time-evolution

operator, presented in Chapter 2, is applied for studying both global and local prop-

erties of fast-rotating Bose-Einstein condensates. To this end we proceed as follows:

first we calculate a large number of energy eigenvalues and eigenfunctions for the an-

harmonic potential (3.4). Afterwards, we discuss how a finite number of numerically

available energy eigenvalues affects the results and how they can be improved by

introducing systematic semiclassical corrections. On the basis of this precise numer-

ical single-particle information, we study global properties of a rotating condensate.

Finally, we calculate local properties of the condensate, such as density profiles and

TOF absorption pictures.

To begin with, we rewrite Eq. (1.3) for the total number of particles in a more

convenient form in terms of the single-particle partition function Z1(β), defined as

Z1(β) =
∞
∑

n=0

e−βEn . (3.5)

To do this, we single out the contribution of the ground state and use the Taylor’s

expansion 1/(1−x) =
∑∞

n=0 x
n (valid for |x| < 1), to derive the following expression:

N =
∞
∑

n=0

1

eβ(En−µ) − 1
= B0(µ, T ) +

∞
∑

n=1

∞
∑

j=1

e−jβ(En−µ) . (3.6)
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By rearranging the summation order in the previous equation, we finally obtain:

N = B0(µ, T ) +
∞
∑

j=1

ejβµ
∞
∑

n=1

e−jβEn ,

= B0(µ, T ) +

∞
∑

j=1

ejβµ
(

Z1(jβ) − e−jβE0
)

, (3.7)

where the summation on the right-hand side of the previous equation corresponds to

the cumulant expansion. In order to avoid any double-counting, we have subtracted

the contribution of the ground state within the single-particle partition function

because a possible macroscopic occupation of the ground state is separately taken

into account.

The BEC phase transition is achieved only in the thermodynamic limit of an

infinite number of atoms, thus making numerical studies of the condensation in-

creasingly difficult. Usually, the problem is solved by fixing the chemical potential µ

at the low temperatures of the condensate phase to the ground-state energy, i.e. by

setting µ = E0. This requires that the ground state is treated separately by associ-

ating a macroscopic value N0 to the ground-state occupation number B0(µ, T ), for

T < Tc . Thus, from Eq. (3.7), the total number of particles in the condensate phase

follows to be:

N = N0 +
∞
∑

j=1

(

ejβE0Z1(jβ) − 1
)

. (3.8)

The equation (3.8) yields the temperature dependence of N0. Within the gas phase,

where the macroscopic occupation of the ground state vanishes, i.e. we have N0 =

0, Eq. (3.7) determines the temperature dependence of the chemical potential µ.

Therefore, the value of βc = 1/kBTc, which characterizes the boundary between

both phases, follows from Eq. (3.8) by setting N0 = 0 and µ = E0:

N =

∞
∑

j=1

[

ejβcE0Z1(jβc) − 1
]

. (3.9)

We conclude that, for a given number N of ideal bosons, the condensation temper-

ature can be exactly calculated only if both the single-particle ground-state energy

E0 and the full temperature dependence of the one-particle partition function (3.5)

are known.
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3.1 Numerical calculation of energy eigenvalues and eigen-

states

A very efficient method for calculating properties of few-body quantum systems,

that we use, is the direct diagonalization of the space-discretized propagator in

imaginary time. The approach is able to give very accurate energy eigenvalues even

for moderate values of the propagation time t of the order 0.1, as shown in detail in

Chapter 2. Note that throughout this Chapter we use dimensionless units, in which

all energies are expressed in terms of ~ω, while the length unit is the corresponding

harmonic oscillator length
√

~/Mω.

Table 3.1 presents the first several energy eigenvalues for the two-dimensional

(x− y) part of the BEC potential (3.4) for the non-rotating case (η = 0), as well as

for the critically-rotating condensate (η = 1). The table on the left gives the energy

spectrum of the potential with the anharmonicity κ = κBEC used in the experiment

[12], while the right table shows the spectrum for the much larger anharmonicity

κ = 103 κBEC. The degeneracies of numerically obtained eigenstates in all cases

Table 3.1: Lowest energy levels of the xy-part of the BEC potential (3.4) for non-
rotating (η = 0) and critically rotating (η = 1) condensate with the quartic anhar-
monicity κ = κBEC (left) and κ = 103 κBEC (right). They are obtained by using level
p = 21 effective action with the discretization parameters of Table 3.3. The spacing
∆ was always chosen so that L/∆ = 100, and the propagation time was t = 0.2 for
κ = κBEC and t = 0.05 for κ = 103 κBEC. Errors are given by the precision of the
last digit, typically 10−12 to 10−13, and are estimated by comparing the numerical
results obtained with different discretization parameters.

En/~ω, κ = κBEC

n η = 0 η = 1

0 1.0009731351803 0.1162667164134
1 2.0029165834022 0.2674689968905
2 2.0029165834022 0.2674689968905
3 3.0058275442161 0.4426927375269
4 3.0058275442161 0.4426927375270
5 3.0067964582067 0.4725275724941
6 4.0097032385903 0.6368178804983
7 4.0097032385903 0.6368178804984
8 4.0116368851078 0.6848142470356
9 4.0116368851078 0.6848142470357

En/~ω, κ = 103 κBEC

n η = 0 η = 1

0 1.468486725893 1.162667164134
1 3.213056378201 2.674689968905
2 3.213056378201 2.674689968905
3 5.163819069871 4.426927375269
4 5.163819069871 4.426927375270
5 5.406908088225 4.725275724941
6 7.282930987460 6.368178804982
7 7.282930987460 6.368178804982
8 7.690584058915 6.848142470357
9 7.690584058915 6.848142470357
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Table 3.2: Lowest energy levels of the xy-part of the BEC potential (3.4) for over-
critically rotating (η = 1.04) condensate with the quartic anharmonicity κ = κBEC

and κ = 103 κBEC according to the same numerical procedure as in Table 3.1.

En/~ω, η = 1.04
n κBEC 103 κBEC

0 -0.6617041825660 1.135693826206
1 -0.6465857464220 2.628129903790
2 -0.6465857464220 2.628129903790
3 -0.6032113415949 4.363876633929
4 -0.6032113415948 4.363876633929
5 -0.5349860004310 4.667653582963
6 -0.5349860004309 6.290444734007
7 -0.4451224795419 6.290444734007
8 -0.4451224795419 6.777210773169
9 -0.3362724309903 6.777210773169

correspond to the expected structure of the spectrum, which can be deduced from

the symmetry of the problem. In addition to this, the interesting case of critical

rotation (η = 1) allows a further verification of the numerical results. To this end

we recall that the energy eigenvalues of a pure quartic oscillator, to which VBEC

reduces in this case, are proportional to κ1/3 due to a spatial rescaling in the un-

derlying Schrödinger equation. Therefore, we expect that the energy eigenvalues

for κ = 103 κBEC are precisely 10 times larger than the corresponding eigenvalues

for κ = κBEC. Comparing the rightmost columns in Table 3.1 we see exactly this

scaling. This demonstrates conclusively that the presented method can be success-

fully applied also in this deeply non-perturbative parameter regime. Furthermore,

Table 3.2 gives the energy spectrum of an over-critically rotating (η = 1.04) con-

densate, illustrating that the same approach can be used in this delicate regime as

well.

With these results single-particle partition functions Z1(β) can now be calculated

according to Eq. (3.5). This is especially suitable for the low-temperature regime,

when higher energy levels give a negligible contribution. Although the above de-

scribed approach is able to accurately give several thousands of energy eigenvalues,

their number is always necessarily limited. This is easily seen from Fig. 3.2, where

we compare the density of states for a critically rotating condensate with the corre-
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Figure 3.2: Numerically calculated density of states for xy-part of the BEC potential
with κ = κBEC for a critically rotating condensate, obtained by using level p = 21
effective action. The discretization parameters are L = 22.3, L/∆ = 100, and
t = 0.2. The dashed line is the corresponding semiclassical approximation for the
density of states.

sponding semiclassical approximation for the density of states (2.38). This compar-

ison allows us to estimate the maximal reliable two-dimensional energy eigenvalue

Emax which can be obtained numerically for a given set of discretization parameters.

For example, from Fig. 3.2 we can estimate Emax ≈ 90 for η = 1 with the dis-

cretization parameters L = 22.3, L/∆ = 100, and t = 0.2. Table 3.3 gives estimates

for the maximal reliable energy eigenvalue for the anharmonicities κ = κBEC and

κ = 103 κBEC for several values of rotation frequencies. These results are obtained

from numerical calculations using the SPEEDUP codes [60]. This table gives also

an overview over those discretization parameters which were used for a numerical

diagonalization of the BEC potential (3.4) in order to calculate both global and local

properties of the condensate throughout this Chapter.

In the low-temperature limit the finiteness of the number of known energy eigen-

states does not present a problem. In fact, a precise knowledge of a large number of

energy eigenvalues makes this approach a preferred method for a numerically exact

treatment of low-temperature phenomena. On the other hand, the high-temperature

regime, where thermal contributions of higher energy states play a significant role,

is not treatable in the same way. This regime is usually not relevant for studies of
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Table 3.3: Maximal reliable numerically calculated energy eigenvalue Emax of the
xy-part of the BEC potential (3.4) for different values of η = Ω/ω, estimated from
comparing the numerically obtained density of states ρ(E) with the semiclassical
approximation. The numerical diagonalization was done using level p = 21 effective
action. The spacing ∆ was always chosen so that L/∆ = 100, and the propagation
time was t = 0.2 for κ = κBEC and t = 0.05 for κ = 103 κBEC. The total number of
reliable energy eigenstates is in all cases of the order of 104.

κ = κBEC κ = 103 κBEC

η Emax/~ω L Emax/~ω L

0.0 140 14.2 190 3.90
0.2 140 14.4 190 3.90
0.4 140 15.0 180 3.91
0.6 140 16.3 180 3.92
0.8 130 18.6 180 3.94
1.0 90 22.3 170 3.96
1.04 90 23.2 170 3.96

BEC experiments, but we consider it for the sake of completeness. When the tem-

perature is sufficiently high, so that effects of higher energy eigenstates cannot be

neglected, the inverse temperature β becomes a small parameter. Thus, it becomes

possible to calculate numerically the single-particle partition function as a sum of

diagonal amplitudes, i.e.

Z1(β) = Tr e−βĤ ≈
∑

j

A(j∆, j∆; β)∆d , (3.10)

where ∆ represents the spatial spacing, as before, the values of j are defined by

j ∈ [−L/∆, L/∆]d, with the spatial cutoff L chosen in such a way as to ensure

the localization of the evolution matrix within the interval [−L,L]d, and transition

amplitudes for small β can be calculated directly using the effective action approach

[10, 44].
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3.2 Finite number of energy eigenvalues and semiclassical

corrections

In the previous section we have described a numerical approach that is capable

of providing a large number of accurate energy eigenvalues for a general quantum

system. For instance, we are able to calculate typically 104 energy eigenvalues for

the considered BEC potential (3.4). In this section we discuss in more detail how

the finiteness of numerically available energy eigenstates affects the calculation of

thermodynamic properties of Bose-Einstein condensates.

As outlined at the beginning of this Chapter, the information on single-particle

eigenvalues is sufficient for calculating the condensation temperature according to

Eq. (3.9). Below the condensation temperature, the ground-state occupancy follows

from solving Eq. (3.8). In practical calculations, however, one is inevitably forced

to restrict the sum over j in the cumulant expansion (3.8) to some finite cutoff J ,

resulting in the following approximation for the number of thermal atoms

N −N0 ≈
J
∑

j=1

∞
∑

n=1

e−jβ(En−E0) . (3.11)

Thus, the ground-state occupancy N0 depends not only on the particle number N

and the temperature T , but also on the cumulant cutoff J . In particular, when

we solve Eq. (3.11) for the (inverse) condensation temperature βc, obtained from

the condition N0 = 0, we will get the solution in the form βc(J), with an explicit

dependence on J . The exact condensation temperature βc is only obtained in the

limit J → ∞.

Fig. 3.3 illustrates the J-dependence resulting from Eq. (3.11) for both a non-

rotating and a critically rotating condensate. As expected, the sum saturates for

high values of J to some finite number N −N0. By tuning the temperature in such

a way that the sum saturates at the desired value of the total number of atoms N

in the system, which corresponds to N0 = 0, one is, in principle, able to extract the

value of the condensation temperature Tc.

Although the results in Fig. 3.3 suggest that this approach can be applied

straightforwardly, a closer look at the results for numerically calculated values of

N − N0 reveals several problems that have to be addressed. At first we have to

investigate how the results depend on the number of energy eigenstates used in the
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Figure 3.3: Number of thermally excited atomsN−N0 as a function of the cutoff J in
the cumulant expansion (3.11). The results are given for a non-rotating condensate
at T = 105.18 nK and for a critically rotating condensate at T = 63.30 nK. The
results are obtained by level p = 21 effective action, and all available numerical
eigenstates are used to calculate N − N0. The discretization parameters were L =
14.2 for η = 0 and L = 22.3 for η = 1. In both cases the spacing was chosen
according to L/∆ = 100, and the propagation time was t = 0.2.

numerical calculation. Fig. 3.4 gives this dependence for a critically rotating conden-

sate at its critical temperature Tc = 63.30 nK. We can see that the dependence on

the maximal available two-dimensional energy eigenvalue Emax is quite significant.

The inset of this figure reveals another problem: the value to which number N0 −N

saturates depends in addition on the cumulant cutoff J , as explained earlier. While

the J-dependence can be dealt with by using a very large value of the cumulant

cutoff in numerical calculations, the dependence on the maximal energy eigenvalue

Emax must be eliminated by taking into account a proper semiclassical correction to

the single-particle partition functions.

Namely, the finite number of energy eigenstates implies that the single-particle

partition functions are only estimated by

Z1(β) ≈
nmax
∑

n=0

e−βEn , (3.12)

where nmax corresponds to the value Emax of the numerically available maximal en-
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Figure 3.4: Number of thermally excited atoms N −N0 calculated as a function of
the maximal available two-dimensional energy eigenvalue Emax at T = 63.30 nK.
The results are given for two different values of the cumulant cutoff J for a critically
rotating condensate, with the same parameters as in Fig. 3.3. The horizontal line
corresponds to the number of atoms N = 3 · 105 in the experiment [12].

ergy eigenvalue. A semiclassical correction to this value, can be calculated according

to Ref. [65] as

∆Z1(β,Emax) =

∫

d~r d~p

(2π~)3
e−βH(~r,~p) Θ(H(~r, ~p) − Emax) , (3.13)

where H(~r, ~p) as before represents the classical Hamiltonian of the system, while Θ

denotes the Heaviside step-function.

For the trap potential (3.4), in z-direction we have a pure harmonic potential,

which can be treated exactly. Therefore, we focus only on the two-dimensional

problem in the x− y plane. In this case, the semiclassical correction for the single-

particle partition function (3.13) can be expressed in terms of the complementary

error function:

∆Z
(2)
1 (β,Emax) =

1

2β

{

e−βEmax

κ

[

−(1 − η2)
√

(1 − η2)2 + 4κEmax

]

+

√

π

κβ
e

β(1−η2)2

4κ × Erfc

(
√

βEmax +
β(1 − η2)2

4κ

)}

,(3.14)
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Figure 3.5: Number of thermally excited atoms N −N0 calculated as a function of
Emax with and without semiclassical corrections, calculated with a large cumulant
cutoff J = 104 to eliminate the J-dependence. The results correspond to a critically
rotating condensate with the same parameters as in Fig. 3.3. The horizontal line
corresponds to N = 301834 which represents the exact value at Tc = 63.30 nK.

where the superscript denotes that only the x−y part of the potential is considered.

When this semiclassical correction is taken into account, the numerical results

show almost no dependence on Emax, as can be seen from Fig. 3.5. Here we have

used an excessively large value of the cumulant cutoff J = 104 in order to completely

eliminate any J dependence. From the inset in this graph we also see that Emax

must be chosen in accordance with the value estimated in the previous section for

the maximal reliable energy eigenvalue obtained by numerical diagonalization. If

we use a value Emax larger than this, we will be underestimating the higher part of

the energy spectra, and obtain incorrect results. For a critically rotating condensate

with the anharmonicity κ = κBEC the estimated value of Emax from Table 3.3 is

around 90 ~ω, which agrees with the results from the inset of Fig. 3.5. If we use this

value for Emax and calculate properties of the condensate using numerically obtained

eigenstates below Emax with semiclassical corrections according to Eq. (3.14), we will

obtain the exact results with very high accuracy.
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3.3 Global properties of rotating BECs

In this section we will apply the presented approach to calculate different global

properties of rotating BECs. First, we will calculate condensation temperature,

and then, we will present phase diagrams defined in terms of condensate-fraction

dependence on the temperature for different trap parameters. Additionally, we

will compare numerical results with semiclassical values and identify when the full

numerical treatment becomes necessary.

