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i

Acknowledgments

I would like to gratefully acknowledge the excellent supervision of Dr
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Abstract

Brief fabricational and applications surveys on semiconductor quantum

dots and the subsequent motivation for further development of theoretical

modeling are presented. In order to study the electronic structure of quan-

tum dots, k · p models are introduced. Both the 8 band k · p model and

the effective mass model were used in order to study electronic structure of

quantum rods. Existence of bound state in continuum in quantum rods is

demonstrated. The vibrational structure and electron–phonon interaction

in semiconductor quantum dots was studied via bulk models for self assem-

bled quantum dots and continuum models for colloidal quantum dots. The

concept of polarons due to very strong electron–longitudinal optical phonon

interaction was demonstrated for single self assembled quantum dot and for

supercrystal of colloidal quantum dots. Lattice anharmonicity is also con-

sidered as a main mechanism enabling the non-radiative relaxation process

of the polarons in self assembled quantum dots.

Optical properties of such 3D confinement structures are modeled using

dipole Hamiltonian approximation and properly incorporated into k·pmodel

formalism within the framework of linear response theory. Radiative and

non-radiative lifetimes in self assembled quantum dots were studied and

correlation between them was established.

Transport properties of colloidal quantum dot supercrystals were also

studied within the framework of linear response theory. Variational polaron

theory is introduced in order to examine formation of polarons dependent on

temperature, interdot coupling strength and strengths of electron–phonon

interactions. It was found that small polaron formation occurs at room tem-
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perature for possible interdot couplings. It was also found that small polaron

formation narrows the bands and localizes the carriers inside each dot in the

supercrystal. Available experimental data on the issue were discussed by

using the results of the model.
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pling function modeled by a Gaussian with fitted linewidth in-

versely proportional to the dot dimensions of the hard walled

QD. The whole Gaussian is multiplied by the cosine of the

angle between k and kz. Model function is approximately

the same for long wavelengths where both functions have the

most significant values. However, the difference increases by

increasing the wavevector k where these functions have low

values and therefore that domain is less important. The Fig-

ure taken from Ref. 5. . . . . . . . . . . . . . . . . . . . . . . 125



LIST OF FIGURES xviii

4.6 FCF for two different lens shaped cylindrically symmetric

QDs calculated in the kx−kz plane by the 8-band k·pmethod

with strain effects included. Indium content in both dots is

1, radius is 22 nm and their height is a) 8 nm and b) 16 nm.

The Figure taken from Ref. 3. . . . . . . . . . . . . . . . . . . 129

4.7 a) FCF for two different cylinder shaped QDs calculated in

the kx−kz plane by the 8-band k·p method with strain effects

included. Indium content in dots is a) 1 and b) 0.6, and their

radius and height are 22 nm and 12 nm, respectively, in both

cases. The Figure taken from Ref. 5. . . . . . . . . . . . . . . 130

5.1 2D sketch of a colloidal nanocrystal solid with nanocrystal

radius a, interdot spacing d and lattice constant C. . . . . . . 140

5.2 Dtotal
R =

√

∑

f D
2
R,f for 1D lattice model for the several val-

ues of parameter κ. Phonon spectrum is taken from Tabs. 3.1

and 3.2. The value of κ=0.96 corresponds to the J =-40 meV

and T =4 K, κ=0.60 corresponds to the J =-20 meV and

T =83 K, κ=0.02 corresponds to the J =-2.5 meV and T =4

K and κ=0.09 corresponds to the J =-7 meV and T =4 K. . 151

5.3 J vs T diagram demonstrating the areas of strong and weak

coupling regimes. The limiting curve has been chosen so

the parameter κ = e−
1
2

∑

R′,f (DR′−DR′−Cx)
2
coth

β~Ωf
2 < 0.05.

Strong coupling regime occurs in the upper right region for

increasing temperature and electronic coupling. . . . . . . . . 152

5.4 Mobility vs temperature plot for various dot sizes and two

different values of electronic coupling between the dots (6

meV for upper and 10 meV for lower plot). These curves

resemble those found in experiment [6, 7] . . . . . . . . . . . 163



List of Tables

3.1 Acoustic Phonon energies ~Ω and electron-phonon coupling

constants to the electronic ground state G in a CdSe NC for

different values of the dot radius. . . . . . . . . . . . . . . . . 97

3.2 LO Phonon energies ~Ω and electron-phonon coupling con-

stants to the electronic ground state G in a CdSe NC for

different values of the dot radius. . . . . . . . . . . . . . . . . 97

xix



Chapter 1

Introduction

1.1 Semiconductor Quantum Dots

In recent decades significant progress has been made in the fabrication of

semiconductor dot structures with carrier band confinement in all three

spatial directions based on III-V and II-VI compounds. These technological

breakthroughs enabled new fields of fundamental solid state physics and

many new technological fields relating applications of these structures.

There are three well defined technological means for fabrication of quan-

tum dots and consequently three big different groups of quantum dots.

Those are self-assembled quantum dots, colloidal nanocrystals and electro-

statically defined quantum dots. The main focus of this thesis will be on

the former two groups.

1
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1.2 Fabrication Technology

1.2.1 Basic Fabrication Methods

The most prominent nano-size heterostructures are self-assembled quan-

tum dots(SAQD) grown by a well established technological procedure called

Stranski-Krastanov growth. Stranski-Krastanov growth consists of het-

erostructural epitaxy between materials with different lattice constants. Dur-

ing the growth of a layer of one material on a top of another, the for-

mation of nanoscale islands takes place [8] due to lattice constant mis-

match (see Fiq. 1.1). This effect takes place if the width of the layer (so

called wetting layer) is larger than a certain critical thickness. Two mostly

used experimental techniques for epitaxial nanostructure growth are Molec-

ular Beam Epitaxy (MBE) and Metalorganic Chemical Vapour Deposition

(MOCVD) [9, 10].

InAs/GaAs SAQDs will be of the important interest in this thesis. Such

quantum dots are composed of GaAs bulk-like matrix which completely sur-

rounds an InAs island with optional additional Ga content in the island. The

zincblende crystal structure of the entire structure remains approximately

valid. The crystal sites of In-rich island stretch a bit forming the strain field,

but coherent crystal structure with the low level of defect remains. This ef-

fectively means that SAQD is still condensed matter system, but with the

inhomogeneous distribution of band edges in space. InAs conduction band

is lower in energy then of surrounding GaAs bulk matrix, while the opposite

holds for valence band offset. As a result, this composition acts as a confin-

ing potential for electrons in the conduction band and holes in the valence

band due to lower energetic position of conduction and valence band for

electrons and holes respectively in the dot material, i.e. InAs in compar-
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ing with surrounding material, i.e. GaAs. The fact that quasi-free carriers

in bulk GaAs are now confined in all directions in space to several tens of

nanometers, causes their quantized behavior, i.e. formation of discrete en-

ergy spectrum states below energy barrier of the dot. It is worth mentioning

that above the effective energy barrier, occurance of free bulk states takes

place and carriers “captured” by the dot confinement can be “ionized” into

the continuum.

Figure 1.1: Schematic figure of SAQDs. InAs islands reside on the In-rich
wetting layer surrounded by GaAs bulk.

Beside SAQDs fabricated by sophisticated deposition process, it is pos-

sible to synthesize quantum dots by crystal nucleation in colloidal solutions.

The dots obtained this way are called colloidal nanocrystals(CN) or colloidal

quantum dots(CQD) [11, 12].

The synthesis of CQDs takes place in three-component solutions com-

posed of organic surfactants, precursors, and solvents. Precursor compounds

contain material for dot nucleation. Solution medium is heated to a suffi-

ciently high temperature, when the precursors chemically transform into

monomers. Nucleation takes place when monomers reach a high enough

supersaturation level and the nanocrystal growth starts. The temperature

is a very sensitive parameter of nucleation process and must be high enough

to allow for rearrangement and annealing of atoms while being low enough



1.2. Fabrication Technology 4

to allow crystal growth. Monomer concentration is also a very sensitive

parameter. High enough monomer concentration enables relatively small

critical size (the size where nanocrystals neither grow nor shrink) resulting

in even growth of nearly all particles. In this regime, smaller particles grow

faster than large ones (since larger crystals need more atoms to grow than

small crystals) and thus size monodispersivity can be obtained. When the

monomer concentration is depleted during growth, the critical size becomes

larger than the average size present and nucleation becomes very inhomo-

geneous.

Typical CQDs are made of binary alloys such as CdSe, CdS, InAs, and

InP or ternary alloys such as CdSexS1−x. These quantum dots can contain

as few as 100 to 100,000 atoms within the quantum dot volume, with a

diameter of 2 to 10 nanometers. These nanocrystals usually reside within

the insulating dielectric matrix giving the full confinement to the carriers

inside.

Figure 1.2: Schematic figure of CQDs. Each nanocrystal is usually of the
spherical shape and is surrounded by the ligands, which play role of linker
molecules enabling the electronic coupling between the two adjacent dots.

Finally, another group of quantum dots, which will not be considered
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in this thesis, is introduced. One can fabricate quantum dots by additional

confinement to the two dimensional electron gas in specific semiconduc-

tor heterostructure. This additional confinement can be done laterally by

electrostatic gates, or vertically by etching techniques [13, 14] (see Figs. 1.3

and 1.4). By changing the applied potential at gates or by applying external

magnetic field it is possible to change the properties of this type of quantum

dots, sometimes termed as electrostatic quantum dots. These quantum dots

are known so far as the best candidates for practical realization of quan-

tum qubits [15, 16, 17]. Qubits are based on the spins of two electrons in

two coupled electrostatically defined quantum dots. Coupling between these

two dots is tuned by gating and thus spins of two separated electrons can

interact via tunable exchange interaction.

Figure 1.3: Schematic figure of the electrostatically defined quantum dot
by the gating technique. The basis of this structure is the 2D electron
gas confined in the growth direction. Additional confinement in the lateral
directions is reached by the electrostatical gating.

1.2.2 Fabrication Modifications

Regarding the motivation side of the work done in this thesis, crucial ques-

tion can arise “Why is it important to theoretically study quantum dots”?

Indeed, if quantum dots were heterostructures with extremely variational
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Figure 1.4: Schematic figure of the electrostatically defined quantum dot
where the additional lateral confinement for 2D electron gas is obtained by
the physical etching of the structure .

and uncontrollable fabricational outcome then it would be pointless to put

so much effort in their theoretical modeling. If it was possible to control and

modify the outcome of their growth then the great space for their modeling

and engineering would be created, thus justifying theoretical study effort.

Basic fabrication processes of quantum dots has been briefly presented

in section 1.2.1. In the last decade, several modifications of these growth

processes emerged leading to various types of self assembled and colloidal

nanocrystals and certain level of their geometrical and compositional tun-

ability. Some of the state of the art modifications based on SAQDs are

following.

• Post-growth annealing of SAQDs

After completed fabrication process it is possible to thermally anneal

self-assembled quantum dots. Post growth annealing details are given

in, e.g. [18, 19, 20]. The main result is diffusion of In into surround-

ing GaAs matrix and thus spatially increased, energetically reduced,

graded and tunable confinement.

• Quantum posts



1.2. Fabrication Technology 7

After forming of InAs islands on GaAs substrate which is regular step

in fabrication of InAs/GaAs SAQDs [8] it is possible to deposite thin

layers alternating superlattice of InAs and GaAs above it. Due to

possible strain issues, In in the supperlatice diffuses above the In is-

lands, thus forming In rich tubes above each self-assembled In island.

The whole structure is then regularly capped with GaAs matrix and

overall outcome is quantum rod structure, i.e. elongated quantum

dot. Details of fabrication are given in [1, 21, 22]. By controlling the

growth parameters, thickness of layers in superlattice, and their rate,

it is possible to precisely tune In content in the tube and its height.

Additional growth control by using different arsenic sources has been

reported as well[23, 24].

Figure 1.5: TEM image of quantum rods normal to growth direction. Image
taken from Ref. 1.

• Quantum rings

Quantum rings are also derived from SAQDs. Starting from self-

organized InAs dots, the crucial step for the ring formation is a short

annealing phase after the dots have been covered by a thin GaAs

layer [25, 26]. Confinement in this nanostrucutures is stronger than

that in dots because of their altered shape. It has been recently

shown [27] that these structures can exhibit very good intraband de-

tecting properties.
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• Growth-kinetics control

By changing the growth kinetics during the capping of InAs islands

with GaAs, it is possible to tune the dimensions of InAs self-assembled

quantum dots. One has to modify the growth sequence during the cap-

ping of InAs islands in order to tune the thickness and lateral dimen-

sions of the quantum dots while keeping the wetting layer thickness

constant [28].

Some modified and more complex structures based on CQDs are follow-

ing

• Core-shell CQDs

In order to passivate the surface states in conventional CQDs one can

apply the approach where additional layer of the same type, but dis-

tinct semiconductors can be grown spherically around the initial CQD.