3.3.1 Condensation temperature

If we take into account semiclassical corrections, as explained in the previous sec-

tion, we can calculate, for instance, the condensation temperature of the condensate

for different rotation frequencies. This implies that we have to find the temperature

for which the number of thermal atoms saturates precisely at the total number of

atoms N . In practice, this works the other way around: for a given condensation

temperature Tc we numerically calculate the particle number in the system using

Eq. (3.11), which gives the number of atoms in the system required for a condensa-

tion temperature to be equal to Tc. This procedure is implemented in Fig. 3.6 for

several values of the rotation frequency Ω in units of η = Ω/ω. For example, for

Tc = 63.14 nK we see that the corresponding number of particles is N = 3 · 105,

which coincides with the value for a critically rotating condensate in the experiment

of Dalibard and collaborators [12].

In principle, such a procedure is only applicable for low-accuracy calculations of

the critical temperature, since otherwise one has to use very large values of the cutoff

J which would practically slow-down numerical calculations. If one is interested in

more precise results, a suitable J-dependence must be properly taken into account.

In order to be able to efficiently extract the correct value of βc, we will derive an

analytical estimate of the asymptotic error ∆βc = βc − βc(J), which is introduced

by the presence of the cutoff J . Note that always ∆βc > 0, since βc(J) < βc has to

compensate the missing terms in the sum (3.11).

If we insert βc = βc(J) + ∆βc into Eq. (3.11), the error ∆βc can considered to

be small for sufficiently large value of the cutoff J . By comparing Eq. (3.11) with
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Figure 3.6: Number of thermally excited atoms N −N0 as a function of the temper-
ature T for different values of the rotation frequency and the quartic anharmonicity
κ = κBEC. The discretization parameters are given in Table 3.3, and the results are
calculated by taking into account semiclassical corrections. The dashed line corre-
sponds to the number of atoms N = 3 · 105 in the experiment [12]. For comparison,
the full lines depict the semiclassical results from Ref. [65].

the exact expression (3.9) we obtain

∞
∑

j=J+1

∞
∑

n=1

e−jβc(En−E0) ≈ ∆βc

J
∑

j=1

∞
∑

n=1

j(En − E0) e
−jβc(En−E0) . (3.15)

The term j(En−E0) within the sum can be obtained by setting N0 = 0 and applying

the partial derivative ∂/∂βc to Eq. (3.11):

−∆βc
∂N

∂βc

≈
[

1 − ∆βc
∂

∂βc

] ∞
∑

j=J+1

∞
∑

n=1

e−jβc(En−E0) . (3.16)

Note that the derivative of the particle number N with respect to βc is not equal to

zero, since N is here effectively defined by the sum (3.9). Therefore, we have instead

∂N

∂βc
= −

∞
∑

j=1

∞
∑

n=1

j (En − E0) e
−jβc(En−E0) . (3.17)

Clearly, the right-hand side is a negative quantity that does not depend on J . How-
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ever, it does depend on βc, as well as on the energy spectrum of the system.

If the system is close to a d-dimensional harmonic oscillator, which is the case

for the potential (3.4) with the small anharmonicity relevant for the experiment, for

large values of J we have approximately

∞
∑

j=J+1

∞
∑

n=1

e−jβc(En−E0) ≈ d
e−(J+1)βc~ω

1 − e−βc~ω
, (3.18)

where ω denotes an effective harmonic frequency and d is the dimensionality of

the corresponding system. In our case, we apply the semi-classical correction only

to the x − y part of the potential and for this reason d = 2. For the case of a

large anharmonicity, the effective frequency ω would depend on κ, representing the

harmonic expansion of the potential around its minimum. With such an estimate,

Eq. (3.16) reduces to

∆βc ≈ − d

1 − e−βc~ω
× e−(J+1)βc~ω

∂N/∂βc + (J + 1) e−(J+1)βc~ω d~ω
1−e−βc~ω

. (3.19)

The term (J+1) e−(J+1)βc~ω in the denominator of the second factor can be neglected

for large enough values of the cutoff J , yielding as a simplified version of the above

expression:

∆βc ≈ − d e−(J+1)βc~ω

∂N/∂βc (1 − e−βc~ω)
. (3.20)

In order to use the derived estimates for ∆βc, apparently one would already

have to know the sought-after value of βc as well as the difficult derivative ∂N/∂βc.

However, in practical applications this obstacle can be circumvented as follows.

The expressions (3.19) and (3.20) can be used for fitting the numerical data for

βc(J) = βc−∆βc, as is illustrated in Fig. 3.7. In this standard approach, all unknown

values are fit parameters, obtained numerically by the least-square method. Note

that not only βc is obtained by such a fitting procedure, but also other parameters,

such as ∂N/∂βc, or the effective harmonic frequency ω. The important point here is

to capture the correct J-dependence, while all other parameters do not depend on

it, so that they can be extracted by fitting. For example, in Fig. 3.7 we have used
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Figure 3.7: Dependence of βc on the cumulant cutoff J for an over-critically (η =
1.04) rotating condensate ofN = 3·105 atoms of 87Rb with the quartic anharmonicity
of the trap κ = κBEC. The discretization parameters are given in Table 3.3. The
dashed line corresponds to a value of βc obtained by fitting the numerical results to
the function (3.21), while the full line gives the fitted function f(J).

the fitting function

f(J) = βc −
c1e

−c2(J+1)

1 + c3(J + 1) e−c4(J+1)
, (3.21)

which reproduces the numerical data quite accurately and gives high-precision re-

sults for the condensation temperature Tc. The virtue of the derived estimates lies

in the fact that they can be used to extract the information on the condensation

temperature even for moderate values of J , when a saturation is not yet achieved.

This substantially speeds up the numerical calculation of condensation tempera-

tures, especially when it has to be done for different values of potential parameters,

such as the frequency ratio η = Ω/ω.

Fig. 3.8 summarizes the numerical results for the condensation temperature Tc

for the anharmonicity κ = κBEC as well as the particle numbers N = 3 · 105 and

N = 1 · 104. If we compare the obtained numerical results with the semiclassical

approximation from Ref. [65], we see that the agreement turns out to be relatively

good for the undercritical regime, but it becomes worse for an overcritical rotation of

the condensate. After presenting results for the ground-state occupancy, which were
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Figure 3.8: The condensation temperature as a function of the rotation frequency
for the condensate of N = 3 · 105 and N = 1 · 104 atoms of 87Rb, with the quartic
anharmonicity of the trap κ = κBEC. The discretization parameters are given in
Table 3.3. The full lines correspond to the semiclassical approximation for Tc from
Ref. [65].

obtained from this approach in the next section, we will compare our numerically

exact results with the semiclassical approximation in more detail, and identify the

parameter ranges where a full numerical treatment becomes necessary.

3.3.2 Ground-state occupancy

The ground-state occupancy is the next important global property of Bose-Einstein

condensates we will look into. Below the condensation temperature a non-trivial

fraction of atoms is in the ground state, thus yielding a macroscopic value of the

occupancy ratio N0/N .

Using the same approach as above, we can calculate the ground-state occupancy

from Eq. (3.8). After determining the ground-state energy E0 from an exact diago-

nalization of the evolution operator, we obtain the occupancy as

N0

N
= 1 − 1

N

∞
∑

j=1

[

ejβE0Z1(jβ) − 1
]

. (3.22)

In order to calculate N0/N , we need the full single-particle energy spectrum. For
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parameters are given in Table 3.3. The full lines depict the semiclassical results from
Ref. [65].

low temperatures, the large number of energy eigenstates obtained within the exact

diagonalization is sufficient. In the sum of Eq. (3.22) we have again to introduce a

cutoff J and to eliminate it by applying the methods described in previous sections.

To this end one uses either a very large value for the cutoff or one derives the

appropriate finite correction term, and fits the results to the derived function.

Fig. 3.9 presents numerical results for the ground-state occupancy of the conden-

sate. The quartic anharmonicity of the trap is chosen to be κ = 103 κBEC, and the

results are given for the non-rotating case with the total number of atoms N = 1·104

and for critically rotating condensate with N = 5 · 104 atoms. A comparison with

the semiclassical results derived in Ref. [65] shows that the deviations increase with

larger temperatures and smaller particle numbers.

3.3.3 Comparison with semiclassical approximation

In order to access the applicability and quality of the semiclassical approximation, we

now make a quantitative comparison of the semiclassical results and full numerical

results obtained in previous sections. Fig. 3.10 depicts the relative errors of the

semiclassically calculated condensation temperature. As we can see, the agreement is
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Figure 3.10: Relative error of semiclassical results for the condensation temperature
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discretization parameters are given in Table 3.3. The insets in both plots give the
corresponding results for the large anharmonicity κ = 103 κBEC.

relatively good for large particle numbers and small anharmonicity if the condensate

rotates under-critically. The error in this case is of the order of 1 % to 1.5 %, and

turns out to be minimal for a critical rotation. However, the error significantly

increases for an overcritical rotation up to almost 3.5 % for η = 1.1. Therefore,

while the semiclassical approximation is acceptable for undercritical rotation, in

the overcritical regime a numerical treatment becomes necessary. This is even more
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pronounced if we decrease the particle number to 104, which is quite typical for many

BEC experiments. In that case, semiclassical results already have an error of the

order of 20 %. For large anharmonicity the rotation effect is not so important, as we

can see from insets on both graphs in Fig. 3.10. However, for the particle number 104

a numerical treatment is indispensable, since the errors of the semiclassical results

amount up to 5 %.

3.4 Local properties of rotating BECs

Local properties of ultra-cold quantum gases are ubiquitously used to observe and

study the phenomenon of Bose-Einstein condensation. The prominent peak in TOF

absorption pictures, which appears suddenly when the temperature is decreased

below Tc, is a clear signature for the occurrence of a BEC phase transition. It is

experimentally used to measure the thermodynamic properties of the condensate.

In this section we will show how the presented numerical approach can be applied

to calculate both the density profiles and the TOF absorption imaging profiles.

3.4.1 Density profiles

For the ideal Bose gas, the density profiles of the condensate and of the gas phase

are given by Eqs. (1.11) and (1.12), respectively. Having at our disposal numerically

calculated energy eigenvalues and eigenfunctions, we can calculate the density profile

of the condensate. In order to do so, we first have to obtain the ground-state

occupancy number N0 using the approach described in the previous section. Once

this is done, Eq. (1.12) allows to calculate the density profile. In view of a comparison

with absorption imaging, which always produces two-dimensional profiles, we have to

integrate our numerically determined three-dimensional particle density n(~r) along

the imaging axis. Fig. 3.11 presents typical results for the resulting density profiles

of Bose-Einstein condensates for both the non-rotating and the critically-rotating

case. Obviously, a rotation of the condensate leads to an effective spreading due to

the appearance of a centrifugal potential.

Although this approach is sufficient for treating the low-temperature regime,

where the condensate is present, we emphasize that the same method can also be

used to deal with the thermal regime, when the temperature is increased above Tc.

For even higher temperatures, when the number of energy eigenstates, that need to
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Figure 3.11: Density profile in xy-plane for a non-rotating (top) and a critically
rotating (bottom) condensate of N = 3 · 105 atoms of 87Rb with the anharmonicity
κ = κBEC at T = 30 nK. The dimensionless unit length on both graphs corresponds
to 1.34 µm, i.e. the linear size of the profile is approximately 16.1 µm (top) and
32.2 µm (bottom). The discretization parameters are given in Table 3.3.

be taken into account, exceeds the number of numerically accessible eigenstates, the

presented approach can be extended in a similar way as the partition function was

calculated previously as a sum of diagonal transition amplitudes. Using the cumu-

lant expansion of occupancies and the spectral decomposition of thermal transition

amplitudes, the density profile can be written for high enough temperatures as

n(~r) = N0|ψ0(~r)|2 +
∑

j≥1

[

ejβE0A(~r, ~r; jβ~) − |ψ0(~r)|2
]

. (3.23)

Here A(~r, ~r; jβ~) represents the imaginary-time amplitude for a single-particle tran-
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sition from the position ~r to the position ~r for the imaginary time t = jβ~.

While both definitions (1.12) and (3.23) are mathematically equivalent when one

is able to exactly calculate infinitely many energy eigenstates and required transition

amplitudes for an arbitrary propagation time, the first definition is more suitable for

low temperatures, when the number of relevant energy eigenstates is moderate, and

the second one is suitable for high temperatures, when the imaginary propagation

time ~β is small, and the short-time expansion can be successfully applied.

3.4.2 Time-of-flight graphs for BECs

In typical BEC experiments, a trapping potential is switched off and the gas is

allowed to expand freely during a short flight time t which is of the order of several

tens of milliseconds. Afterwards an absorption picture is taken which maps the

density profile to the plane perpendicular to the laser beam. For the ideal Bose

condensate, the density profile after time t is given by

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

n≥1

Bn(E0, T )|ψn(~r, t)|2 , (3.24)

where the density profile has to be integrated along the imaging axis, and the eigen-

states ψn(~r, t) are propagated according to the free Hamiltonian, containing only the

kinetic term, since the trapping potential is switched off. If the energy eigenstates

are available exactly, either analytically or numerically, their propagation in time

can be calculated by performing two consecutive Fourier transformations:

ψn(~r, t) =

∫

d~k d~R

(2π)3
ei[
~k·(~r−~R)−ω~k

t] ψn(~R) , (3.25)

where the term e−iω~k
t accounts for a free-particle propagation in ~k-space, ω~k =

~
2k2/(2M). In practical applications, when the energy eigenstates are calculated

by a numerical diagonalization of space-discretized transition amplitudes, the nat-

ural way to calculate the above free-particle time evolution is to use Fast Fourier

Transform (FFT) numerical libraries.

For high temperatures we can use a mathematically equivalent definition of the

density profile which is derived again from using the cumulant expansion of occu-
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pancy numbers and the spectral decomposition of transition amplitudes:

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

j≥1

[

ejβE0

∫

d3~k1 d
3~k2 d

3 ~X1 d
3 ~X2

(2π)6

×ei[(~k1−~k2)·~r−~k1· ~X1+~k2· ~X2−(ω~k1
−ω~k2

)t] × A( ~X1, ~X2; jβ~) − |ψ0(~r, t)|2
]

.(3.26)

In both approaches it is first necessary to calculate the ground-state energy E0

and the eigenfunction ψ0(~r), as well as the ground-state occupancy N0. If we rely

on Eqs. (3.24) and (3.25) to calculate TOF graphs, we have to calculate as many

eigenstates as possible by numerical diagonalization. Conversely, if it is possible to

use directly Eq. (3.26), we can apply the effective action short-time expansion of

thermal transition amplitudes. In both cases FFT is ideally suited for calculating

TOF graphs.

3.4.3 Overcritical rotation

The case of critical and overcritical rotation η ≥ 1 is realized in the Paris experiment

by introducing the anharmonic part of the potential (3.4), so that the condensate

is confined even when the harmonic part of the trapping potential is completely

compensated or overcompensated by the rotation. The experimental realization of

this delicate balance was difficult to achieve, but nevertheless when the conden-

sate was successfully confined while rotating over-critically, the measurements of its

properties can be done using the standard techniques, including absorption imaging.

Within the semiclassical approach one has to carefully consider this situation, since

the chemical potential is defined by the minimum of the potential, Eq. (1.14), and

now cannot be simply set to zero anymore [65]. In our numerical approach, however,

the implementation of the methods described in previous sections is straightforward

even for overcritical rotation. First one calculates energy eigenvalues and eigenstates

using exact diagonalization, yielding negative values for the first several eigenstates.

Table 3.2 shows the resulting energy spectrum of an overcritically rotating conden-

sate (η = 1.04) for the experimental value of the anharmonicity κBEC, as well as for

the case of large anharmonicity 103 κBEC.

Condensation temperature and other global properties as well as local properties

of overcritically rotating condensates can also be calculated as before. Fig. 3.12 gives
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Figure 3.12: Time-of-flight absorption density profiles in xy-plane for an over-
critically rotating (η = 1.04) condensate of N = 3 · 105 atoms of 87Rb with the
anharmonicity κ = κBEC at T = 30 nK. The flight time, is given at each plot. The
dimensionless unit length on all graphs corresponds to 1.34 µm and the linear size
of profiles is approximately 53.6 µm. The discretization parameters are given in
Table 3.3.

the TOF absorption imaging sequence in the xy-plane for an overcritically (η = 1.04)

rotating Bose-Einstein condensate with the anharmonicity κ = κBEC and the particle

number N = 3 · 105 at T = 30 nK, exhibiting an interesting behavior. The initial

density profile has a minimum at the origin, due to the shape of the anharmonic

potential. The free expansion of the condensate leads to an increase in the particle

density at the origin, and only afterwards the condensate density profile expands

monotonically. Fig. 3.13 presents the time dependence of the particle density at
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Figure 3.13: Condensate density at the origin of x − y plane as a function of the
time of flight (TOF) for the condensate of N = 3 · 105 atoms of 87Rb at T = 30 nK
for several rotation frequencies Ω in units of η = Ω/ω. The quartic anharmonicity
is κ = κBEC and the discretization parameters are given in Table 3.3.

the origin for varying rotation frequencies, parameterized by the ratio η = Ω/ω.

We read off that approaching the critical rotation slows down the expansion of

the condensate. For overcritical rotation this is even more pronounced, due to the

appearance of the peak in the particle density for the expansion time t > 0. This

leads to an expansion that is typically an order of magnitude slower for the rotation

with η > 1.