In such a way, so called core-shell CQDs can be fabricated. Those

nanostrucures have better luminescence properties [29] since surface

states responsible for decoherence and non-radiative recombinations

are removed. Depending on the band gap ratio of core and shell mate-

rial these structures are divided in two types. In type 1 structures the

conduction (valence) band edge in the core is below (above) the values

in the shell, so the core tends to confine both electrons and holes. In

type 2 alignment only one of the two types of carriers is confined to

the core.

• CQD supercrystal

It is possible to arrange CQDs in superlattice formation in self-assembled

manner during nucleation process. [30, 31] With previously explained
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monodispersivity in Sec. 1.2.1 it is possible to create artificial solids

with sites consisted of CQDs. In order to obtain good transport prop-

erties of these supercrystals, three main directions in technology devel-

opment are fabrication of monodispersed systems, enhanced interdot

coupling and uniform high level doping. Even though technology went

far in development, great challenge still remains in obtaining the CQD

supercrystal with satisfying geometrical monodispersivity and interdot

coupling [32].

Figure 1.6: TEM image of CdSe CQD supercrystals. Image taken from
Ref. 2.

1.3 The Nature of Carriers in Quantum Dots

Carriers in any condensed matter system define optoelectronic properties

of such system. Quantum dots provide confinement for carriers in all three

spatial dimensions giving rise to the atomic-like discrete spectrum. This can

be very useful in optoelectronic applications since semiconductor technology

is already very well developed while discreteness of the spectrum may pro-
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vide very interesting features for possible optoelectronic applications. All

optoelectronic applications are physically based on interaction of external

electromagnetic field and charge carriers inside the considered system. The

term “carrier” in quantum dots may refer to electrons, holes, excitons and

even polarons as a carriers of charge. Undoped dot has all the electrons

in valence band in thermodynamical equilibrium. Only few electrons from

valence band can be thermally or optically excited providing electrons in

conduction band and leaving holes in valence band. Electrons and holes

act as carriers, but they also interact mutually by Coulomb forces forming

excitons.

By suitable experimental setup, for example see Ref. 33 for SAQDs and

Ref. 2 for CQDs, it is possible to dope quantum dots with controllable

numbers of electrons in conduction band per dot. In this case, it is possible

to induce conduction band transitions, i.e. intraband transitions in which

only electrons are involved. In this manner, carriers are electrons, or if they

interact strongly with phonons, polarons. Polaron is in some way complex

particle consisting of phonons and electrons. Quantum mechanically it is

described in the Hilbert space derived as the direct product of electron

fermionic and phonon bosonic space.

The artificial atom picture of quantum dot spectrum is good only for ex-

plaining the “macroatom” effects in quantum dots. For many purposes such

as dominant optical transitions, this analogy with atoms is very useful, but,

as it will become apparent later in the thesis, a quantum dot is actually a

genuine condensed matter system, with many interesting properties that are

all ultimately related to the fact that we have a strong confinement in a crys-

talline matrix. In other words, one can also say that in quantum dots, the

primary effect is a confining small volume effect, but most of the properties
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of a quantum dots come from its crystalline nature. In particular, the latter

is responsible for specific features in the optical characteristics of quantum

dots as well. The most important consequence of its crystalline nature is

that electrons and holes are strongly affected by interaction with phonons.

Due to various types of interactions between electrons and phonons [34] car-

rier physics requires different picture than that of a simple atomic-like, and

it is subject of state of the art research.

1.4 Applications

The applications of semiconductor quantum dots are manifold and difficult

to account for, but still dividable in engineering applications on one hand and

fundamental research applications on the other hand. Confinement proper-

ties of quantum dots resemble those of atoms and thus quantum dots are

often called artificial atoms which provides the basis for variety of fundamen-

tal research regarding confined interacting fermions [35], their spin [16, 17],

cavity electrodynamics [36] etc...

One of the most exciting aspects of quantum dot engineering application

is the usage of the quantum dot state (spin state [15, 16, 17], exciton [37] or

charged exciton) as a qubit in quantum information processing. Coherent

control of an exciton state in a single dot selected from an ensemble of

self-assembled quantum dots has been achieved [37]. This result appears

promising, although the control of a larger number of quantum dot qubits

is not feasible yet, mainly due to the difficulty of controlling qubit-qubit

interactions.

Truly, the main application of quantum dots is in optoelectronics. Tran-

sitions of the carriers between discrete levels and discrete and continuum

levels of quantum dots enable efficient absorption and emission of photons
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together with possible bias controlled harvesting and thus provide excellent

basis for utilizing the dots as active media in detecting and lasing operations.

1.4.1 Interband Optolelectronics of SAQDs

Interband radiative transition is absorption or emission of a photon which in

return creates or annihilates an electron-hole pair(see Fig. 1.7). During the

process, an electron changes its state between the valence and the conduction

band. This effect exists in bulk semiconductor materials and was utilized

extensively in the field of optoelectronics for operation of semiconductor

emitting diodes, lasers, detectors and photovoltaics.

Up to date, the most important application of quantum dots is in quan-

tum dot based interband lasers. The short research history on this very

important subject follows.

The highest probability for radiative processes comes from the carriers

near band edge. The confining effect of low dimensional heterostructures

increases density of states near the band edge which gives the advantage

to these structures in comparison to bulk materials [38]. The difference

becomes more distinct at higher temperatures where carriers are thermally

excited into energetically higher states, thus degrading the radiative transi-

tion probabilities [39]. The increased density of states near the band edge

clearly suppresses this effect, and as a consequence, concentrates injected

carriers near the bottom of the conduction band and the top of the valence

band. Mentioned effect is fully exploited for the case of delta function den-

sity of states which occurs in quantum dots as full 3D confining structures.

The influence of dimensionality on the threshold current was first studied

by Arakawa and Sakaki [40] and later by Asada et al. [41]. They have pre-

dicted that its temperature sensitivity is much smaller for highly confined



1.4. Applications 13

Figure 1.7: Schematic figure of the interband transitions in the semicon-
ductor nanostructures. Dominant transitions in quantum dots (left Figure)
are between bound states with discrete spectrum whereas dominant transi-
tions in quantum wells (right Figure) are between quasibound states with
continuum spectrum.

structures and is nearly temperature independent in the case of three di-

mensionally confined structures - quantum dots. These predictions were

confirmed experimentally by placing a quantum well laser in a magnetic

field [42], mimicking the effect of additional quantum confinement. Finally,

discovery of Stranski-Krastanov growth mode enabled fabrication of high

density ensembles of relatively uniform quantum dots, with low defect den-

sities and consequently led to the demonstration of interband quantum dot

lasers [43].

Beside laser devices, other interesting interband transitions based de-

vices are optical amplifiers [44] and single photons emitters for quantum

cryptography [45].
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1.4.2 Intraband Optoelectronics of SAQDs

In order to access longer wavelengths, one has to use transitions within the

same band. These transitions are called intraband transitions. Low di-

mensional nanostructures exhibit intraband transitions which makes them

advantageous in comparison to bulk semiconductor materials. Therefore,

in the last two decades, semiconductor nanostructures, such as quantum

wells, wires and dots have been recognized as sources and detectors of

electromagnetic radiation in the mid- and far-infrared region of the spec-

trum [46, 47, 48]. Many applications arise by using this far-infrared and

Figure 1.8: Intraband transitions in quantum dots (left Figure) and quan-
tum wells (right Figure). Transitions in quantum dots are between fully
descrete states. Transitions in quantum wells are between subbands, most
prominently between band edges of the subbands.

terahertz part of the radiation spectrum. Atmosphere is transparent for

electromagnetic radiation at two atmospheric windows, namely at 3− 5µm

and 8−13µm. These atmospheric windows enable space optical communica-

tions, remote sensing and detection. Vibrational modes of many molecular

compounds in the 3−17µm part of the spectrum enable their detection. This

can be used in order to measure pollution, monitor industrial processes, de-
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tect hidden explosives [49]. Vast numbers of entities like the human body

are very emissive in terahertz region which can be utilized in night vision

technologies. Engineering areas of medical imaging, astronomy and food

quality control [50] can also utilize devices for efficient terahertz detection.

One dimensional confinement based systems, such as quantum cascade

lasers (QCL), are, up to now, most advanced systems used as active media

for devices based on intraband transitions. Regarding the quantum dots, sig-

nificant progress has been made in their utilization in quantum dot infra-red

photodetectors (QDIPs). QDIPs comprising III-As self-assembled quantum

dots have become a very important technology for the detection of mid- and

far-infrared electromagnetic radiation [51].

Unfortunately, intraband emission in quantum dots has not been ac-

cessed in the desired strength. Up to now, the devices based on quantum

wells still exhibit best performance [52]. The main obstacle in operation of

quantum well-based emitters is electron-phonon interaction which destroys

both coherence and population inversion during the operation on higher

temperatures. Quantum well subbands allow reduced, but still continual

density of states which increases the effect of the electron-phonon interac-

tion. On the other hand, higher temperature, up to 225 K, lasing operations

were observed in quantum well based QCLs in strong magnetic fields [53, 42].

This was understood as experimental evidence that a system with truly dis-

crete states should have a lower threshold current as magnetic field converts

intersubband states into discrete Landau states. From the commercial point

of view it is necessary to avoid the use of high magnetic fields because of

extremely bulky and expensive setup and have a system with truly discrete

states. Examination of SAQDs as potential candidates for effective intra-

band lasing will be done in this thesis.
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Firstly, it was thought that due to the discrete nature of the electronic

structure and the nearly constant energy of LO phonons, the so-called

phonon-bottleneck would occur [54] providing long non-radiative lifetimes

important for obtaining the population inversion. However, a great amount

of experimental data showed the absence of this effect [55, 56]. Non-radiative

lifetime in QDs is still higher than in conventional QCLs.

Magneto-optical experiments in [57, 58] showed that QDs behave like

complex condensed matter systems where electrons and phonons interact

strongly via polar Fröhlich coupling, thus forming quasiparticles, so-called

polarons. Therefore, the simple picture of weak electron–phonon interaction

was not appropriate [59, 60].

The most prominent theoretical justification for a short lifetime of ex-

cited carriers in QDs has been presented in [56, 61], where the lattice an-

harmonicity perturbation enables the energy exchange between different po-

laron modes, thus enabling relaxation towards the thermodynamical equi-

librium. In other words, polarons decay due to relatively fast LO phonon

decay [62, 33] and relaxation times of the order of hundred of picoseconds

were reported [63, 55]. This is still two orders of magnitude larger than in

quantum wells and hence several theoretical proposals were made for inter-

sublevel quantum dot cascade laser. They are either 2-level systems utilizing

the ground-first excited state transition for lasing [64, 65, 66, 67], or 3-level

systems [68] with the lasing transition between higher excited states in the

QDs.

Experimentally, lasing has not been observed yet, but there have been

several reports on the observed intraband photoluminescence based on the

s-p like transitions in the quantum dot cascades [69, 70, 71, 72]. Room tem-

perature intraband photoluminescence was observed in Ref. 73. In [69, 71]
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it was suggested that the dominant transition observed in the PL spectra

is the transition between s-like and p-like states, which was based on nu-

merical calculation of electronic states and optical matrix elements within

the dipole approximation. This resonant s-p like transition requires a de-

tailed investigation in terms of the radiative and non-radiative transition

strengths. In order to obtain lasing, the strength of the radiative transition

has to overcome population inversion losses due to non-radiative transitions.

Therefore, the theoretical description of radiative and non-radiative relax-

ation processes is crucial, and it would be convenient to provide a theoreti-

cal insight which incorporates both, non-radiative and radiative transitions.

This issue will be addressed in the fourth chapter of this thesis.

1.4.3 Optoelectronics of CQDs

Solution processing fabrication of CQDs described in Sec. 1.2.1 stands as

relatively very cheap technology [2] and that fact casts CQDs in research

focus regarding its optoelectronics applications. Beside cheap fabrication

process, CQDs also exhibit enhanced luminescence due to descrete nature

of carriers[74] and core-shell CQDs exhibit even better luminescence than

conventonal CQDs [2].

Even though CQDs are very often used in fundamental research due to

greater monodispersivity of dots when compared to SAQDs, technological

applications acquire increasing interest of the scientific community in the last

decade. CQD are reported as the basis for many potential optoelectronic

devices such as light emitters, detectors, solar cells and electronic transistors.

Due to very good luminescence properties, light emitting diodes(LED)

based on CQDs have been demonstrated [75, 76]. The architecture of CQD

based LED consists of quantum dot thin film layer sandwiched between



1.4. Applications 18

two heavily doped layers called hole and electron transport layer. Metallic

contacts are added on a top of each doped layer and current flows by tun-

neling through CQD layer where injection of electron-hole pairs occurs by

capturing of tunneling pairs into confining potential of a CQD.