3.5 Conclusions and outlook

In this Chapter the exact diagonalization of a time evolution operator is applied

to the study of ideal Bose gases in the anharmonic trap. Earlier derived higher-

order effective actions are used for an efficient numerical calculation of both global

and local properties of fast-rotating Bose-Einstein condensates. To this end we have

calculated large numbers of single-particle eigenvalues and eigenstates and using this

information, we have obtained the condensation temperature and the ground-state

occupancy of the condensate, as well as density profiles and TOF absorption graphs.

We have have focused on a critical and an overcritical rotation and have found a

substantial increase in the time scale for the expansion of the condensate after the
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3. Rotating ideal BEC

trapping potential is switched off compared to the undercritical case. Further study

should incorporate the effects of weak interactions on the Bose-Einstein condensation

in the external potential (3.4), either in the mean-field framework or by the full

numerical treatment. Finally, we note that approach presented here can also be

used for numerical studies of properties of rotating ultra-cold Fermi gases [75].
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Chapter 4 Mean-field description of an interacting BEC

In the previous Chapter we have considered BEC of an ideal Bose gas, and,

despite neglecting the interactions, we had to apply sophisticated numerical methods

for characterization of the BEC phase transition and properties of the condensate.

Now we extend the description of a Bose gas to include interactions. For an exact

microscopic description of an interacting Bose gas, we need to consider a full many-

body Hamiltonian. For systems with a dominant two-body contact interaction, the

Hamiltonian has the form (1.24):

Ĥ =

∫

d~r

(

−ψ̂†(~r)
~

2

2M
∇2ψ̂(~r) + V (~r)ψ̂†(~r)ψ̂(~r) +

g

2
ψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r)

)

. (4.1)

In the case of ultra-cold atomic gases, the bosons are alkali atoms, which are not

elementary particles. However, due to very low temperatures, the atoms can be

considered to be always in their ground states and their internal structure can be

neglected. The exact treatment of the system described by the Hamiltonian (4.1)

is possible only by numerical simulations based on Monte Carlo approach [76, 77].

Such simulations are ubiquitously time-consuming and significantly limit the scope

of problems that can be addressed. For this reason, a number of approximative

methods have been developed. Simplified approximative approaches are much easier

for the numerical implementation and sometimes even provide analytical insights

into the studied problem. Furthermore, very often, information on the parameters

of the system, such as the temperature or condensate fraction, are extracted from

experimental data indirectly, by fitting to expressions derived within one of simplified

schemes.

In this Chapter we review the mean-field Hartree-Fock (HF) approximation for

a many-body Hamiltonian (4.1). The HF approximation is the most-widely used

approach to study finite-temperature properties of weakly interacting BECs [78, 5].

We will show within this mean-field scheme how the presence of the interaction

influences properties of the condensate, both in the zero-temperature limit, and in
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4. Mean-field description of an interacting BEC

the vicinity of the BEC phase transition. We focus on harmonically trapped bosons

for two reasons: the trapping is always present in the experiments, and also the

calculation of the condensation temperature of the homogenous system turned out to

be a notorious problem, debated in many ways for several decades [79]. We scrutiny

and compare several widely used implementations of the HF approximation with the

emphasis on their advantages and drawbacks. The interest in the topic increases as

new experiments have reported the observation of beyond mean-field effects [80, 81],

which should be incorporated into the existing models.

The partition function of the system in the grand canonical ensemble is given by

Z(β) = Tr e−β(Ĥ−µN̂), (4.2)

and can be rewritten as a bosonic functional integral in the imaginary time [32]:

Z(β) =

∮

DΨ

∮

DΨ∗e−AE[Ψ(~r,τ),Ψ∗(~r,τ)]/~, (4.3)

where Ψ(~r, τ) and Ψ∗(~r, τ) are periodic functions, with the period ~β:

Ψ(~r, τ) = Ψ(~r, τ + ~β) ,Ψ∗(~r, τ) = Ψ∗(~r, τ + ~β) . (4.4)

For the Hamiltonian (4.1) the Euclidean action AE is given by

AE[Ψ(~r, τ),Ψ∗(~r, τ)] =

∫

~β

0

dτ

∫

d~rΨ∗(~r, τ)

(

~
∂

∂τ
− ~

2

2M
△ + V (~r) − µ

)

Ψ(~r, τ)

+
g

2

∫

~β

0

dτ

∫

d~rΨ∗(~r, τ)Ψ(~r, τ)Ψ∗(~r, τ)Ψ(~r, τ) . (4.5)

A presence of the interacting Ψ4 term in the action makes the calculation of the parti-

tion function analytically intractable, and to proceed further we apply the standard

mean-field approach. In order to study Bose-Einstein condensation, according to

the Bogoliubov prescription (1.27), we first decompose the field Ψ into the order

parameter ψ(~r, τ), which corresponds to the macroscopic condensate wave-function,

and fluctuations δψ(~r, τ):

Ψ(~r, τ) = ψ(~r, τ) + δψ(~r, τ) . (4.6)

In the functional formalism this represents a change of variables, and the action now
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4. Mean-field description of an interacting BEC

contains terms up to the 4th order in δψ that we should integrate over. Without

further approximations, however, this problem is equivalent to the original functional

integral. Numerous approximation techniques were developed to treat terms of the

3rd and 4th order in different approximative ways [19, 82]. In the Hartree-Fock-

Bogoliubov approach, we approximate the 4th order term as

δψ∗δψ δψ∗δψ ≈ 4〈δψ∗δψ〉δψ∗δψ + 〈δψ∗δψ∗〉δψδψ + 〈δψδψ〉δψ∗δψ∗

−2〈δψ∗δψ〉〈δψ∗δψ〉 − 〈δψδψ〉〈δψ∗δψ∗〉. (4.7)

In accordance with the previous decomposition, we introduce auxiliary functions

h(~r, τ ;~r, τ) = 〈δψ∗(~r, τ)δψ(~r, τ)〉 ,
f(~r, τ ;~r ′, τ ′) = 〈δψ∗(~r, τ)δψ(~r ′, τ ′)〉 ,
b(~r, τ ;~r ′, τ ′) = 〈δψ(~r, τ)δψ(~r ′, τ ′)〉 ,

which are denoted as Hartree, Fock and Bogoliubov term, respectively. At the

moment, the introduced average values are purely formal, but can be later defined

so as to make the complete procedure self-consistent. In the case of the contact

interaction (1.21), the Hartree and Fock terms yield equal contributions, hence a

factor of 4 in front of the corresponding term in Eq. (4.7).

After applying the mean-field approximation (4.7), the action AE becomes quadra-

tic in δψ, and now the functional integrations of the Gaussian integrals can be ex-

plicitly performed. The final result for the partition function can be written in the

form

Z(β) = e−β Γeff [ψ,ψ∗,h,f,b] , (4.8)

where Γeff is the effective action, defined as a functional of five arguments: ψ(~r, τ),

ψ∗(~r, τ), h(~r, τ ;~r, τ), f(~r, τ ;~r ′, τ ′) and b(~r, τ ;~r ′, τ ′). They are determined by ex-

tremizing the effective action Γeff [ψ, ψ∗, h, f, b] with respect to each of them:

δΓeff

δψ
= 0,

δΓeff

δψ∗
= 0,

δΓeff

δh
= 0,

δΓeff

δf
= 0,

δΓeff

δb
= 0.

In the quest for the simplest mean-field description of an inhomogeneous BEC,

we will make another simplification by neglecting Bogoliubov terms, i.e. anomalous

correlations b(~r, τ ;~r ′, τ ′), as discussed in Ref. [83]. This assumption is justified in
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4. Mean-field description of an interacting BEC

the limit T → 0, however it is very often used for all temperatures. The topic is

explored in detail in Ref. [84] where the consequences of the approximation are thor-

oughly discussed. Additionally, we neglect the possible depletion of the condensate

at the zero temperature, i.e. the depletion that arises due to interactions, which is

a reasonable approximation in the case of a weakly interacting gas.

Finally, after implementing all the described steps, we arrive at the finite-tem-

perature HF description of a bosonic gas, which is given by the following system of

equations:

[

~
∂

∂τ
− ~

2

2M
△ + V (~r) + g|ψ(~r, τ)|2 + 2 gh(~r, τ ;~r, τ)

]

ψ(~r, τ) = µψ(~r, τ) , (4.9)

h(~r, τ ;~r, τ) =
∑

~k

ψ~k(~r)ψ
∗
~k
(~r)

1

e~β(E~k
−µ) − 1

, (4.10)

[

− ~
2

2M
△ + V (~r) + 2 g|ψ(~r, τ)|2 + 2 gh(~r, τ ;~r, τ)

]

ψ~k(~r) = E~kψ~k(~r) , (4.11)

where ψ~k(~r) are effective single-particle wave-functions, and E~k are the correspond-

ing eigenvalues. More details on the derivation can be found in Ref. [78]. Although

formally the HF equations depend on the imaginary time τ , physically is only rel-

evant the equilibrium case, when the macroscopic wave-function of the condensate

ψ(~r, τ) does not depend on τ anymore (∂ψ(~r, τ)/∂τ = 0), but only on the position

~r. The above set of equations has to be solved self-consistently, taking into account

that the total number of particles is fixed to N , and leads to the solution that con-

sists of the effective single-particle eigenfunctions ψ~k and eigenvalues E~k, the Hartree

function h, and the condensate wave-function ψ. From Eq. (4.10) we immediately

see the physical interpretation of the Hartree function h, which represents the den-

sity of the thermal cloud, nth(~r). Effectively, within the mean-field description, the

gas of bosons is split into the condensate and thermal component. We note the close

analogy with the noninteracting gas description presented in Chapter 1, with the

important exception that the two components now mutually interact. By varying

the total number of particles N and the temperature T , a complete N −T phase di-

agram can be explored. Before considering a BEC phase transition in the mean-field

approximation, we first present the zero-temperature limit of the HF approximation.
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4. Mean-field description of an interacting BEC

4.1 Gross-Pitaevskii equation

In the zero-temperature limit, we can neglect the thermal cloud, and set

lim
β→∞

nth(~r) = 0 , (4.12)

which stems directly from Eq. (4.10). In this case, Eq. (4.11) becomes irelevant,

while from Eq. (4.9) we find the time-independent Gross-Pitaevskii (GP) equation

[13, 14, 34] for the order parameter:

[

− ~
2

2M
△ + V (~r) + g|ψ(~r)|2

]

ψ(~r) = µψ(~r) . (4.13)

Effectively, in the mean-field approximation at zero temperature, we assume that

all atoms occupy the same state ψ(~r), which we denote as the condensate wave-

function. Note that already by neglecting anomalous averages we have disregarded

a depletion of the condensate at zero temperature that arises due to interactions.

However, it turns out that this is a reasonable approximation in the wide range of

experimental parameters for a weakly interacting gas. On the left-hand side of the

GP equation (4.13) we have a kinetic energy term, an external trap potential V (~r),

and a nonlinear term originating from the mean-field interaction between the atoms.

The GP equation belongs to the class of nonlinear Schrödinger equations, which are

extensively studied also in the field of nonlinear optics [85, 86].

Now, let us analyze solutions of the GP equation. To begin with, we note that

the noninteracting limit is straightforwardly reproduced: for g → 0, the condensate

wavefunction is the ground state of the external potential V (~r), and the value of the

chemical potential is equal to the ground-state energy. In the limit of strong repulsive

interactions (for a large number of atoms, for example), the term corresponding

to the kinetic energy can be safely neglected. In that case we find an algebraic

stationary solution

|ψ(~r)|2 =
1

g
(µ− V (~r)) θ(µ− V (~r)), (4.14)

which is the well-known Thomas-Fermi (TF) solution [19]. The value of the chemical

potential µ is determined as usual, by fixing the total number of atoms in the system

to N . In particular, for the harmonic trap, the solution for the noninteracting case is

a Gaussian, while the TF solution yields a parabolic profile. It is easy to understand
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Figure 4.1: Wave functions of the condensate for different interaction strengths. We
assume a spherically symmetric harmonic trap V (~r) = Mω2r2/2. Radial coordinate
is expressed in units of l =

√

~/Mω, while the interaction strength is given in the
dimensionless units g ≡ 4πaN/l.

that the repulsive interaction leads to the broadening of the density profile compared

to the noninteracting Gaussian. This is illustrated in Fig. 4.1, where we show wave

functions of the condensate obtained by numerically solving the GP equation for

different interaction strengths. To find the condensate ground state, we perform the

imaginary-time propagation of the GP equation [87]. More details on the numerical

algorithms are given in Appendix A. Due to its simplicity, TF approximation is

widely used for the interpretation of experimental data obtained for systems with a

large number of atoms.

In a similar manner, starting from the real-time formalism and neglecting the

condensate depletion, in the mean-field framework we obtain the time-dependent

GP equation:

i~
∂ψ(~r, t)

∂t
=

[

− ~
2

2M
∆ + V (~r) + g|ψ(~r, t))|2

]

ψ(~r, t), (4.15)

which describes the condensate dynamics at T = 0. This equation also allows the

study of the condensate excitation spectra, which is essential information for probing

system’s properties.

The time-dependent GP equation can be also derived variationally, from the
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4. Mean-field description of an interacting BEC

action principle [19] based on the Lagrangian

LGP =

∫

d~rLGP(~r) , (4.16)

where the Lagrangian density is given by

LGP(~r) =
i~

2

(

ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)

+
~

2

2M
|∇ψ|2 + V (~r)|ψ|2 +

g

2
|ψ|4 . (4.17)

By performing the extremization of the action with respect to ψ(~r, t),

δ
∫ t2
t1
dtLGP

δψ∗(~r, t)
= 0, (4.18)

we again arrive at the GP Eq. (4.15). This is an important observation, since it

represents the basis of the time-dependent variational analysis. We exploit this

approach later in Chapter 5.

4.2 Finite-temperature properties of a BEC

After briefly exploring the properties of a weakly interacting BEC in the zero-

temperature limit, we now continue the study of its finite-temperature properties

in the HF approximation, Eqs. (4.9)-(4.11). To facilitate an almost analytical ap-

proach, we abolish Eq. (4.11) and treat excited states within a semiclassical approx-

imation, while keeping the generalized GP equation (4.9) for the condensate phase.

To apply the semiclassical approximation, similarly to derivation of Eq. (1.13), we

use the classical Hamiltonian H(~r, ~p) = ~p 2/2M + 2g(n0(~r) + nth(~r)), in accordance

with Eq. (4.11), and replace a summation over the discrete eigenstates in Eq. (4.10)

by an integration over momentum ~p. We assume a spherically symmetric trap,

i.e. V (~r) = V (r), and search for the equilibrium configuration (∂ψ(~r, τ)/∂τ = 0),

when ψ(~r, τ) ≡ ψ(r). Eqs. (4.10) and (4.11) are now reduced to a single equation,

and, together with the equation for a total number of particles, we have the following
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system of equations:

[

− ~
2

2M
△ + V (r) + g n0(r) + 2 g nth(r)

]

ψ(r) = µψ(r) , (4.19)

nth(r) =
1

λ3
T

ζ3/2
(

eβ(µ−2g(nth(r)+n0(r))−V (r))
)

, (4.20)

N = N0 +Nth =

∫

d~r n0(r) +

∫

d~r nth(r) . (4.21)

Here, as before, the condensate density is given by n0(r) = |ψ(r)|2. We denote the

above system of equations as GPSC model.

Before considering the full GPSC model of a BEC, we will first consider a series

of simpler models: the almost-ideal model (widely used in the analysis of the ex-

perimental data), the semi-ideal model [88, 89], and the Thomas-Fermi-semiclassical

model (TFSC), in which Eq. (4.19) is solved in the TF approximation. These models

gradually add more details to the description of a BEC and become more complex,

while at the same time they allow us to study properties of a BEC in a systematic

way and to build new knowledge based on the previously obtained one.

In the rest of this Chapter, we assume an isotropic harmonic trap V (r) =

Mω2r2/2, with a typical length scale l =
√

~/Mω. For 87Rb we use the value

of the scattering length of a = 5.4 nm in all presented numerical results.

4.2.1 Almost-ideal model

The crudest finite-temperature approximation of an interacting BEC takes into ac-

count only the effect of interactions on the condensate cloud, while it considers

thermal atoms as an ideal gas. This is justified by the fact that, due to a spatial

compression of the condensate in the external trap, the density of this component

is high and effects of interaction play a prominent role. On the other hand, thermal

cloud is more spread, with a lower density, which allows us to consider it as an

ideal gas. To simplify the model further, we describe the condensate within the TF

approximation. Thus, using Eqs. (4.14) and (1.13), we obtain:

n0(r) =
1

g
(µ− V (r)) θ(µ− V (r)) , (4.22)

nth(r) =
1

λ3
T

ζ3/2
(

eβ(µ−V (r))
)

. (4.23)
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Figure 4.2: Density profiles of different components (m−3) versus the radial coor-
dinate r within the almost-ideal model for the parameters N = 106, T = 60 nK,
ω = 100 Hz.