Efficent luminescence means efficient absorption and thus CQD can be

utilized as the basis for the photodetecting device. Even more, CQD based

on narrow bandgaps materials such as PbSe or InAs can be used in fabrica-

tion of photodetectors in infra-red region of spectrum. Up do now, infrared

photodetectors are very expensive since silicon cannot support infra-red re-

gion and cheap colloidal processing technology opens new routs towards

obtaining the cheap and effective infra-red photodetector devices. The most

prominent architecture of such device [2, 77] consists of lithographically de-

fined contacts on a top of semiconductor bulk and thin film layer of CQDs

deposited between the contacts (see Fig. 1.9). Applications of CQDs as ac-

tive mediums of photovoltaics devices has been reported as well [78] and

this field undergoes extensive research activities. Many configurations con-

taining all inorganic CQDs active mediums or hybrid active mediums with

other materials such as polymer solar cells have been reported [2]. It is

also believed that effect of increased carrier multiplication in CQDs can be

utilized in these devices [79] which would significantly increase efficiencies

of solar cells even above Shockley-Queisser limit [2]. Applications of CQDs

in production of novel memory type devices has been reported as well [80]

The device architecture, similar to one presented for CQD-based pho-

todetectors, can also be used for novel field effect transistor(FET) devices

(see Fig. 1.9). Thin film of CQDs is deposited between two electrodes

and third electrode can be added on top or bottom of the film parallel

to it [81, 82, 2]. Up to now, the main issue regarding functionality of this
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Figure 1.9: CQD-based photodetector. Thin film of CQDs is deposited
on semiconductor substrate between two electrodes. Similar configuration
holds for CQD-based field effect transistors with additional gating electrode
put on top or bottom of presented configuration.

configuration is good electronic transport between the CQDs which is re-

quired for efficient operation of all these devices. This issue will be examined

in this thesis as well and the main idea relies on the ability that thin CQD

films can be fabricated in the form of supercrystals of CQDs as explained

in Sec. 1.2.2. Initially, these structures exhibited very low conductivity, but

increased interdot coupling by using shorter ligands and doping techniques

enabled observable conductivity with corresponding mobility of the order of

10−2cm2/(Vs) (see Ref. 83). Conductivity in this configuration decreased

with decreasing temperature indicating activated electron mobility. It was

suggested [83] that Mott’s variable range hopping [84, 85, 83, 32] is the

transport mechanism at low temperatures in these disordered, doped and

weakly coupled CdSe NCs.

A strong effort has been put in order to achieve higher electron mo-
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bilities and band-like transport. In order to improve transport proper-

ties, three main directions in technology development are: fabrication of

monodispersed systems, enhanced interdot coupling and uniform high level

doping. Even though technology went far in development, great challenges

still remain in obtaining the CQD supercrystals with satisfactory geometri-

cal monodispersity and interdot coupling [32, 2]. Up to now, the upper limit

of electron mobility has become of the order of ten cm2/(Vs) (Refs. 6, 7, 86).

Such relatively high values of mobility and the decrease of mobility with in-

creasing temperature, were considered as a signature of band transport in

these materials.

Numerous effects act detrimentally when band transport in realistic NSs

is concerned, such as the effects of disorder [32] (nanocrystal size nonuni-

formity, irregularities in the spatial arrangement, nonuniform doping, etc),

traps and the electron-phonon interaction. While the effects of disorder and

traps can be removed at least in principle by the fabrication of high-quality

structures, the electron-phonon interaction is intrinsic to the material and

cannot be removed. Despite this, very little is known about the strength

of the electron-phonon interaction and its effect on transport properties in

NSs. In an ideal NS, if the electron-phonon interaction in the NC were

much weaker than electronic coupling between the NCs, the system would

exhibit band transport where the electron-phonon interaction acts as a scat-

tering mechanism that determines the value of the electron mobility. In the

opposite limit, if the electron-phonon interaction were much stronger than

the electronic coupling between the NCs, the formation of small polarons

– quasiparticles consisting of an electron in the NC dressed by phonons –

would take place. In that case, the electronic coupling between the NCs

acts as a perturbation that allows small polarons to hop from one NC to
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another and such a transport regime is called small polaron hopping. All

these issues will be examined in detail in the last section of the thesis.

1.5 Thesis Outline

This thesis will concentrate on theoretical modeling of optoelectronic proper-

ties within the conduction band of quantum dots since there is large potential

application ground to be utilized based upon it. Detailed physics of carri-

ers has to be determined in order to achieve, at least theoretically, main

quantities regarding intraband physics, such as carrier radiative lifetimes,

coherence lifetimes, non-radiative lifetimes, mobilities of carriers, etc... The-

oretical knowledge of all physical processes in conduction band of quantum

dots will provide information on practical feasibility of quantum dots as ac-

tive media for a range of optoelectronic and electronic applications which

require transport of carriers through conduction band or intraband radia-

tive absorption or emission. Beside applications, studying of the intraband

physics in quantum dots may contribute as well to fundamental knowledge

regarding condensed matter physics.

When it comes to optoelectronic applications and experimental stud-

ies, electrons in conduction band are the most important particles in all

condensed matter systems responsible for the interaction with THz and in-

frared radiation and for the conductivity of the system. They carry the

charge which interacts with external electromagnetic field. Therefore, the

second chapter of the thesis will be dedicated to the study of electronic quan-

tum mechanical intraband spectra in quantum dots. Empirical methods for

calculation of electronic structure based on envelope function formalism will

be introduced. Few simple model examples will be presented in order to

derive general conclusions on electronic structure of 3D confined structures
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and it dependence on quantum dot geometrical parameters. The scientific

contribution to the second chapter will be examination of the intraband elec-

tronic structure of quantum rods, novel heterostructures based on SAQDs.

Motivation for that lies in ability to control certain geometrical and com-

positional parameters of quantum dots which was not possible before them.

By controlling those parameters, one can study dependence of various phys-

ical properties as a function of controllable geometrical and compositional

parameters. Such engineering ability may also provide a good basis for novel

applications.

Beside electrons, quantized lattice vibrations, i.e. phonon spectra of

quantum dots coexists with electrons and influences its optoelectronic prop-

erties mainly through electron-phonon interaction. Therefore, the third

chapter deals with phonon spectra of quantum dots and electron-phonon

interaction. Various models will be presented, namely bulk-like phonon

models for SAQDs and confined phonon models for CQDs. In addition,

electron-phonon interaction within each model will be discussed. The ex-

act treatment of electron-phonon interaction leads to the concept of polaron

and such concept will be introduced in the third chapter as well. It turns

out that polaronic picture of carriers inside the quantum dots is required

together with lattice anharmonicity in order to explain carrier relaxation

dynamics observed in experiments. The scientific contribution to this chap-

ter are theoretical examination of confined phonon modes and intraband

electron-phonon interaction in CQDs. Such consideration revealed strong

electron-phonon interaction which strongly influences transport properties

of CQD spercrystals considered in the fifth chapter.

Optoelectronic properties of any condensed matter system are studied

by applying electromagnetic field to the system and measuring the response.



1.5. Thesis Outline 23

Therefore, well defined theoretical approach of calculation of responses due

to applied fields has to be established in order to explain experimentally

measured responses and to further model considered system for potential

applications. The fourth and the fifth chapter are dedicated to the optical

and transport properties of quantum dots respectively. These properties will

be modeled perturbatively with respect to the external electromagnetic per-

turbation within the framework of the linear response theory. The scientific

contribution in the fourth chapter is derived relation between non-radiative

lifetime between first excited and ground states in quantum dot due to

electron-phonon interaction and optical transition strength between excited

and ground states. Such relation provides additional testing possibilities

in the proposed intraband polaronic picture in quantum dots. It also con-

nects non-radiative lifetime to the radiative lifetime, both of which are very

important quantities for lasing. In the fifth chapter, polaronic modeling of

CQD supercrystals is presented. The formation of polarons was studied as a

function of temperature and the electronic interdot coupling and mobilities

of such polarons were calculated. Conclusions on the nature and regimes of

transport were drawn which is the main scientific contribution of the fifth

chapter.



Chapter 2

Electronic Structure

Electrons in any condensed matter system are charge carriers and as such

they are responsible for the interaction of the condensed matter system with

external electromagnetic field. More complex particles such as polarons have

their electronic component interacting with the same field. Therefore, it is

of crucial importance to develop models for obtaining the electronic spectra

in quantum dots. For rough estimation of optoelectronic properties it is

enough to consider only electronic degrees of freedom and to omit phonons

from consideration.

This chapter deals with methods of obtaining the eigenstates of electrons

and holes residing in semiconductor quantum dots. Typical dimensions of

quantum dots are hundreds of angstroms which gives the estimation that

quantum dot contains ∼ 106 nuclei and even a larger number of electrons

interacting among each other with long range Coulomb forces. Therefore,

applying the full many body Hamiltonian to the problem is clearly impos-

sible and some other smarter and efficient methods should be applied.

Fortunately, there is a wealth of theoretical methods that have been ap-

plied to the calculation of the electronic structure of bulk semiconductors,

24
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many of which can be appropriately extended to quantum dots. All these

theoretical methods can be divided into empirical methods and ab initio

methods. Ab initio examples are density functional theory and tight bind-

ing method. Some empirical methods are empirical pseudopotential method,

density patching method and envelope functions methods. This thesis will

focus on envelope functions methods, namely effective mass envelope func-

tion method and k · p envelope functions method.

The idea of the k ·p method and the effective mass method is to exploit

the fact that carriers of interests in semiconductors mainly occupy valence

and conduction band around Γ-point. The main idea is to form an effective

Hamiltonian for carriers in conduction and valence band by taking into

account exact electron Bloch functions at Γ-point and to perturbatively

treat nearby states with different wavevectors. Historically, k · p models

were introduced in order to study electron wavefunction of bulk electrons,

approximately in vicinity of Γ-point. Considered Bloch wavefunctions at Γ-

point should be taken from all bands where carrier could reside. Using of the

envelope wavefunctions creates space for the extension of the k · p method

to the case of semiconductor nanostructures. This method has therefore

often been applied in quantum dot electronic structure calculations [87, 88,

89, 90, 91]. While possibly limited in the description of some subtle effects,

the k · p method can inherently incorporate the effects of band mixing,

strain, piezoelectricity, as well as the influence of external fields, keeping a

lower computational cost compared to atomistic methods. Family of these

methods is chosen to be the main tool of tackling the electronic structure

problems in quantum dots. Since the main subject of this thesis is intraband

physics of quantum dots, one band approximation will be satisfactory choice

in most cases, especially due to polaronic nature of states in conduction band
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which substantially increases computational demands. In addition, one band

effective mass model is also used for description of electrons in CQDs [92].

The calculation of electronic states in quantum rods presents the main

contribution of this chapter. Quantum rods are complex heterostructures

containing height controllable quantum dot embedded with the quantum

well. Electron states in the conduction band are also expected to exhibit

mixture between the dot and the well states and that is the main reason why

we have chosen to study them. Eight band k ·p method will be introduced in

case of quantum rod’s electronic structure due to compositional complexity

and originality of these structure. One band effective mass model will be

used in order to demonstrate one very exotic feature of quantum rods. The

existence of the bound dot state in the continuum appeared from 8 band

k · p consideration and one band effective mass model was used in order to

prove that such state is entirely due to confinement interplay of the dot and

the surrounding well.

This chapter is organized as follows. Firstly, envelope functions models

are introduced. Some simple cases such as infinite quantum dot and quan-

tum well are studied with effective mass model. The conclusions from this

study will serve to explain results of the 8 band k ·p simulation for quantum

rods. Finally, effective mass model will be used to explain the existence of

the bound state in the continuum in quantum rods.

2.1 Envelope Functions Methods

2.1.1 One-band Effective Mass Model

One-band effective mass model will be derived here by using standard deriva-

tion procedure from [47]. This model represents the simplest form of enve-
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lope functions models.

The full Hamiltonian of an electron in a homogeneous semiconductor [93]

is

Ĥ =
p̂2

2m0
+ V0(r) + Ĥso, (2.1)

where p̂ is the momentum operator, V0(r) the periodic crystal potential

(including nuclei, core electrons and self-consistent potential of valence elec-

trons), and

Ĥso =
~

4m2
0c

2
[∇V0(r)× p̂] · σ, (2.2)

is the spin-orbit interaction Hamiltonian arising from relativistic corrections

to Schrödinger equation. Spin factor σ is a vector of Pauli matrices

σx =







0 1

1 0






, σy =







0 −i

i 0






, σz =







1 0

0 −1






. (2.3)

The wavefunction of an electron in a periodic potential, i.e. bulk semi-

conductors, can be expressed as

Ψnk(r) = unk(r)e
ik·r, (2.4)

where k is the wave vector from the first Brillouin zone and unk(r) is a

periodic function, a so called Bloch function.