Obviously, in order to have a well-behaved value of nth(0), we have to use the

approximation µ = 0 for the thermal gas in the condensate phase. A typical density

profiles are shown in Fig. 4.2. Within this framework, the two components do not

interact mutually and their density profiles are monotonously decreasing functions of

the radial coordinate. Although the model is oversimplified and the thermodynamic

properties of a BEC it provides correspond to the noninteracting gas, it has been

widely used since the first observation of a BEC until the present state-of-the-art

experiments.

4.2.2 Semi-ideal model

A basic premise of this model is to treat thermal atoms as an ideal gas within the

effective potential, which is a combination of the external trap potential and the

mean-field repulsive interaction of the condensate: Veff(r) = V (r)+2gn0(r) [88, 89].

Additionally, we neglect the influence of the thermal component on the condensate,

and describe the BEC ground-state within the TF approximation. With this set

of simplifications, from Eqs. (1.13) and (4.14), we obtain the following system of
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4. Mean-field description of an interacting BEC

equations:

n0(r) =
1

g
(µ− V (r)) θ(µ− V (r)) , (4.24)

nth(r) =
1

λ3
T

ζ3/2
(

e−β|µ−V (r)|
)

. (4.25)

In the condensed phase, the value of the chemical potential is given by µ = ~ω
2

(15N0a
l

)
2
5 ,

which is obtained by fixing the number of atoms in BEC to N0. Typical density

profiles obtained by solving Eqs. (4.24) and (4.25) are shown in Fig. 4.3. We observe

a spatial separation of the condensate and the thermal cloud - condensate resides

in the trap center, while thermal atoms are more spread. Additionally, due to a

repulsive effect of the condensate to the thermal component, the density profile of

the thermal cloud is not a monotonous function of the radial coordinate r, unlike in

the case of the almost-ideal model. This is far more realistic from the experimental

point of view.
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Figure 4.3: Density profiles of different components (m−3) versus the radial coor-
dinate r within the semi-ideal model for the parameters N = 106, T = 60 nK,
ω = 100 Hz.

The semi-ideal model defined by Eqs. (4.24) and (4.25) is simple enough to even

allow an analytic calculation of thermodynamic properties of a BEC. It was shown

that it yields a lower condensate fraction with respect to the noninteracting case

(1.10) for the same temperature [88, 89]. However, it turns out that the condensation

temperature within the semi-ideal approach is the same as for the ideal gas model.
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Figure 4.4: Density profiles of different components (m−3) versus the radial co-
ordinate r within the TFSC model for the parameters N = 874403, T = 60 nK,
ω = 100 Hz. Red solid curves are analytic solutions obtained using the Robinson
formula.

This is too crude approximation from the experimental point of view and, in order

to understand how the properties of a BEC phase transition are modified in the

presence of interactions, we need to develop a better approximation.

4.2.3 TFSC model

In this model, we describe the ground state using the TF approximation, while

excited states are treated within the semiclassical approximation (4.20), without

further simplifications. Hence, we arrive at the following system of equations:

n0(r) =
1

g
(µ− V (r) − 2gnth(r)) , (4.26)

nth(r) =
1

λ3
T

ζ3/2
(

e−β|µ−V (r)−2gnth(r)|
)

, (4.27)

which we call the Thomas-Fermi-semiclassical model (TFSC). A typical numerical

solution of Eqs. (4.26) and (4.27) is given in Fig. 4.4. The obtained density profiles

are similar to those of the semi-ideal model. However, in this model certain un-

physical discontinuities appear close to the condensate boundary, where we observe

jumps both in the density of the thermal cloud and of the condensate component.

In order to verify the obtained numerical results, we will use an analytic approx-
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imation of the TFSC model. To this end, we rewrite the semiclassical expression

(4.27) using the Robinson formula [63]:

ζν(e
z) = Γ(1 − ν)(−z)ν−1 +

∞
∑

k=0

zk

k!
ζν−k, (4.28)

where, as before, Γ(z) is the Gamma function, and ζν is the Riemann zeta function.

Close to the condensate boundary, the value of µ− V (r)− 2gnth(r) is small and we

can rely on the approximation

ζ3/2(e
z) ≈ Γ(−1/2)(−z)1/2 + ζ3/2 + zζ1/2 , (4.29)

to obtain an implicit equation for nth(r):

nth(r) ≈ 1

λ3
T

[

Γ(−1/2) β1/2 |µ− V (r) − 2gnth(r)|1/2

+ζ3/2 − ζ1/2 β |µ− V (r) − 2gnth(r)|
]

. (4.30)

When solving Eq. (4.30), we encounter four different possible branches for nth(r),

due to the two quadratic equations. However, only two branches are physically

meaningful and can be identified easily. Results for the density of the thermal

component obtained in this way are also shown in Fig. 4.4 by red solid lines. We

see good agreement of the approximation (4.30) with numerically calculated values

based on the full TFSC model. Furthermore, this analytical approach confirms the

presence of discontinuities in the density profiles close to the condensate boundary.

Therefore, the discontinuities are not an artifact of numerical simulations, but the

problem of the model itself. This issue was noticed already in the early Ref. [33],

and it is a consequence of the TF approximation. However, the model is able to

predict an approximate phase diagram of a BEC, which is in a very good agreement

with experimental data, as we discuss later in this Chapter.

4.2.4 GPSC model

Finally, we consider the full set of Eqs. (4.19)-(4.21), i.e. the GPSC model. We solve

the equations for a fixed number of particles N using an iterative method. One

way to start the iterations is to assume that all atoms are in the condensate and to

solve Eq. (4.19) without the thermal cloud. In the next step, the previous solution
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Figure 4.5: The density profile of thermal atoms nth(m
−3) versus the radial co-

ordinate r, calculated using the three different approximations for the values of
parameters N = 107, T = 100 nK, ω = 100 Hz. We see a good agreement between
the TFSC and GPSC calculations, due to a large numbers of atoms in the trap.

for the condensate cloud is inserted into the algebraic Eq. (4.20), which is then

solved for nth(r). After integration of nth(r) over r, a new value of the number of

atoms in the condensate N0 is calculated as N −Nth, and the procedure is repeated

by solving Eq. (4.19), but with the new values of N0 and nth(r), calculated in the

previous step. This procedure is repeated until the desired convergence of the results

is achieved. Of course, many modifications of the described procedure are possible,

and practically one would like to identify the iteration procedure which leads to the

fastest convergence toward the final result. The obtained density profiles are shown

in Fig. 4.5. We stress that the discontinuities present in the TFSC model are absent

in the GPSC model. Obviously, the presence of the kinetic energy term in Eq. (4.19)

leads to smooth density distributions and cures the discontinuities problem of the

TFSC model. For a large number of particles, TFSC and GPSC solutions are very

close to each other, while for the smaller number of particles the TFSC solution is

closer to the semi-ideal model result.

To study onset of Bose-Einstein condensation, let us consider the following sce-

nario: we fix the temperature T , and then change the total number of particles N in

the trap. As the number of particles increases, the occupation of the ground state

becomes higher and higher, and, above a certain threshold, condensation sets in. Il-

lustrative numerical results are given in Fig. 4.6. A normalized density 4πn(r)r2/N
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Figure 4.6: Plot of 4πn(r)r2/N versus the radial coordinate r within the GPSC
model for the parameters T = 200 nK, ω = 125.664 Hz.

versus the radial coordinate r within the GPSC model is shown in the graph. For

a very large number of atoms we see a single dominant peak corresponding to the

condensate. As the number of atoms decreases, the thermal component becomes

visible, and another broader peak emerges. Finally, below the critical value of the

total number of atoms, the condensate component disappears completely.

High accuracy of the GPSC model is confirmed by direct comparison with the

numerical results obtained from Monte Carlo simulations [76]. However, GPSC

model fails precisely in describing the phase transition properly. It turns out that

the system of Eqs. (4.19)-(4.21) does not admit a solution in the vicinity of the

phase transition, when it is approached from the condensate side. For all physical

quantities to be well-behaved, it is crucial that the value of the chemical potential

is lower than the value of the classical energy of excited states, µ < H(~r, ~p). Unfor-

tunately, for small values of n0(r), this condition is not satisfied. The inconsistency

arises since we treat the ground state quantum-mechanically and all the other states

semiclassically. For this reason, in the next subsection, we calculate thermodynamic

properties of interacting bosons within the TFSC model.

4.2.5 Calculation of the condensation temperature

A representative phase diagram of ultra-cold gas of bosons in the harmonic trap

is displayed in Fig. 4.7. Calculations are performed within the TFSC model. We
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Figure 4.8: Condensate fraction N0/N versus the temperature T for ω = 100 Hz.
In the semi-ideal model the condensation temperature is the same as in the ideal
case T 0

c = 154.77 nK, while the TFSC approximation yields a lower condensation
temperature Tc = 149.5 nK, in agreement with the analytical calculation.

have solved Eqs. (4.26) and (4.27) for the fixed number of particles in the given

temperature range and calculated the corresponding condensate fractions N0/N .

From Fig. 4.8, we clearly see the decrease in the condensation temperature due to

interaction effects.

We now focus on the analytical calculation of the shift in the condensation tem-
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perature with respect to the noninteracting case [90]. To study effects of interaction

within the TFSC model, we start from the gas phase. In that case the condensate

is absent, and n0(r) = 0. If we insert this into Eq. (4.27), we get

nth(r) =
1

λ3
T

ζ3/2
(

eβ(µ−2gnth(r)−V (r))
)

. (4.31)

The condensation first appears in the center of the trap, where the following relation

holds:

nth(0) =
1

λ3
T

ζ3/2
(

eβ(µ−2gnth(0))
)

.

Therefore, at the onset of a BEC phase transition, we have µc = 2gnc
th(0) and

nc
th(0) = 1

λ3
T

ζ3/2, which yields the critical value of the chemical potential is µc =

2gζ3/2/λ
3
T . Now we calculate the critical number of atoms in the trap as

Nc = 4π

∫ ∞

0

dr r2 1

λ3
T

ζ3/2
(

eβ(µc−2gnth(r)−V (r))
)

. (4.32)

To calculate the above integral, we use the perturbative approach and expand the

zeta function to power series in the interaction constant g to linear terms. This

means that we consider the term µc − 2gnth(r) as a small quantity. In this way we

obtain

Nc ≈ 4π

λ3
T

∫ ∞

0

dr r2
[

ζ3/2
(

e−βV (r)
)

+ βζ1/2
(

e−βV (r)
)

(µc − 2gnth(r))
]

≈ 4π

λ3
T

∫ ∞

0

dr r2
[

ζ3/2
(

e−βV (r)
)

+ βζ1/2
(

e−βV (r)
)

×
(

2
g

λ3
T

ζ3/2 − 2
g

λ3
T

ζ3/2
(

e−βV (r)
)

)]

=
1

λ3
T

[

2π

βMω2

]3/2 [

ζ3 + 2gβ
1

λ3
T

ζ3/2ζ2 − 2gβ
1

λ3
T

ζ

(

1

2
,
3

2
;
3

2

)]

, (4.33)

where ζ(i, j; k) =
∑∞

m,n=1 1/minj(m + n)k. From the above expression we immedi-

ately find the shift of the condensation temperature [90]:

δTc =
T int

c − T 0
c

T 0
c

= −1.33
a

l
N1/6, (4.34)

and conclude that repulsive interactions lead to the lower condensation temperature

compared to the noninteracting case. The result (4.34) is derived by assuming that
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Figure 4.9: A relative shift in the condensation temperature δTc as a function of the
number of particles in the trap N for ω = 100 Hz.

we approach the BEC phase transition from the gas phase. We stress that the same

result can be obtained by considering condensate phase in the vicinity of the phase

transition within the TFSC model. It is important to note that we only obtain

the interaction-induced shift in the condensation temperature. Finite-size effects

[91, 92] are beyond our consideration, because we rely on the TF and semiclassical

approximation. A comparison of the analytical expression (4.34), which gives a first-

order correction to Tc in the interaction strength, and numerical results based on

Eqs. (4.26) and (4.27), is shown in Fig. 4.9. In this graph, δTc is given as a function

of the number of particles in the trap. We observe a reasonable agreement of the

TFSC result (4.34) with the numerical data.

4.3 Experimental assessment of different models

Density profile of a BEC cloud is experimentally measurable quantity, using either

the absorption TOF imaging or in-situ techniques described in Chapter 1. The

values of other physical quantities are then extracted from the experimental data in

a roundabout way.

Early experimental efforts [93, 94] to measure the occupation of the ground state

as a function of the temperature have usually employed the absorption TOF imag-

ing. Thermometry was then performed by fitting the semiclassical result (1.17)
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to the wings of the measured velocity distribution of a thermal cloud. The con-

densate component was identified as a characteristic narrow central peak, and the

condensate fraction was obtained by fitting either an additional Gaussian profile or

a parabolic TF profile to that part of the distribution, in accordance with the previ-

ously described almost-ideal model. These early experimental studies were only able

to validate that the phase diagram of the system is quite accurately described by

the noninteracting result from Eq. (1.10). The inherent statistical and systematic

errors prevented real quantitative tests of the mean-field models.

The first clear experimental demonstration, which measured values of condensate

fractions different from the corresponding ideal values of Eq. (1.10), was reported

in Ref. [89]. The experimental procedure included TOF absorption imaging and

an additional technique, a coherent Brag scattering. The advantage of the latter

technique is its ability to provide a complete spatial separation of the condensate

and thermal cloud during the TOF expansion. The condensate fraction was deter-

mined with a high certainty by counting the scattered atoms. However, once again a

ballistic expansion of the thermal cloud was assumed, and the temperature was de-

termined by fitting the semiclassical density profile of the expanded noninteracting

gas (1.13) to the measured density profile of the thermal cloud. Despite this, the ob-

tained phase diagram clearly demonstrated a reduced condensate fraction compared

to the noninteracting result (1.10). A good agreement of experimental values with

the results obtained within the semi-ideal model was found, while the agreement was

even better with the predictions of the TFSC model. The main focus of Ref. [89]

was a precise measurement of the interaction-induced shift of the condensation tem-

perature and its comparison with Eq. (4.34). One of the main conclusions was that

improved models are necessary for a good quantitative description of the expansion

of finite-temperature BECs and reliable analysis of experimental data.

In order to avoid intricacies of the accurate modeling of the TOF expansion,

Ref. [24] has exploited the in-situ phase-contrast imaging to investigate the BEC

phase diagram experimentally. The values of the chemical potential µ and the

temperature T were determined by fitting to functions that stem from the interacting

finite-temperature models to the in-situ measured data. Most reliable fits were

obtained in the case of the Popov model [78], which is very similar to the presented

TFSC model. We stress that authors of Ref. [24] have used the consistent procedure:

the same mean-field model was used for the extraction of all relevant quantities (µ, T ,

N0, N) from the experimental results, as well as for the analysis of the phase diagram.
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As one of the chief outcomes of that study, the mean-field interaction-induced shift

in the condensation temperature, Eq. (4.34), was experimentally confirmed.

Finally, a new series of experiments [80, 81] in 2011 addressed the same topic by

utilizing the Feshbach resonance technique of 39K in combination with absorption

TOF imaging. Several advantageous aspects of a Feshbach resonance were used.

First of all, a wide range of interaction strengths was covered. Also, reference

measurements for the same number of atoms and different interaction strengths

were performed. Furthermore, a ballistic expansion was carefully engineered by

tuning the value of the scattering length to zero during the TOF expansion. For

the weakly interacting gas, the mean-field correction result (4.34) was found to be

in good agreement with the experimental data. In addition, for the case of stronger

interactions, beyond-mean-field effects were clearly observed for the first time.

4.4 Conclusions and outlook

In this Chapter we have reviewed the mean-field description of harmonically trapped

BECs. In the zero-temperature limit we have presented widely used Gross-Pitaevskii

equation, which we will further exploit in Chapter 5. The relevance of the finite-

temperature mean-field models stems from the fact that they are regularly used in

the interpretation of experimental data and extraction of density profiles for the

condensate and for the thermal cloud. We have considered four different finite-

temperature mean-field models. By comparing the predictions of all the considered

models, we have concluded that the TFSC model provides the most appropriate

and consistent choice from the practical point of view. It is quite easy for numerical

implementation, and is capable to reasonably describe the BEC phase transition.

Within this approach we have derived the interaction-induced shift of the condensa-

tion temperature. The model, however, has a major drawback in that it leads to the

unphysical discontinuities in the density profiles. The semi-ideal and GPSC model

yield continuous density profiles, but do not capture thermodynamic properties of

the system properly. Some of the mentioned issues are even more serious in the

case of a more complex trap geometry or in the rotating systems [95]. The results

obtained so far point to the necessity of using improved semiclassical approxima-

tions for the thermal atoms, which are better suited to the quantum-mechanical

description of the ground-state. Now that experiments have succeeded in achieving

the clear observation of beyond-mean-field effects, the improvements in widely used
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approximations become a demand.
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Chapter 5 Nonlinear BEC dynamics by harmonic

modulation of s-wave scattering length

A thorough knowledge of the excitation spectra of a quantum system is quite

important since the properties of its excitations characterize the phase of the matter

in a very precise way. The excitation spectra capture information on the system’s

correlations and define the response of the system to external perturbations. Ex-

perimentally, they are determined by exposing the system to a weak perturbation

and by measuring the induced dynamics. Thus, the dynamics of the system and its

excitation spectra are closely related concepts.