Heterostructures are consisted of several domains, of which each is filled

with corresponding homogeneous semiconductor material. If one denotes

each coordinate domain counted by index µ as Dµ then the Hamiltonian

becomes

Ĥ =
p̂2

2m0
+ V̂ µ

0 (r) + Ĥµ
so for r ∈ Dµ (2.5)

where V̂ µ
0 (r) is the periodic crystal potential of the semiconductor of the
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domain µ. The spin-orbit interaction term Ĥso is defined via V̂ µ
0 (r).

However, even though corresponding semiconductors are different, they

are usually very similar, at least in the lattice type they posses. In such

way, entire heterostructure can be seen as a single bulk with the different

physical parameters depending on the coordinate. In heterostructures, the

wavefunction of the electron is not periodic any longer, but can be expanded

in the eigenfunctions of the Hamiltonian of bulk semiconductor of the dom-

inant domain in the heterostructure. This is justified due to the similarity

of the different materials inside the heterostructure.

Ψ(r) =
∑

n

∫

FBZ
χn,ke

ik·runk(r)d
3k, (2.6)

where integration goes over the first Brillouin zone.

Approximately, only a finite number of bands in summation (2.6) can

be included in formalism. Model is called one-band if only conduction band

Bloch function in Γ-point is included or multi-band if Bloch functions from

lower bands in Γ-point are included.

For intraband physical process, it is enough to consider only the one-

band model. Furthermore, in heterostructures as well as in bulk electrons

reside usually at the point k = 0. This implies that electron wavefunction

slowly varies in space containing waves eik·r with small values of k. In such

small range of possible values of k, one can assume that Bloch function u0k

does not depend on k. One then gets

Ψ(r) = u0(r)

∫

FBZ
χ (k) eik·rd3k = ψ(r)u0(r), (2.7)

where the function χ (k) represents Fourier transform of the envelope func-

tion ψ(r)
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In order to form a differential equation for envelope function, one has to

examine how heterostructure Hamiltonian (2.5) acts on the envelope func-

tion. By straightforward insertion one gets

ĤΨ(r) =

∫

FBZ
Ec (k, r)χ (k) eik·ru0(r)d

3k. (2.8)

Using the crystal eigenenergies Ec (k, r) in the last expression is justified

since the original wavefunction of the bulk semiconductor is unk(r)e
ik·r and

not the approximation un0(r)e
ik·r. Also, the dependence on the coordinate

r is retained in the crystal eigenenergies to account for the heterostruc-

ture inhomogeneity. Furthermore, crystal eigenenergies can be expanded in

Taylor series around k = 0 and expressed in terms of effective masses as

Ec (k, r) = Ec0(r) +
~2

2m∗(r)k
2 which gives

ĤΨ(r) = Ec0(r)u0(r)ψ0(r) +
~
2

2m∗(r)
u0(r)

∫

FBZ
k2χke

ik·rd3k (2.9)

wherem∗ represents effective mass of electron in conduction band. By using

the rule for Fourier transform of the function derivative one gets

Ĥψ0(r) = Ec0(r)ψ0(r)−
~
2

2m∗(r)
∇2ψ0(r), (2.10)

Finally, the eigenproblem for envelope function in one band approximation

can be written as

− ~
2

2m∗(r)
∇2ψ0(r) + Ec0 (r)ψ0(r) = Eψ0(r), (2.11)

which represents Schrödinger equation for envelope function. Since the ef-

fective mass m∗(r) generally depends on coordinates, one has to modify

Eq. (2.11) in order to achieve Hermicity of the effective Hamitlonian. This
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can be done in the following manner

−~2∇ 1

2m∗(r)
∇ψ0(r) + Ec0 (r)ψ0(r) = Eψ0(r), (2.12)

Eigensolutions and eigenenergies of an electron in conduction band of

heterostructure are obtained using the equation (2.12). For more compli-

cated physics of interband transitions it is necessary to include more bands

in expansion (2.6).

2.1.2 8 Band k · p Model

The presented derivation of the envelope function formalism relies upon

expansion of the crystal eigenenergies around k = 0 point introducing the

effective mass. Effective mass model can also be seen as the simplest form of

the k ·p models. (The difference is still that k ·p method does not “a priori”

use the empirical effective mass parameter) In this section, k · p formalism

will be derived without introducing any phenomenological parameters such

as effective mass. The aim of this section is to explain mathematical and

quantum mechanical background of the k · p models. Detailed information

on the models can be found elsewhere in the literature (e.g. Refs. [93, 94]).

The derivation procedure is original compared to standard ones found in

literature.

In order to study full excitonic features of semiconductors, one has to

include all valence bands and conduction band into account. Even if one

is only interested in electrons from the conduction band, one can consider

valence bands as well since there always exists an admixture of valence Bloch

wavefunctions in an electron state in the conduction band.

As already stated, general electron wave function in a heterostructure can
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be expanded in wavefunctions of the Hamiltonian (see Eq. (2.6)) together

with additional approximation that Bloch wavefunction does not depend

significantly on the wavevector k around k = 0 point:

Ψ(r) =
∑

n

∫

FBZ
χn,ke

ik·run0(r)d
3k =

∑

n

ψn(r)un0(r), (2.13)

where ψn(r) are envelope wavefunctions corresponding to the band n. Func-

tions χn,k are obviously Fourier components of the corresponding envelope

functions. It has been pointed out in Ref. [95] that (2.13) is an exact rep-

resentation of the eigenfunction Ψ(r) if the same ui functions are used

throughout the whole heterostructure, although corresponding spectrum

and effective masses will be left to vary in space. This practically means

that one electron Hamiltonian (2.1) acts with different energy eigenvalues

on the Bloch function at Γ-point depending on the coordinate inside the

heterostructure. All these assumptions were made as well in the previous

section. However, for the case in the previous section, the approximation

that unk(r)e
ik·r can be replaced with un0(r)e

ik·r has been done after acting

of the Hamiltonian on the assumed wavefunction (Eq. (2.8)) and the crystal

eigenenergies were approximated. Here, this approximation has been al-

ready made and the aim is to obtain the effective acting of the Hamiltonian

to the approximated wavefunction in order to avoid using of the effective

mass as input parameter.

Wavefunction (2.13) consists of linear combination of the products of

the slow varying envelope function factor and fast varying Bloch factor.

The aim is to derive differential equations for envelope functions by acting

with Hamiltonian (2.5) upon wavefunction (2.13) and then projecting ob-

tained equation onto each Bloch function un0(r). Projection on each Bloch
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function un0(r) means multiplying with conjugate of un0(r) and integrating

over the unit cell. Only fast varying factors similar to un0(r) will follow

this integration while the slow envelope function factors will remain in the

equation and obtained equation would represent the equation for envelope

functions.