First microscopic derivation of the excitation spectrum of a superfluid, given by

Eq. (1.28), was published in the seminal paper of Bogoliubov in 1947 [30]. The ob-

tained spectrum contains a collective phonon mode in the limit of a vanishing wave

number, and single-particle excitations in the limit of a large wave number. The

original aim of Bogoliubov was the explanation of the superfluidity in 4He and the

collective motion of bosonic particles was identified as the underlying mechanism

that leads to the phenomenon. Yet, the Bogoliubov approach assumes weak inter-

actions, while 4He is a strongly interacting system and the agreement between the

theoretical and experimental results is only qualitative. The dilute vapors of alkali

atoms were the first proper experimental realization of a weakly interacting bosonic

system that allowed quantitative tests of the theoretical concepts introduced in the

early papers of Landau [96] and Bogoliubov [30]. For this reason, the experiments

studying the collective bosonic modes were initiated soon after the first achievement

of an atomic BEC.

A basic underlying idea of the early experiments was a clear demonstration

of the distinction between the collective response of the condensed cloud and the

response of thermal atoms to external perturbations. A common scenario in the

majority of experiments is to start with the ground-state condensate at very low

temperature, where the condensate depletion is negligible, and to induce collective

oscillation modes by a temporary modulation of the external trapping potential
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[97, 98, 99, 100, 101]. For instance, in the early experiment reported in Ref. [97]

collective modes were excited by applying a small time-dependent perturbation of a

given frequency to the transversal component of the trap-potential and the real-time

dynamics in terms of shape oscillations of the condensate was observed. Based on

these measurements, two low-lying eigenmodes of different symmetry were identi-

fied. The same procedure was repeated at higher temperatures, when the condensate

is not present, and, as expected, the thermal cloud has produced only a response

corresponding to the excitations of a normal noninteracting gas. In the experimen-

tal study published in the same year Ref. [98], the condensate was excited by the

time-dependent modulation of the trapping potential, which additionally included

a spatial displacement of the potential minimum. In this case, shape oscillations

coupled with the center of mass motion were observed. A typical experimental ob-

servation is given in Fig. 5.1. In order to make a detailed comparison with theoretical

models, the eigenmode frequencies were measured for different numbers of trapped

atoms and for different trap strengths.

Figure 5.1: An experimental measurement of the collective BEC modes. A figure
obtained by Stamper-Kurn and Ketterle, taken from Ref. [5]. The time evolution
of a BEC cloud is presented by a series of density profiles. Shape oscillations are
coupled with the center of mass motion. The field of view in the vertical direction
is about 620µm and time step is 5 ms per frame.

The original derivation of the Bogoliubov excitation spectrum was performed for

a translationally invariant system. However, in cold-atom experiments, bosons are

always confined by the external trap and we have to deal with an inhomogeneous

system. In order to be able to keep up with the experimental advances, new theo-

retical approaches for the description of collective modes of a trapped system were
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developed. In the mean-field framework, linearization of the GP equation (4.15)

around the ground-state [102] is analogous to the Bogoliubov approach for the inho-

mogeneous case. Of course, the procedure is not analytically tractable and has to be

implemented numerically. Most widespreadly used analytical approximative results,

which also exploit GP equation as a starting point, are Stringari’s results obtained in

the Thomas-Fermi limit [103], and variational results presented in Refs. [104, 105].

A very good agreement between the experimental values of the frequencies of low-

lying modes and theoretical results based on the linearized mean-field equations was

established [102, 103, 104] and validity of the mean-field description, given by the

GP equation (4.15), was fully confirmed.

All results mentioned until now have assumed small-amplitude oscillations and

thus rely on a linearized regime of the initial GP equation. Once this regime was

explored to some extent, more complex, physically content-rich, and more interesting

dynamical features became the focus of experimental studies. We will mention the

most prominent examples. As a first notable example of nonlinear collective BEC

excitations we mention localized solutions, usually called solitons [19, 85, 86]. As

already pointed out, the main equation that describes the dynamics of a BEC at

T = 0, the GP equation (4.15), is a nonlinear Schrödinger equation. This type

of equations is studied extensively in the field of nonlinear optics and from this

context it is well-known that it admits nonlinear localized solutions. Several recent

experiments [106, 107] have studied creation and interaction of solitons in the atomic

BEC. Another subject of wide interest is pattern formation in a driven system, in

particular formation of Faraday patterns [108, 109, 110]. An observation of this type

of dynamics in a BEC was given in Ref. [111], where a density wave in the axial

direction was produced by a strong modulation of the strength of the radial trapping

potential. A further experimental research includes study of a quantum turbulent

regime in a BEC [112] by a combination of rotation, strong modulation of a trap

strength and a trap displacement. In essence, quantum turbulence is a superfluid

turbulence characterized by the presence of tangled vortices. It was initially studied

in the superfluid Helium, but now it can be studied in a more controlled way in a

BEC setup, as shown in Ref. [112].

In addition to already mentioned research avenues, an exciting possibility for

reaching a non-trivial nonlinear dynamical regime in a BEC cloud is given by a

real-time tuning of the interaction strength via a Feshbach resonance mechanism

introduced in Chapter 1. Harmonic modulation of the s-wave scattering length as
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a method for excitation of collective oscillation modes was proposed in Refs. [113,

114, 115, 116], but it was experimentally realized only recently in Ref. [15]. In the

mean-field approximation at T = 0, the time-dependent interaction leads to a time-

dependent nonlinearity g(t) in the GP equation. Depending on the closeness of the

external modulation frequency Ω to one of condensate’s eigenmodes, a qualitatively

different dynamical behaviors emerge. In the non-resonant case, we have small-

amplitude oscillations of the condensate size around the equilibrium widths, and we

are in the regime of linear response. However, as Ω approaches an eigenmode, we

expect a resonant behavior which is characterized by large amplitude oscillations.

In this case it is clear that a linear response analysis does not provide a qualitatively

good description of the system dynamics.

Motivated by the experimental study, described in Ref. [15], in this Chapter we

consider dynamical features induced by harmonic modulation of the s-wave scat-

tering length. Our study is a step beyond the linear regime, toward the resonant

behavior, and it is suited for the parametric region where low-lying collective modes

can still be defined as in the linear regime, but their properties are modified by

nonlinear effects. Obtained results are relevant for the proper interpretation of

experimental data, and for understanding of near-resonant properties of nonlinear

systems.

In the following, we first review variational description of low-lying modes in the

linear regime. Then, we turn to the recent experiment, published in Ref. [15], that

has achieved harmonic modulation of the s-wave scattering length and briefly ex-

plain experimental procedure and results. Finally, we study the nonlinear dynamical

regime induced by harmonic modulation of the s-wave scattering length, first for a

spherically symmetric BEC, and afterwards for an axially-symmetric BEC. In both

cases, we obtain excitation spectra as Fourier transforms of the time-dependent con-

densate sizes and from here we identify nonlinear features. In addition, we develop

perturbation theory based on the Poincaré-Lindstedt method which successfully ex-

plains the observed nonlinear effects.

5.1 Variational description of low-lying modes

Our analytical method of choice for studying nonlinear BEC dynamics is varia-

tional approach introduced in Refs. [104, 105]. For completeness and for instructive

reasons, we first present the method and main results on low-lying collective BEC
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modes obtained previously in the linear regime. As explained in Chapter 4, the

time-dependent GP equation can be obtained by extremizing the functional (4.16)

with respect to ψ(~r, t). In the core of the variational description is the idea to plug

in an Ansatz for the condensate wave function into Eq. (4.16) and to derive the cor-

responding Euler-Lagrange equations of the system with respect to the parameters

present in the Ansatz. In this way, instead of the partial differential GP equation,

we reduce the description of a system to ordinary differential equations, which is far

simpler. Naturally, this presents an approximation, and careful examination of its

validity and associated errors is necessary.

To this end, we closely follow derivations presented originally in Refs. [104, 105].

We assume that the condensate wave function has the same Gaussian form in the

interacting case as in the noninteracting one, just with renormalized parameters.

Thus, we use a time-dependent variational method based on a Gaussian Ansatz,

which for the anisotropic harmonic trap (1.19) reads

ψG(x, y, z, t) = N(t)
∏

σ=x,y,z

exp

[

−1

2

(σ − σ0(t))
2

uσ(t)2
+ i σϕσ(t) + iσ2φσ(t)

]

, (5.1)

where N(t) = π− 3
4ux(t)

− 1
2uy(t)

− 1
2uz(t)

− 1
2 is a time-dependent normalization, while

uσ(t), φσ(t), σ0 and ϕσ are variational parameters. For convenience, throughout

this Chapter, we normalize the wave function to unity and for consistency we in-

clude the total number of atoms into the corresponding interaction strength. Thus,

we modify the notation introduced earlier by performing the following transforma-

tion: ψ(~r, t) → ψ(~r, t)/
√
N , g → g × N . The introduced variational parameters

have straightforward interpretation: uσ(t) parameters correspond to the condensate

widths in different directions and are roughly proportional to the root-mean-square

widths of the exact condensate wave function ψ(x, y, z, t); φσ(t) and ϕσ(t) param-

eters represent the corresponding phases of the wave function and are essential for

the proper description of dynamical features; a possible center-of-mass motion is

captured by the parameters σ0.

Following Ref. [104], we insert Ansatz (5.1) into the Lagrangian (4.16) yielding

the GP equation, and extremize it with respect to variational parameters. All the

details of the derivation are given in Appendix B and here we give only a brief

explanation. By extremizing the functional, we first obtain a coupled system of

differential equations of the first order for all variational parameters. The equations
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for the phases φσ and ϕσ can be solved explicitly in terms of the widths uσ and

the center of mass coordinates σ0. In this way we obtain two sets of ordinary

second-order differential equations that govern the condensate dynamics. A center-

of-mass motion is decoupled from the shape oscillations and is determined by simple

harmonic oscillator equations, which are independent of interatomic interactions:

σ̈0(t) + λ2
σσ0(t) = 0, σ ∈ {x, y, z} . (5.2)

On the other hand, the widths of the condensate exhibit non-trivial dynamics given

by a set of coupled nonlinear differential equations:

üσ(t) + λ2
σuσ(t) −

1

uσ(t)3
− P

uσ(t)ux(t)uy(t)uz(t)
= 0, σ ∈ {x, y, z} . (5.3)

In the previous equations and from now on, we use dimensionless notation: we

choose a convenient frequency scale ω (for example, the external trap frequency in

one of the spatial directions) and express all lengths in the units of the characteristic

harmonic oscillator length l =
√

~/Mω, time in units of ω−1 and external frequencies

in units of ω: λσ = ωσ/ω, σ ∈ {x, y, z}. The dimensionless interaction parameter P

is given by P = g/((2π)3/2
~ωl3) =

√

2/πNa/l.

In this approach, the initial partial differential equation (4.15) is approximated

with the two sets of ordinary differential equations, given by Eqs. (5.2) and (5.3),

which allow analytical considerations. The first properties of the condensate that

can be calculated are the equilibrium widths ux0, uy0 and uz0. They are found by

solving an algebraic system of equations:

λ2
σuσ0 −

1

uσ0
− P

uσ0ux0uy0uz0
= 0, σ ∈ {x, y, z} . (5.4)

The equilibrium widths represent stationary solutions of Eqs. (5.3).

Now we turn to the calculation of the frequencies of low-lying modes. To begin

with, from Eqs.(5.2) we read off frequencies that correspond to the center-of-mass

motion. These are dipole modes and their frequencies are equal to the external trap

frequencies (for the case of a harmonic trap). Most often, this type of excitations

is created by shifting the trap in space. Actually, the well established experimental

procedure for the precise determination of the trap parameters is based on the

measurement of the dipole mode frequencies [21].
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5. BEC excitation by modulation of scattering length

Next, by linearizing the Eqs. (5.3) around the equilibrium widths (5.4), we can

obtain information on collective modes related to the BEC shape oscillations. We

will consider experimentally relevant case of an axially symmetric trap, such that

λx = λy = 1, ux0 = uy0 ≡ uρ0. Due to the axial symmetry of the considered

system, the projection of the angular momentum along the z-axis, Lz, is a good

quantum number and we use it for the classification of the modes. By solving

the corresponding eigenproblem, we find three different modes depicted in Fig. 5.2.

According to their symmetry properties, we designate the modes as the |Lz| = 2

quadrupole mode, the Lz = 0 quadrupole mode, and the breathing mode (which

also corresponds to Lz = 0). Eigenvalues of the linearized system of equations yield

the frequencies of the collective modes. Frequencies of the Lz = 0 quadrupole mode

ωQ0, and the breathing mode ωB0 are given by:

ωB0,Q0 =
√

2

[

(

1 + λ2
z −

P

4u2
ρ0u

3
z0

)

±
√

(

1 − λ2
z +

P

4u2
ρ0u

3
z0

)2

+ 8

(

P

4u3
ρ0u

2
z0

)2
]1/2

,

(5.5)

while the frequency of the |Lz| = 2 quadrupole mode is given by:

ω
|Lz|=2
Q0 =

√

4 − 2
P

u4
ρ0uz0

. (5.6)

As shown in Fig. 5.2, the |Lz| = 2 quadrupole mode is characterized by out-of-

phase oscillations in x and y directions, the |Lz| = 0 quadrupole mode exhibits

out-of-phase radial and axial oscillations, while in-phase radial and axial oscillations

correspond to the breathing mode.

Figure 5.2: A schematic illustration of the condensate eigenmodes: |Lz| = 2
quadrupole mode (left), |Lz| = 0 quadrupole mode (middle) and |Lz| = 0 breathing
mode (right).
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5. BEC excitation by modulation of scattering length

The main result obtained by using the Gaussian approximation is an analytical

estimate for the frequencies of the low-lying collective modes, expressed by Eqs. (5.5)

and (5.6) [104, 105]. We emphasize that, although based on the Gaussian Ansatz,

the variational approximation reproduces exactly the frequencies of collective modes

not only for the weakly interacting BEC, but also for the strongly interacting BEC

in the Thomas-Fermi regime [103, 104]. Therefore, it represents a solid analytical

description of BEC dynamics. Most importantly, a reasonable quantitative agree-

ment was obtained between the linear response theoretical results (5.5) and (5.6)

and experimental results for BEC excited using the trap modulation. In general, a

detailed experimental information on collective modes allows us to test our theoreti-

cal understanding of the properties of an atomic BEC. The essential merit of testing

theoretical predictions using collective oscillation modes stems from the possibility

to measure frequencies of collective modes with a high accuracy on the order of less

than 1% [100, 99, 101].

We point out that the early theoretical studies of collective modes of BEC

[102, 103, 104] focused on the exploration of dynamical properties in the linear

regime of small amplitude oscillations. Certain nonlinear aspects of condensate dy-

namics induced by a trap modulation are given in Refs. [117, 118, 119], whereas

two-component BECs are dealt with in Refs. [120, 121]. In the next section we turn

to the recent experimental study in which nonlinear effects arise from the modu-

lation of the interaction strength and study how nonlinear dynamical features are

reflected on the properties of the excitation spectrum.

5.2 Harmonic modulation of the s-wave scattering length:

experiment

Details of the Feshbach resonance of a 7Li BEC were explored by the R. Hulet’s

group from the Rice University in Ref. [122], and an extreme tunability of interac-

tions was experimentally demonstrated. In the mentioned experiment, atoms were

trapped by the optical trap, while the bias magnetic field was used for tuning the

scattering length via the Feshbach resonance. For the range of values of magnetic

field B, a ground-state condensate was produced and the corresponding density

profiles were observed. By measuring the width of the condensate distribution and

comparing these values with the corresponding numerical data based on the GP

equation (4.15), information on the scattering length spanning seven orders of mag-
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5. BEC excitation by modulation of scattering length

nitude was extracted, as can be seen in Fig. 5.3. In this way, precise values of the

parameters of the Feshbach resonance (1.23) were obtained:

aBG = −24.5a0, ∆B = 19.23(3) mT, B∞ = 73.68(2) mT,

where a0 represents the Bohr radius.

55.0 60.0 65.0 70.0
10-2

100

102

104

106

 

 

Magnetic Field (mT)

S
ca

tte
rin

g 
Le

ng
th

 (
a 0)

54.0 54.2 54.4 54.6 54.8 55.0

-0.2

0.0

0.2

0.4

0.6

 

  

 

Figure 5.3: Feshbach resonance of a 7Li BEC: Dependence of the scattering length
on the external magnetic field. Results are taken from Ref. [122].

In the follow-up paper, Ref. [15], the same group in collaboration with the group

of V. Bagnato from Sao Pãulo University, has experimentally realized an alternative

way of a 7Li condensate excitation, based on using the Feshbach resonance. By

periodically changing an external magnetic field as B(t) = Bav + δB cos Ωt, they

were able to obtain harmonic modulation of the s-wave scattering length in the

form

a(t) ≃ aav + δa cos Ωt , (5.7)

where aav = a(Bav) ≈ 3a0 > δa = − aBG∆BδB
(Bav−B∞)2

≈ 2a0. In this way, a time-dependent

interaction among atoms was realized, which is expressed in terms of the dimension-

less parameter P(t) as

P(t) = P + Q cosΩt , (5.8)
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5. BEC excitation by modulation of scattering length

where P =
√

2/πNaav/l denotes the average interaction strength, Q =
√

2/πNδa/l

is a modulation amplitude, and Ω represents the modulation or driving frequency.

The dimensionless experimental parameters from Ref. [15] have the values

P = 15, Q = 10, λz = 0.021 , (5.9)

corresponding to the highly elongated trap with the modulated but always positive

(repelling) interaction. In the experiment, the oscillations of the condensate size

were observed by in-situ phase-contrast imaging, presented in Fig. 5.4.

Figure 5.4: Oscillations of the BEC cloud, presented by a series of density profiles
taken at equidistant time step of 15 ms. Results are taken from Ref. [15].

The interpretation of the experimental data was based on the analytical results

for the frequencies of the low-lying collective modes obtained from the linearized

form of the Gaussian approximation. For experimental data, Eq. (5.5) yields the

following values for the frequencies of the quadrupole and the breathing mode:

ωQ0 = 0.035375 , ωB0 = 2.00002 . (5.10)

The external trap was stationary, thus preventing excitations of the dipole (Kohn)

mode, corresponding to the center-of-mass motion. For the specific set of experi-

mental parameters basically only the quadrupole oscillation mode was excited in this

way and resonances located at the quadrupole frequency and its second harmonic

were observed.

There are several advantages of such an experimental scheme: for instance, in

future experiments with multi-species BEC, a single component could be individu-

ally excited in this way, while the excitation of other components would occur only

indirectly.
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5. BEC excitation by modulation of scattering length

However, due to the nonlinear form of the underlying GP equation, we expect

nonlinearity-induced shifts in the frequencies of low-lying modes compared to the

values obtained from Eq. (5.5), calculated using the linear stability analysis. In

particular, in the case of a close matching of the driving frequency Ω and one of

the BEC eigenmodes, we expect resonances, i.e. large amplitude oscillations of the

condensate size. When this happens, the role of the nonlinear terms becomes cru-

cial and nonlinear phenomena become dominant. Furthermore, we emphasize that

oscillations with very small amplitudes, which occur in the linear regime, are ex-

perimentally hard to observe. On the other hand, very large amplitude oscillations

lead to a fragmentation of the condensate [15, 123]. Thus, the case in between is of

the main experimental interest and represents our main objective, as we discuss in

the next section.

5.3 Harmonic modulation of the s-wave scattering length:

theoretical framework

To study nonlinear BEC dynamics, we use an approach that is complementary to

the recent theoretical considerations [113, 114, 115, 116] of a BEC with harmoni-

cally modulated interaction. In Ref. [114] the real-time dynamics of a spherically

symmetric BEC was numerically studied and analytically explained using the reso-

nant Bogoliubov-Mitropolsky method [124]. On the other hand, in our approach in

order to discern induced dynamical features, we look directly at the excitation spec-

trum obtained from a Fourier transform of the time-dependent condensate width.

From this type of numerical analysis we find characteristic nonlinear properties:

higher harmonic generation, nonlinear mode coupling, and significant shifts in the

frequencies of collective modes with respect to their linear response counterparts.

In addition, we work out an analytic perturbative theory with respect to the mod-

ulation amplitude, capable of capturing many of the mentioned nonlinear effects

obtained numerically.

Nonlinearity-induced frequency shifts were considered previously in Ref. [117] for

the case of bosonic collective modes excited by modulation of the trapping potential,

and also in Ref. [125] for the case of a superfluid Fermi gas in the BCS-BEC crossover.

Our analytical approach is based on the Poincaré-Lindstedt method [126, 127, 128,

124], in the same spirit as presented in Refs. [117, 125, 126]. However, the harmonic

modulation of the interaction strength introduces additional features that require a
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5. BEC excitation by modulation of scattering length

separate treatment.

In Ref. [116] it was predicted that a harmonic modulation of the scattering length

leads to the creation of Faraday patterns in BEC, i.e. density waves. Up to now,

Faraday patterns have been experimentally induced by harmonic modulation of the

transverse confinement strength [111], which is studied analytically and numerically

in Ref. [129]. Here we focus only on the nonlinear properties of low-lying collective

modes and do not consider possible excitations of Faraday patterns.

In order to obtain analytical insight into the condensate dynamics induced by

the harmonic modulation of the s-wave scattering length described by Eq. (5.7), we

use the Gaussian variational approximation approximation. We consider an axially

symmetric BEC, (λx = λy = 1, ux = uy ≡ uρ), excited by modulation of the

interaction strength, which preserves the axial symmetry of the condensate during

its time evolution. For this reason, we use a simplified axially-symmetric form of

Eqs. (5.3):

üρ(t) + uρ(t) −
1

uρ(t)3
− P(t)

uρ(t)3uz(t)
= 0 , (5.11)

üz(t) + λ2
zuz(t) −

1

uz(t)3
− P(t)

uρ(t)2uz(t)2
= 0 , (5.12)

which we will refer to as a Gaussian approximation.

To estimate the accuracy of the Gaussian approximation for describing the dy-

namics induced by the harmonic modulation of the interaction strength, we compare

its solution with an exact numerical solution of the GP equation. In Fig. 5.5, we

plot the resulting time-dependent axial and radial condensate widths ρrms(t) and

zrms(t), calculated as root mean square values

ρrms(t) =

√

2π

∫ ∞

−∞

dz

∫ ∞

0

ρ dρ |ψ(ρ, z, t)|2 ρ2 , (5.13)

zrms(t) =

√

2π

∫ ∞

−∞

dz

∫ ∞

0

ρ dρ |ψ(ρ, z, t)|2 z2 , (5.14)

of the solution of the GP equation, as well as numerical solutions of Eqs. (5.11)

and (5.12). We assume that initially the condensate is in the ground state. In the

variational description, this translates into initial conditions uρ(0) = uρ0, u̇ρ(0) = 0,

uz(0) = uz0, u̇z(0) = 0, where uρ0 and uz0 are the time-independent solutions
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Figure 5.5: Time-dependent axial and radial condensate widths calculated as root
mean square averages. Comparison of the numerical solution of the time-dependent
GP equation with a solution obtained by using the Gaussian approximation for the
actual experimental parameters in Eq. (5.9) and Ω = 0.05.

of Eqs. (5.11) and (5.12), while in GP simulations we reach the ground state by

performing an imaginary-time propagation until convergence to the ground state

is achieved [87]. For solving the GP equation (4.15), we use the split-step Crank-

Nicolson method [87] explained in detail in Appendix A. From the typical results

presented in Fig. 5.5, which correspond to the actual experimental parameters, it

is evident that we have a good qualitative agreement between the two approaches,

even for long times of the dynamical evolution.

116



5. BEC excitation by modulation of scattering length

5.4 Spherically-symmetric BEC

Using a simple symmetry-based reasoning, we immediately conclude that harmonic

modulation of the interaction strength in the case of a spherically symmetric BEC,

(λz = 1), leads to the excitation of the breathing mode only, so that uρ(t) = uz(t) ≡
u(t). This fact simplifies numerical and analytical calculations and this is why we

first consider this case before we embark to the study of a more complex, axially-

symmetric BEC.

The system of ordinary differential Eqs. (5.11) and (5.12) in this case reduces to

a single equation:

ü(t) + u(t) − 1

u(t)3
− P(t)

u(t)4
= 0 . (5.15)

The equilibrium condensate width u0 satisfies the equation

u0 −
1

u3
0

− P

u4
0

= 0 , (5.16)

and a linear stability analysis yields the breathing mode frequency

ω0 =

√

1 +
3

u4
0

+
4P

u5
0

. (5.17)

Note that the above result for the breathing mode can be also obtained from Eq. (5.5)

if we set λz = 1, uρ0 = uz0 ≡ u0, and take into account Eq. (5.16).

The main feature of the modulation-induced dynamics is that it strongly depends

on the value of the driving frequency Ω. To illustrate this, we set P = 0.4, Q = 0.1

and solve Eq. (5.15) for different values of the driving Ω. From the linear response

theory, we have u0 = 1.08183, ω0 = 2.06638 and we assume that the condensate is

initially in equilibrium, i.e. u(0) = u0, u̇(0) = 0. Numerical results are presented in

Fig. 5.6. Large amplitude oscillations and beating phenomena are observed for both

Ω ≈ ω0 and for Ω ≈ 2ω0.

The phenomenology based on Eq. (5.15) is more systematically shown in Fig. 5.7,

where we plot the oscillation amplitude, defined as (umax−umin)/2, versus the driving

frequency Ω. A resonant behavior becomes apparent for both Ω ≈ ω0 and Ω ≈ 2ω0.

In the same figure we also show the expected positions of resonances calculated

using the linear stability analysis. Clearly, the prominent peaks exhibit shifts with

respect to the solid vertical lines, representing ω0 and 2ω0. As expected, a stronger
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Figure 5.6: Condensate width dynamics u(t) versus t within the Gaussian approx-
imation for P = 0.4, Q = 0.1 and several different driving frequencies Ω. We plot
the exact numerical solution of Eq. (5.15). For off-resonant driving frequencies Ω,
we also show our analytical third-order perturbative result (designated ’analytics’),
as explained in section III.B.

modulation amplitude leads to a larger frequency shift, as can be seen from the

inset.

The curves presented in Fig. 5.7 are obtained by an equidistant sampling of the

external driving frequency Ω. In addition to the expected resonances close to ω0

and 2ω0, a more thorough exploration of solutions of the variational equation (5.15)

shows that other “resonances” are present, such as, e.g. Ω ≈ ω0/2 and Ω ≈ 2ω0/3.

This is further demonstrated in Fig. 5.8. These “resonances” are harder to observe
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Figure 5.7: Oscillation amplitude (umax − umin)/2 versus driving frequency Ω for
P = 0.4. In the inset, we zoom to the first peak to emphasize that both the shape
and the value of a resonance depend on the modulation amplitude Q and that
resonances occur at a driving frequency Ω, which differs from ω0. The solid vertical
lines correspond to ω0 and 2ω0.
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Figure 5.8: Exact numerical solution of Eq. (5.15) for the condensate width u(t)
versus t for P = 0.4, Q = 0.3, corresponding to ω0 = 2.06638. We observe large
amplitude oscillations for Ω ≈ ω0/2 in the left panel, while in the right panel the
“resonant” behavior is present for Ω ≈ 2ω0/3.

numerically, since it is necessary to perform a fine tuning of the external frequency.

However, they clearly demonstrate nonlinear BEC properties and an experimental

observation of these phenomena is certainly of high interest. We note that the

observed resonance pattern of the form Ω ≈ 2ω0/n (where n is an integer) arises

also in the case of a parametrically driven system described by the Mathieu equation,
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Figure 5.9: Fourier transform of u(t) for P = 0.4, Q = 0.1, and Ω = 2. First plot
presents the complete spectrum on a semi-log scale, while the subsequent plots focus
on regions of interest in the spectrum.

for instance, in the context of the Paul trap [130].

To examine such excited modes directly, we look at the Fourier transform of the

condensate width u(t). To this end, we numerically solve Eq. (5.15) and find the

Fourier transform of its solution using the MATHEMATICA software package [54].

An example of such an excitation spectrum for P = 0.4, Q = 0.1, and Ω = 2 is

given in Fig. 5.9. The spectrum contains two prominent modes: a breathing mode

of frequency ω (close, but not equal to ω0), and a mode that corresponds to the

driving frequency Ω, along with many higher-order harmonics of the general form

mΩ + nω, where m and n are integers.

In Fig. 5.10 we juxtapose two zoomed-in Fourier spectra for two different driving

frequencies for P = 0.4 and Q = 0.2. On the left plot, we show a spectrum for

Ω = 1. The vertical solid line corresponds to ω0 and we find the peak in the
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Figure 5.10: Parts of the Fourier spectra for P = 0.4, Q = 0.2, and two different
driving frequencies: Ω = 1 (left) and Ω = 2 (right). Position of a linear response
result ω0 is given by a vertical solid line.

spectrum that lies almost precisely at this position. On the contrary, from the right

plot of Fig. 5.10, which corresponds almost to the resonant excitation at Ω = 2, we

see that the prominent peak is displaced from the vertical line. This is the most

clear-cut illustration of the shifted eigenfrequency arising due to the nonlinearity

of the underlying dynamical equations. Our objective is to develop an analytical

approach capable of taking into account these nonlinear effects.

5.4.1 Poincaré-Lindstedt method

In its essence, our analytical approach represents the standard Poincaré-Lindstedt

method [127, 128, 124, 126]. Linearizing the variational equation (5.15) around the

time-independent solution u0 for a vanishing driving Q = 0, we obtain the zeroth-

order approximation for the collective mode ω = ω0, expressed by Eq. (5.17). To

calculate the collective mode to higher orders, we explicitly introduce the sought-

after eigenfrequency ω into the calculation by rescaling the time from t to s = ωt,

yielding the equation:

ω2 ü(s) + u(s) − 1

u(s)3
− P

u(s)4
− Q

u(s)4
cos

Ωs

ω
= 0 . (5.18)

In the next step, we assume the following perturbative expansions in the modulation

amplitude Q:

u(s) = u0 + Q u1(s) + Q
2 u2(s) + Q

3 u3(s) + . . . , (5.19)

ω = ω0 + Qω1 + Q
2 ω2 + Q

3 ω3 + . . . , (5.20)
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where we expand ω around ω0 and introduce the frequency shifts ω1, ω2, . . ., for each

order in the expansion in Q. By inserting the above expansions into the Eq. (5.18)

and collecting terms of the same order in Q, we obtain a hierarchical system of linear

differential equations. To the third order, we find:

ω2
0ü1(s) + ω2

0u1(s) =
1

u4
0

cos
Ωs

ω
,

ω2
0ü2(s) + ω2

0u2(s) = −2ω0ω1ü1(s) −
4

u5
0

u1(s) cos
Ωs

ω
+ αu1(s)

2,

ω2
0ü3(s) + ω2

0u3(s) = −2ω0ω2ü1(s) − 2βu1(s)
3 + 2αu1(s)u2(s) − ω2

1ü1(s)

+
10

u6
0

u1(s)
2 cos

Ωs

ω
− 4

u5
0

u2(s) cos
Ωs

ω
− 2ω0 ω1 ü2(s),

where α = 10 P/u6
0 + 6/u5

0 and β = 10 P/u7
0 + 5/u6

0.

These equations disentangle in a natural way: we solve the first one for u1(s), and

use that solution to solve the second one for u2(s), and so on. At the n-th level of the

perturbative expansion (n ≥ 1) we use the initial conditions un(0) = 0, u̇n(0) = 0.

As is well known, the presence of the term cos s on the right-hand side of some of

the previous equations would yield a solution that contains the secular term s sin s.

Such a secular term grows linearly in time, which makes it the dominant term in

the expansion (5.19) that otherwise contains only periodic functions in s. In order

to ensure a regular behavior of the perturbative expansion, the respective frequency

shifts ω1, ω2, . . . are determined by imposing the cancellation of secular terms.

This analytical procedure is implemented up to the third order in the modulation

amplitude Q by using the software package MATHEMATICA [54]. Although the

calculation is straightforward, it easily becomes tedious for higher orders of pertur-

bation theory. Note that it is necessary to perform the calculation to at least third

order since it turns out to be the lowest-order solution where secular terms appear

and where the nontrivial frequency shift can be calculated. We have solved explicitly

equations for u1(s), u2(s), and u3(s) and in Fig. 5.6 we show an excellent agreement

of our analytical solutions with a respective numerical solution of Eq. (5.15). From

the first-order solution u1(t) we read off only the two basic modes ω0 and Ω, while

the second-order harmonics 2ω0, ω0 − Ω, ω0 + Ω and 2Ω appear in u2(t). In the

third order of perturbation theory, higher-order harmonics ω− 2Ω, 2ω−Ω, 2ω+ Ω,

ω + 2Ω, 3ω, and 3Ω are also present. Concerning the cancellation of secular terms,
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the first-order correction ω1 vanishes, leading to a frequency shift which is quadratic

in Q:

ω = ω0 +
Q2

12u20
0 ω

3
0

P(Ω)

(Ω2 − ω2
0)

2 (Ω2 − 4ω2
0)

+ . . . , (5.21)

where the polynomial P(Ω) is given by

P(Ω)=Ω4
[

−240Pu5
0 + 36u6

0(−4 + 3u4
0ω

2
0)
]

+Ω2
[

−1100P2 − 30Pu0(44 − 65u4
0ω

2
0) + 9u2

0(−44 + 127u4
0ω

2
0 − 44u8

0ω
4
0)
]

+5600P2ω2
0 + 840Pu0ω

2
0(8 − 3u4

0ω
2
0) + 36u2

0ω
2
0(56 − 39u4

0ω
2
0 + 8u8

0ω
4
0). (5.22)

MATHEMATICA notebook which implements this analytical calculation is available

at our web site [60].

5.4.2 Results and discussion

The result given by Eq. (5.21) is the main achievement of our analytical analysis in

the previous section. It is obtained within a second-order perturbative approach in

Q and it describes the breathing mode frequency dependence on the driving Ω and

the modulation amplitude Q as a result of nonlinear effects. Due to the underlying

perturbative expansion, we do not expect Eq. (5.21) to be meaningful at the precise

position of the resonances. However, by comparison with numerical results based

on the variational equation, we find that Eq. (5.21) represents quite a reasonable

approximation even close to the resonant region.

To illustrate this, in Fig. 5.11 we show two such comparisons. In the upper

panel we consider the parameter set P = 0.4 and Q = 0.1, and observe significant

frequency shifts only in the narrow resonant regions. We notice an excellent agree-

ment of numerical values with the analytical result given by Eq. (5.21). In the lower

panel we consider the parameter set P = 1 and Q = 0.8, with much stronger modu-

lation amplitude. In this case we observe significant frequency shifts for the broader

range of modulation frequencies Ω. In spite of a strong modulation, we still see

a qualitatively good agreement of numerical results with the analytical prediction

given by Eq. (5.21). In principle, better agreement can be achieved using higher-

order perturbative approximation. The dashed line on both figures represents Ω/2,

given as a guide to the eye. It also serves as a crude description of what we observe

numerically in the range Ω ≈ 2ω0.
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Figure 5.11: Frequency of the breathing mode versus the driving frequency Ω for
P = 0.4 and Q = 0.1 (top), and P = 1 and Q = 0.8 (bottom). The dashed line
represents Ω/2 and is given to guide the eye.

The presence of two poles at Ω = ω0 and Ω = 2ω0 in Eq. (5.21) implies the

possible existence of real resonances in the BEC with a harmonically modulated

interaction. A perturbative expansion to higher orders would introduce some addi-

tional poles, responsible for higher-order “resonant” behavior observed at Ω ≈ 2ω0/n

(n ≥ 3). Still, the poles seem to be only an artifact of our approximative perturbative

scheme, not present in the exact description. For example, a simple resummation

performed using the second-order perturbative result removes these effects, although
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5. BEC excitation by modulation of scattering length

this is only an ad-hoc approximation. We stress that this issue concerning the true

resonant behavior can not be settled either by relying on a numerical calculation

due to inherent numerical artifacts related to finite numerical precision and finite

computational time. To resolve it, one should rely on an analytical consideration

along the lines of Ref. [118] or use some analytical tool applicable at resonances,

such as the resonant Bogoliubov-Mitropolsky method [124].
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Ω ω
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Figure 5.12: Part of the Fourier spectrum of the time-dependent condensate width
for P = 0.4, Q = 0.2, Ω = 2. For numerical solution of GP equation we use several
discretization schemes: GP numerics 1 (time step ε = 10−3, spacing h = 4 × 10−2),
GP numerics 2 (ε = 5 × 10−4, h = 2 × 10−2), GP numerics 3 (ε = 5 × 10−5,
h = 5 × 10−3). Details of the used numerical algorithms are given in Appendix
A. For comparison we also show the corresponding spectrum obtained from the
Gaussian approximation (dotted-dashed line) and analytical result (5.21) for the
position of breathing mode (solid vertical line).

In addition to comparison of our analytical results with numerical solutions based

on the Gaussian variational approximation, we present a comparison with the full

numerical solution of the GP equation. In order to be able to perform Fourier

analysis with sufficient resolution, it is necessary to obtain an accurate solution

for long evolution times. We do this by using the split-step method in combination

with the semi-implicit Crank-Nicolson method [87]. As we refine the GP numerics by

using finer space and time discretization parameters, our numerical results become

stable as shown in Fig. 5.12. From the same figure, we observe quantitatively good

agreement between GP numerics and Gaussian approximation, reflected in close
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5. BEC excitation by modulation of scattering length

values obtained for the breathing mode frequency. In addition, numerical values for

the breathing mode approach closely the analytical result of Eq. (5.21), shown by a

solid vertical line in Fig. 5.12.

It is well known that for a corresponding two-dimensional axially-symmetric

system with a constant interaction and trapping frequency, the breathing mode

oscillations can be described by an exact linear equation [131, 132]. However, in

the case of a time-dependent trapping frequency, the exact equation of motion is

nonlinear [118]. To the best of our knowledge, for a time-dependent interaction

strength the corresponding exact equation does not exist in the literature, but one

can reasonably expect that nonlinear effects will remain in such systems, due to the

inherent time dependence of the interaction.

5.5 Axially-symmetric BEC

To obtain results relevant for a comparison with the experiment reported in Ref. [15],

we now study an axially-symmetric BEC. An illustration of the condensate dynamics

is shown in Fig. 5.13 for P = 1, Q = 0.2, λz = 0.3. We plot numerical solutions of

Eqs. (5.11) and (5.12) obtained for the equilibrium initial conditions uρ(0) = uρ0,

u̇ρ(0) = 0, uz(0) = uz0, and u̇z(0) = 0. For the specified parameters, the equilibrium

widths are found to be uρ0 = 1.09073, uz0 = 2.40754, and from the linear stability

analysis we find both the quadrupole mode frequency ωQ0 = 0.538735 and the

breathing mode frequency ωB0 = 2.00238. For a driving frequency Ω close to ωQ0, we

observe large amplitude oscillations in the axial direction. An example of excitation

spectra is shown in Fig. 5.14. Here, we have the three basic modes ωQ, ωB, Ω, and

many higher-order harmonics.

5.5.1 Poincaré-Lindstedt method

In order to extract information on the frequencies of the collective modes beyond

the linear stability analysis, we apply the perturbative expansion in the modulation

amplitude Q:

uρ(t) = uρ0 + Q uρ1(t) + Q
2 uρ2(t) + Q

3 uρ3(t) + . . . , (5.23)

uz(t) = uz0 + Q uz1(t) + Q
2 uz2(t) + Q

3 uz3(t) + . . . . (5.24)
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Figure 5.13: Condensate dynamics within the Gaussian approximation for P = 1,
Q = 0.2, λz = 0.3 and two different driving frequencies Ω = 0.4 (left plot) and Ω = 1
(right plot). We plot exact numerical solution of Eqs. (5.11) and (5.12) together with
the analytical second-order perturbative result, as explained in section IV.A.
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Figure 5.14: Fourier transformed uρ(t) and uz(t) for P = 1, Q = 0.2, λz = 0.3, and
Ω = 0.4. Left plot gives complete spectrum, while on the right plot we show part of
the spectrum together with positions of prominent peaks.

By inserting these expansions in Eqs. (5.11) and (5.12), and by performing additional

expansions in Q, we obtain a system of linear differential equations of the general

form:

üρn(t) +m11uρn(t) +m12uzn(t) + fρn(t) = 0, (5.25)

m21uρn(t) + üzn(t) +m22uzn(t) + fzn(t) = 0, (5.26)
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5. BEC excitation by modulation of scattering length

where n = 1, 2, 3, . . . is an integer, and

m11 = 4, m12 = P/u3
ρ0u

2
z0, m21 = 2 P/u3

ρ0u
2
z0, m22 = λ2

z + 3/u4
z0 + 2 P/u2

ρ0u
3
z0.

The n-th order functions fρn(t) and fzn(t) depend only on the solutions uρi(t) and

uzi(t) of lower orders, i < n. For n = 1 we have

fρ1(t) = − cos Ωt

u3
ρ0uz0

, fz1(t) = − cos Ωt

u2
ρ0u

2
z0

,

and for n = 2 we get correspondingly

fρ2(t) =
3

u4
ρ0uz0

cos Ωt uρ1(t) −
6

u5
ρ0

uρ1(t)
2 − 6P

u5
ρ0uz0

uρ1(t)
2

+
1

u3
ρ0u

2
z0

cos Ωt uz1(t) −
3P

u4
ρ0u

2
z0

uρ1(t)uz1(t) −
P

u3
ρ0u

3
z0

uz1(t)
2,

fz2(t) =
2

u3
ρ0u

2
z0

cos Ωt uρ1(t) −
3P

u4
ρ0u

2
z0

uρ1(t)
2 − 3P

u2
ρ0u

4
z0

uz1(t)
2

+
2

u2
ρ0u

3
z0

cos Ωt uz1(t) −
6

u5
z0

uz1(t)
2 − 4P

u3
ρ0u

3
z0

uρ1(t)uz1(t).

The linear transformation

uρn(t) = xn(t) + yn(t), (5.27)

uzn(t) = c1 xn(t) + c2 yn(t), (5.28)

with the coefficients

c1,2 =
m22 −m11 ±

√

(m22 −m11)2 + 4m12m21

2m12

,

decouples the system at the n-th level and leads to the equations of the form:

ẍn(t) + ω2
Q0xn(t) +

c2 fρn(t) − fzn(t)

c2 − c1
= 0, (5.29)

ÿn(t) + ω2
B0yn(t) +

c1 fρn(t) − fzn(t)

c1 − c2
= 0. (5.30)

Now it is clear how to proceed: we first solve Eqs. (5.29) and (5.30) for x1(t) and

y1(t), and then using Eqs. (5.27) and (5.28) we obtain uρ1(t) and uz1(t). In the
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5. BEC excitation by modulation of scattering length

next step, we use these solutions and solve for x2(t) and y2(t) and so on. At each

level n ≥ 1 we impose the initial conditions uρn(0) = 0, u̇ρn(0) = 0, uzn(0) = 0,

and u̇zn(0) = 0. At the first level of perturbation theory, equations for x and y

are decoupled, i.e. x1(t) and y1(t) are normal modes: x1(t) describes quadrupole

oscillations, while y1(t) describes breathing oscillations. However, at the second

order of perturbation theory y1(t) enters the equation for x2(t) and also x1(t) appears

in equation for y2(t), i.e. we have a nonlinear mode coupling.

We have performed the explicit calculation to the second order by using the

software package MATHEMATICA [54]. We have obtained an excellent agreement

of second-order analytical results and numerical results, as can be seen in Fig. 5.13

for a moderate value of a modulation amplitude Q. The first secular terms appear

at the level n = 3. The expressions are cumbersome, but the relevant behavior is

obtained from the following terms in the equation for x3(t):

ẍ3(t) + ω2
Q0x3(t) + CQ cosωQ0t+ . . . = 0, (5.31)

which leads to

x3(t) = − CQ
2ωQ0

t sinωQ0t+ . . . (5.32)

The last term can be absorbed into the first-order solution

uρ(t) = AQ cosωQ0t−
CQQ2

2ωQ0
t sinωQ0t+ . . .

≈ AQ cos [(ωQ0 + ∆ωQ0)t] , (5.33)

and can be interpreted as a frequency shift of the quadrupole mode, quadratic in Q:

ωQ = ωQ0 + ∆ωQ0 = ωQ0 + Q
2 CQ
2ωQ0AQ

+ . . . (5.34)

The coefficients AQ and CQ are calculated using the MATHEMATICA code available

at our site [60], and their explicit form is too long to be presented here. Along the

same lines we have also calculated the frequency shift of the breathing mode.

5.5.2 Results and discussion

The main results of our calculation in this section are shown in Figs. 5.15 and

5.16. In Fig. 5.15 we plot the analytically obtained frequency of the quadrupole
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Figure 5.15: Frequency of the quadrupole mode ωQ versus driving frequency Ω for
P = 1, Q = 0.2, and λz = 0.3. We plot linear response result ωQ0, second-order
analytical result ωQ,(a) and numerical values ωQ,(n).
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Figure 5.16: Frequency of the breathing mode ωB versus driving frequency Ω for
P = 1, Q = 0.2, and λz = 0.3. We plot linear response result ωB0, second-order
analytical result ωB,(a) and numerical values ωB,(n).

mode versus the driving Ω, using the second order perturbation theory together

with the corresponding numerical result based on the Fourier analysis of solutions

of Eqs. (5.11) and (5.12). An analogous plot for the frequency of the breathing mode
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5. BEC excitation by modulation of scattering length

is given in Fig. 5.16. Our analytical perturbative result for the shifted quadrupole

mode frequency contains poles at ωQ0, 2ωQ0, ωB0−ωQ0, ωQ0+ωB0 and ωB0. Similarly,

for the shifted frequency of the breathing mode poles in the perturbative solution

are found at ωQ0, ωB0, 2ωB0, ωB0 − ωQ0 and ωQ0 + ωB0. In both figures we see

excellent agreement of the perturbatively obtained results with the exact numerics.

In the experiment from Ref. [15], excitations of a highly elongated and strongly

repulsive BEC were considered with the system parameters given in Eq. (5.9). For

that case, according to Eq. (5.10) we get ωQ0 ≪ ωB0, and the driving frequency

was chosen in the range (0, 3ωQ0). Good agreement of real-time dynamics obtained

from the variational approximation with the exact solution of the time-dependent

GP simulation occurs even for long propagation times, as can be seen in Fig. 5.5,

which implies a good accuracy of the Gaussian approximation for calculating the

frequencies of the excited modes. From the real-time dynamics shown in Fig. 5.5, we

observe the excitation of the slow quadrupole mode as an out-of phase oscillation in

the axial and in the radial direction. In addition, in the radial direction we observe

fast breathing mode oscillations. This is typical for highly elongated condensates

[133] and our analysis for the experimental parameters shows a strong excitation

of the quadrupole mode, but also a significant excitation of the breathing mode

in the radial direction. Due to the large modulation amplitude Q, many higher

order harmonics are excited, and, most importantly, we find frequency shifts of the

quadrupole mode of about 10% in Fig 5.17. From the same figure we notice that,

due to the chosen frequency range for Ω, only resonances located at ωQ and 2ωQ

are observed. The presence of nonlinear effects is already mentioned in Ref. [15].

However, we conclude that frequency shifts calculated here have to be taken into

account for extracting the resonance curves from the underlying experimental data.

To achieve more clear-cut experimental observation of the nonlinearity-induced

frequency shifts calculated in this paper, we suggest a different trap geometry from

the one used in Ref. [15]. Measurements of stable BEC modes can be performed

for about 1 s, and in order to extract precise values of the excited frequencies in

the Fourier analysis, several oscillation periods should be captured within this time

interval. A higher frequency of the quadrupole mode, that can be realized by using

a larger trap aspect ratio λz, in combination with a higher modulation frequency

would fulfill this condition. According to the results presented in Ref. [15], reso-

nant driving may lead to condensate fragmentation. However, our numerical results

indicate frequency shifts of 10 % even outside the resonant regions according to
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Figure 5.17: Frequency of the quadrupole mode ωQ versus driving frequency Ω for
the experimental parameters from Eq. (5.9). We plot linear response result ωQ0,
second-order analytical result ωQ,(a), and numerical values ωQ,(n).

Figs. 5.11 and 5.17, and this is where experimental measurements should be per-

formed. Although an increase in λz leads to a more pronounced nonlinear mixing of

quadrupole and breathing mode and may complicate condensate dynamics further,

it may be possible to perform a Fourier analysis of experimental data, analogous to

Ref. [101], and to compare it with the excitation spectra presented here. To achieve

a complete matching of experimental data and our calculations, it may turn out that

higher-order corrections to Eq. (5.7), which arise due to the nonlinear dependence

of scattering length on the external magnetic field, have to be taken into account.

5.6 Conclusions and outlook

Motivated by recent experimental results, in this Chapter, we have studied nonlinear

BEC dynamics induced by a harmonically modulated interaction at zero tempera-

ture. We have used a combination of an analytic perturbative approach, numerical

analysis based on Gaussian approximation, and numerical simulations of a full time-

dependent Gross-Pitaevskii equation. We have presented numerically calculated rel-

evant excitation spectra and found prominent nonlinear features: mode coupling,

higher harmonics generation, and significant shifts in the frequencies of collective

modes. In addition, we have provided an analytical perturbative framework that
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5. BEC excitation by modulation of scattering length

captures most of the observed phenomena. The main results are analytic formulae

describing the dependence of collective mode frequencies on the modulation am-

plitude and on the external driving frequency for different trap geometries. We

believe that the study presented in this Chapter is a step toward understanding

resonant processes in a nonlinear system. To extend the applicability of our analyt-

ical approach, a perturbative expansion to higher order has to be performed, or an

appropriate resummation of the perturbative series could be applied.

The presented results could contribute to future experimental designs that may

include mixtures of cold gases and their dynamical response to harmonically modu-

lated interactions, such as pattern formation induced by the modulation of different

time dependence of the scattering length. In addition, our results could contribute

to resolving beyond-mean-field effects in the collective mode frequencies, as pro-

posed in Refs. [134, 135], and for dipolar BEC in [136]. Nonlinearity-induced shifts

of collective modes have to be properly taken into account to clearly delineate them

from beyond-mean-field effects.
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Chapter 6 Summary

Since the first experimental observation of Bose-Einstein condensation in the

dilute vapors of alkali atoms in 1995, the field of ultracold atoms constantly expands.

The experimental advances in the manipulation of quantum gases pave a way to the

development of new technologies, and allow exploration of the quantum world with

previously unseen precision and flexibility, uncovering at the same time new variety

of far reaching physical phenomena. In this thesis we have studied two particular

phenomena that give new insights into the properties of cold quantum gases and

have been recently addressed experimentally.

To begin with, in Chapter 1 we have introduced the aspects of the research in the

field of ultracold atoms, main concepts, and its position within the wide forefront

of modern physics. In Chapter 2 we have developed an efficient numerical method

for calculation of the eigenspectrum and eigenvectors of a system in an arbitrary

trapping potential. The devised approach is based on the exact diagonalization

of the time-evolution operator and can be applied for numerical studies of general

few-body systems. We have carefully explored different types of systematic errors

that arise in the process of the spatial discretization of the time-evolution operator.

We have shown analytically and numerically that the discretization error vanishes

as the exponential of 1/∆2, where ∆ represents the discretization spacing. Thus,

the method highly outperforms in efficiency the approaches based on the real- space

discretization of the Hamiltonian, which exhibit polynomial error in ∆. For the

highly accurate calculation of matrix elements of the evolution operator, necessary

for the application of the method, we use the short-time expansion of transition

amplitudes in the propagation time to high-orders. The chief ingredients of this part

of the procedure are higher-order effective actions, that were derived previously. We

have demonstrated the advantages of this method by calculating highly accurate

energy spectra in a numerically efficient way for several one- and two-dimensional

models.

Motivated by experimental studies of rotating ultra-cold quantum gases, in Chap-
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ter 3 we have studied the effects of the shape of trapping potentials to the properties

of a Bose-Einstein condensate of an ideal gas. A rotation gives rise to the appearance

of a deconfining harmonic potential. Particularly, in the interesting fast-rotating

regime, when the rotation frequency approaches the confining frequency of the har-

monic trap, the gas becomes unconfined and the condensate would disperse. One

way to mitigate the deconfining effect is to use an additional, quartic term in the

potential. As a result, the total external potential in the co-rotating frame acquires

different shapes, depending on the rotation frequency. It is important to understand

how this affects the properties of a BEC for the interpretation of data obtained in

experiments with fast rotating BECs. By employing the method of exact diagonal-

ization of the time-evolution operator from Chapter 2, we have obtained numerically

exact energy spectra of the harmonic plus quartic trapping potential for different

values of the rotation frequency. Using this, we have calculated the condensation

temperature and found that it decreases with an increase of the rotation frequency.

We have also presented density profiles of the condensate and thermal cloud at dif-

ferent temperatures and have simulated the time-of-flight imaging procedure for this

setup. Interesting expansion dynamics has been found for the external potential in

the shape of a Mexican hat, in the over-critical rotation regime. In the initial stage of

the expansion the gas expands inwards, into the previously unoccupied inner space,

and only after that the common free expansion starts. This leads to an increase in

the typical time scales for the expansion of about one order of magnitude.

Chapter 4 is dedicated to the review of the mean-field description of a weakly in-

teracting BEC. We have presented several widely used approximation techniques. In

the zero temperature limit, we have introduced nonlinear mean-field Gross-Pitaevskii

equation. In order to study BEC at finite temperature and to explore the BEC phase

diagram, we have used Hartree-Fock framework in the form in which higher, ther-

mally excited states are treated within the semiclassical approximation. Within this

mean-field picture, a two-component model of a BEC naturally arises. In an approx-

imative way, the condensate and thermal component are introduced enabling us to

keep the intuition built on a noninteracting model. Depending on whether the inter-

action within each component is taken into account and how their mutual interaction

is considered, several approximation schemes come into play. We have compared

their properties, and emphasized the identified drawbacks. The interaction-induced

shift of the condensation temperature has been re-derived. With these results, we

have shown how the noninteracting BEC picture is modified in the presence of weak
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short-range interactions.

The excitation of collective oscillation modes is a direct way to probe the prop-

erties of a system, since frequencies of collective modes can be measured very accu-

rately, with errors of below 1%. In Chapter 5 we have studied properties of collective

modes subject to the harmonic modulation of the s-wave scattering length, i.e. con-

tact interaction strength. We have used time-dependent Gross-Pitaevskii equation

and the variational approach based on a Gaussian Ansatz to describe condensate

dynamics numerically. In the non-resonant regime, when the driving frequency does

not match any of the eigenfrequencies of the condensate, we have found small ampli-

tude oscillations that correspond to the quadrupole and breathing mode, as expected

for an axially-symmetric condensate. As the resonant regime is approached, nonlin-

ear dynamical features emerge in the excitation spectra: nonlinear mode coupling,

higher-harmonics generation and shifts in the frequencies of excited modes. We

have developed a perturbative approach in the modulation amplitude, based on the

Poincaré-Lindstedt method, and have obtained analytical results for the mentioned

effects.

At the end of each chapter, we have indicated a possible future research direction

to further extend the study of the topics presented in this thesis.
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Appendix A Numerical solution of the GP equation

For the numerical solution of the GP equation, we use algorithms described

in Ref. [87]. Original codes are written using the Fortran programming language,

while we implemented the numerical procedure in the C programming language. For

completeness, in this Appendix we outline the main steps of the applied numerical

method for the simplest, spherically-symmetric case.

In general, there are two different type of questions that we want to answer by

solving the GP equation: either we are interested in the equilibrium configurations,

i.e. stationary solutions, or we simulate real-time dynamics of the system. It turns

out that both situations can be treated on an equal footing by using propagation in

real and imaginary time, t and τ respectively, which are connected by the expression:

i t = τ . (A.1)

The imaginary-time propagation is very useful and efficient technique for obtaining

stationary states of both linear and nonlinear systems. Essentially, it is equivalent

to the minimization of the energy functional, and here we explain its basics for the

case of a linear system. The main underlying identity is given by

|ψ0〉 = lim
τ→∞

e−τĤ |ψinitial〉 , (A.2)

where |ψinitial〉 is an arbitrary initial state, which has a nonzero overlap with the

ground-state |ψ0〉 of a system. Eq. (A.2) states that after long enough propagation

in the imaginary time, we will obtain the ground state of the system. This can

be easily understood by decomposing the initial state into the eigenvectors of the

Hamiltonian Ĥ ,

e−τĤ |ψinitial〉 =

∞
∑

k=0

〈ψk|ψinitial〉e−τEk |ψk〉 , (A.3)

by noting that the coefficients in front of all eigenstates decay exponentially in

the imaginary time τ , and that the slowest decaying coefficient is the one in front
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of the ground state. Imaginary-time propagation does not preserve the norm of

the state, and we have to renormalize the state manually after each iteration step.

Therefore, it is obvious that after certain time τ , the contribution of higher states

will be negligible, and thus we will arrive at the result given by Eq. (A.2). A

similar reasoning is valid also for nonlinear systems, hence in the case of the GP

equation we apply the transformation (A.1) and use imaginary-time propagation to

find the stationary states. From the numerical side, imaginary-time and real-time

propagation can be implemented in a very similar manner, and we briefly present

only the details of numerical implementation of the real-time propagation.

To simplify the expression for the Laplacian in a spherically-symmetric case, we

first apply a commonly used rescaling:

φ(r, t) =
ψ(r, t)

r
, (A.4)

and transform the spherically-symmetric GP equation into its simplified form:

i
∂φ(r, t)

∂t
=

[

−1

2

∂2

∂r2
+

1

2
r2 + g

∣

∣

∣

∣

φ(r, t)

r

∣

∣

∣

∣

2
]

φ(r, t) . (A.5)

Next, we split the propagation into two steps, which correspond to the two parts of

Eq. (A.5):

i
∂φ(r, t)

∂t
=

[

1

2
r2 + g

∣

∣

∣

∣

φ(r, t)

r

∣

∣

∣

∣

2
]

φ(r, t) , (A.6)

i
∂φ(r, t)

∂t
= −1

2

∂2

∂r2
φ(r, t) . (A.7)

This is the split-step approximation, valid for the short propagation time. It is

motivated by a possibility to treat each of the two previous equations in a specially

suited way: the first equation deals with the part of the Hamiltonian which is

diagonal in the coordinate space, while the second equation considers the kinetic

term. To perform the time discretization, we introduce the index n, which counts

the time slices φ(r, t) ≡ φn(r), where t = nε, and ε is a discrete time-step of the

propagation. According to Eqs. (A.6) and (A.7), there are two different steps to be

performed for one time-step, in the propagation from t to t + ε. Correspondingly,

we introduce the notation φn+1/2(r), which is the value of the wavefunction after the
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first part of the propagation according to Eq. (A.6), while after the additional step

according to Eq. (A.7), the propagation to t+ ǫ is finished, and a new wave function

φn+1(r) is calculated. Finally, we rewrite Eqs. (A.6) and (A.7) in the approximate

discretized form:

φn+1/2(r) = e
−iε

„

1
2
r2+g

˛

˛

˛

φn(r)
r

˛

˛

˛

2
«

φn(r), (A.8)

i
1

ε

(

φn+1(r) − φn+1/2(r)
)

= −1

4

∂2φn+1/2

∂r2
− 1

4

∂2φn+1

∂r2
. (A.9)

In the last equation, we have used the semi-implicit Crank-Nicolson method [137],

which is highly accurate, robust and inexpensive method for solving general diffusion

equations. The accuracy of the approximation is ε2.

To reduce the obtained differential equations to the algebraic form, we addi-

tionally perform space discretization with the discretization step h. To this end,

we introduce index i, which takes values from 0 to imax − 1, and approximate the

second-order spatial derivative in the standard way:

∂2φn

∂r2
→ 1

4h2

(

φni+1 − 2φni + φni−1

)

, (A.10)

with the error of the order of h2. As a result, we obtain a tridiagonal system of

equations:

−Aφn+1
i+1 +Bφn+1

i − Aφn+1
i−1 = δi , (A.11)

where

δi = (ε/4h2)φ
n+1/2
i+1 +

(

1 − ε/2h2
)

φ
n+1/2
i +(ε/4h2)φ

n+1/2
i−1 , A = ε/4h2 , B = 1+ε/2h2 .

A solution of a tridiagonal system of equations can be cast in the form:

φn+1
i+1 = αiφ

n+1
i + βi , (A.12)

and from this Ansatz we find the recursive relations for the solution:

αi−1 =
A

B − Aαi
, βi−1 =

δi + Aβi
B −Aαi

. (A.13)

From the boundary condition φnimax
= φ

n+1/2
imax

, we derive initial values for α and β:

αimax−1 = 0 and βimax−1 = φ
n+1/2
imax

, which we use to solve the recursive equations
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(A.13). With another boundary condition φn0 = 0, we finally solve Eq. (A.12). Due

to the tridiagonal form of the above system of equations, the complexity of the

algorithm is proportional to the number of discretization points.

Once the ground-state solution φ(r) is calculated using the imaginary-time ver-

sion of the above algorithm, the corresponding values of the chemical potential µ

and the energy E of the system can be calculated as:

µ = 4π

∫ ∞

0

dr

[

φ2(r)

(

r2

2
+ gφ2(r)

)

+
1

2

(

∂φ(r)

∂r

)2
]

,

E = 4π

∫ ∞

0

dr

[

φ2(r)

(

r2

2
+
g

2
φ2(r)

)

+
1

2

(

∂φ(r)

∂r

)2
]

.

An example of the convergence of the value of the chemical potential as a function

of a propagated imaginary-time is shown in Fig. A.1. We see the saturation of the

chemical-potential value for a long time of propagation.
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Figure A.1: The value of the chemical potential in units of ~ω as a function of the
imaginary time of propagation τ , in units of ω−1, for two different dimensionless
interaction strengths g = 4πNa/l, calculated with the discretization parameters
ǫ = 10−4 and h = 10−2. We perform the calculation for the spherically symmetric
trap Mω2/2, with the characteristic length scale l =

√

~/Mω. We see that for long
times of propagation, the value of the chemical potential has converged toward the
final result µ ≈ 7.24836, for g = 627.4, and µ ≈ 13.5534 for g = 3137.1.
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This algorithm can be straightforwardly extended to higher-dimensional cases,

as explained in detail in Ref. [87].

141



Appendix B Time-dependent variational analysis

For completeness, here we present details of the time-dependent variational anal-

ysis used in Chapter 5, which was originally introduced in Refs. [104, 105].

We start from the Lagrangian (4.16), assuming a time-dependent interaction

g(t). For the Gaussian variational Ansatz (5.1), we calculate

ψG
∂ψG∗

∂t
− ψG∗∂ψ

G

∂t
= −2 iN(t)2

∑

σ=x,y,z

(

σϕ̇σ + σ2φ̇σ

)

exp

(

−
∑

σ=x,y,z

(σ − σ0)
2

u2
σ

)

,

∂ψG

∂σ

∂ψG∗

∂σ
= N(t)2

(

(σ − σ2
0)

u4
σ

+ (ϕσ + 2σφσ)
2

)

exp

(

−
∑

σ=x,y,z

(σ − σ0)
2

u2
σ

)

,

where we have introduced the notation N(t)2 = (π3/2ux(t)uy(t)uz(t))
−1, and σ ∈

{x, y, z}. Using the following Gaussian integrals

N(t)2

∫

d~r σ exp

(

−
∑

σ=x,y,z

(σ − σ0)
2

u2
σ

)

= uσ,

N(t)2

∫

d~r σ2 exp

(

−
∑

σ=x,y,z

(σ − σ0)
2

u2
σ

)

=
1

2

(

u2
σ + 2σ2

0

)

,

N(t)4

∫

d~r exp

(

−
∑

σ=x,y,z

2(σ − σ0)
2

u2
σ

)

=
1

(2π)3/2uxuyuz
,

we calculate the GP Lagrangian

LGP = ~

∑

σ=x,y,z

(

σ0ϕ̇σ +
1

2

(

u2
σ + 2σ2

0

)

φ̇σ

)

+
~

2

2M

∑

σ=x,y,z

(

1

2u2
σ

+ ϕ2
σ + 4ϕσφσσ0 + 2φ2

σu
2
σ + 4φ2

σσ
2
0

)

+
∑

σ=x,y,z

Mω2
σ

2

(

u2
σ

2
+ σ2

0

)

+
g(t)

2

1

(2π)3/2uxuyuz
.
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Euler-Lagrange equations of motion for variational parameters q ∈ {ϕσ, σ0, φσ, uσ}
have the form

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 ,

and for the above Lagrangian read:

ϕσ −
M

~
σ̇0 + 2φσσ0 = 0, (B.1)

~ϕ̇σ + 2~σ0φ̇σ +
2~

2

M
ϕσφσ +

4~
2

M
φ2
σσ0 +Mω2

σσ0 = 0 (B.2)

φσ −
M

2~

u̇σ
uσ

= 0, (B.3)

~φ̇σuσ −
~

2

2M

1

u3
σ

+
2~

2

M
φ2
σuσ +

Mω2
σ

2
uσ −

g(t)

2(2π)3/2

1

uxuyuzuσ
= 0. (B.4)

Eqs. (B.1) and (B.3) give the explicit relation between ϕσ and σ0, and between φσ

and uσ. By inserting Eqs. (B.1) and (B.3) into Eqs. (B.2) and (B.4), we obtain

variational equations which we will refer to as a Gaussian approximation:

σ̈0(t) + λ2
σσ0 = 0 , (B.5)

üσ(t) + λ2
σuσ(t) −

1

uσ(t)3
− P(t)

uσ(t)ux(t)uy(t)uz(t)
= 0 . (B.6)

We also note that solutions of Eqs. (B.5) and (B.6) for σ0(t) and uσ(t) can be af-

terwards inserted into Eqs. (B.1) and (B.3) to obtain time-evolution of the phase

parameters ϕσ and φσ. The last two equations are given in the dimensionless form:

we choose a convenient frequency scale ω (for example, the external trap frequency

in one of the spatial directions) and express all lengths in the units of the charac-

teristic harmonic oscillator length l =
√

~/Mω, time in units of ω−1, and external

frequencies in units of ω: λσ = ωσ/ω, σ ∈ {x, y, z}. The dimensionless interaction

parameter P(t) is given by

P(t) =
g(t)

(2π)3/2~ωl3
=

√

2

π
N
a(t)

l
.
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7. A. Bogojević, I. Vidanović, A. Balaž, and A. Belić, Fast Convergence of Path

Integrals for Many-Body Systems, Phys. Lett. A 372, 3341 (2008).

145



References

[1] S. N. Bose, Plancks gesetz und lichtquantenhypothese, Z. Phys. 26, 178

(1924). v, x, 1

[2] A. Einstein, Quantentheorie des einatomigen idealen gases, Sitzungsber.

Preuss. Akad. Wiss. p. 261 (1924). v, x, 1

[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,

Science 269, 198 (1995). vi, xi, 2, 7, 11

[4] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium

atoms, Phys. Rev. Lett. 75, 3969 (1995). vi, xi, 2, 11

[5] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-

Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999). vi,

xi, 5, 7, 12, 84, 105

[6] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in

ultracold gases, Rev. Mod. Phys. 82, 1225 (2010). vi, xi, 13

[7] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold

gases, Rev. Mod. Phys. 80, 885 (2008). vi, vii, xi, xii, 15, 57, 58

[8] R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467

(1982). vi, xi, 3

[9] A. Sethia, S. Sanyal, and Y. Singh, Discretized path integral method and

properties of a quantum system, J. Chem. Phys. 93, 7268 (1990). vii, xii, 16,

20, 21, 23, 33, 55

146



REFERENCES
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