By acting with Hamiltonian (2.5) upon wavefunction (2.13) one obtains:

ĤΨ(r) =
∑

n

[

(

p̂2

2m0
un0(r)

)
∫

FBZ
χn,ke

ik·rd3k+ (2.14)

+
(

V0(r) + Ĥso

)

un0(r)

∫

FBZ
χn,ke

ik·rd3k−

− ~
2

2m0
un0(r)

∫

FBZ
(ik)2χn,ke

ik·rd3k−

− ~

m0
(p̂un0(r)) ·

∫

FBZ
ikχn,ke

ik·rd3k

]

,

where spin-orbit coupling term acting on envelope function factor has been

omitted since it is proportional to k and for small values of k it is much

weaker then spin-orbit coupling term acting on Bloch factor. Integrals over

the first Brillouin zone are becoming envelope functions and corresponding

derivatives (due to the properties of Fourier transform):

∫

FBZ
χn,ke

ik·rd3k = ψn(r) (2.15)

∫

FBZ
ikχn,ke

ik·rd3k = ∇ψn(r)

∫

FBZ
(ik)2χn,ke

ik·rd3k = ∇2ψn(r).

Eq. (2.14) can be projected on each Bloch function um0(r). The projection

means multiplying the entire Eq. (2.14) by um0(r)
∗ and integrating over the

unit crystal cell. Slow varying envelope function can be considered as nearly

constant over single unit cell and integration is done only over fast varying
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factors.

This is analogous to the case of solving the linear numerical problems

(such as differential equations or differential equations eigenproblems) by

wavefunction expansion method or method of moments, where wavefunc-

tions are considered as vectors and corresponding linear numerical problem

is seen as obtaining the matrix form representation of the differential equa-

tion within the chosen wavefunction basis.

Here situation is more complex as the operator (2.5) considered lives

in the space which is formed as the direct product of the space formed

by fast varying functions un0(r) and slow varying enevelope functions eik·r

respectively. This step can be then seen as the direct representation of the

operator (2.5), but only in the factor space defined by fast varying functions

un0(r).

Slow varying envelope functions can be considered as constant over the

unit cell and integration goes only over fast varying functions such as Bloch

factors, potential V0(r) and Ĥso. In order to proceed further, the following

identity will be used:

〈um0|
p̂2

2m0
+ V0(r) |un0〉 = δmnEn0(r) (2.16)

where En0(r) is the Bloch eigenenergy of the n − th band in the Γ-point.

Since heterostructure potential has its periodicity dependent on the coordi-

nate domain Dµ, En0(r) is varying over the domains correspondingly.

Each projection gives one coupled equation for envelope functions ψn(r).

The total number of equations is then the same as the number of unknown

envelope functions, i.e. the number of included bands.

After choosing the bands for state expansion, the whole eigenproblem
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reduces to the Z × Z (where Z is total number of included bands) system

of linear differential equations for envelope functions. Matrix Hamiltonian

of such system is:

hmn =

(

En0(r)−
~
2

2m0
∇2

)

δm,n− (2.17)

− i~

m0
〈um0| p̂ |un0〉 · ∇+ 〈um0| Ĥso |un0〉 .

In order to study full excitonic features of quantum dots the natural

choice is to include the highest states in the valence band and the lowest

states in the conduction band. For zincblende crystals such as InAs and

GaAs that are mostly of interest here, the valence structure consists of three

bands: light hole band, heavy hole band and spin-split-off band. When

combined with spin degrees of freedom, there are total 8 bands included in

the formalism. One can in principle work in this basis, although it is more

usual to work in the basis of the total angular momentum operator |JJz〉

that diagonalizes the Hamiltonian at k = 0. Matrix elements 〈um0| Ĥso |un0〉

and 〈um0| p̂ |un0〉 are calculated by using the crystal symmetry properties of

the homogeneous semiconductor and detailed expressions can be found in

Ref. 93.

As well as in the one band case, one must to perform some kind of modi-

fication of explained method in order to make Hamiltonian (2.17) hermitian.

That can be done similarly as in Eq. (2.12) by rearrangement of envelope

function operators. Many of the existing quantum dot electronic structure

calculations [89, 87] use heuristic, symmetrical arrangement of operators

f(r)∇i∇j →
1

2
(∇if(r)∇j +∇jf(r)∇i) , (2.18)

f(r)∇i →
1

2
(∇if(r) + f(r)∇i) .
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Finally, 8 band k ·p models is formulated as diagonalization of the 8× 8

operator matrix for envelope functions. Eigensolution of such matrix is cor-

responding vector where each dimension represents the space of one enve-

lope function. Thus, one deals with system of multiple differential equations

eigenproblem. The detailed form of matrices for the basis of the total angu-

lar momentum operator |JJz〉 that diagonalizes the Hamiltonian at k = 0are

given in Ref. 93.

2.1.3 Influence of Strain and Löwdin Correction

The theory presented in section 2.1.2 can be further extended to account for

additional effects that in specific circumstances can greatly affect electronic

structure. The important one is strain field arising from lattice mismatch of

dot and bulk region. Second one is inclusion of additional bands in pertur-

bative manner.

Strain is caused by the displacement of constituent atoms from their equi-

librium positions. Microscopic potential for electrons inside the condensed

matter system changes accordingly. Strain can be induced by lattice mis-

match during the growth of heterostructures with different lattice constant

or arises due to lattice vibrations. Nevertheless, one has to theoretically in-

corporate and model the effect of displacement field on microscopic potential

for carriers.

Displacement field defines the strain tensor components as

eij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (2.19)

where ui is i − th Cartesian component of the displacement field and xi is

just the i− th Cartesian component of the coordinate.
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In order to incorporate strain effects due to lattice mismatch in k·pmodel

one has to find the strain distribution in semiconductors heterostructures.

The most efficient way to do that is to use finite element method to minimize

total elastic energy as described in [96]. Once the strain distribution and

strain components are obtained, one can incorporate them in k · p by using

the theory described in [90, 97] which is here briefly summarized. A case of

the strain homogeneous in space will be assumed. Crystal potential of the

strained crystal is denoted as V←→e (r) and that of unstrained crystal as V (r).

The periodicity of the crystal under the strain is still present, but with a

different deformed unit cell. Basis vectors of deformed unit cell are related

to the original basis vectors by [90]:

a′i =
∑

j

(δij + eij)aj . (2.20)

A point that was located at r =
∑

i xiai can be expressed via new coordi-

nates of the deformed basis vectors r =
∑

i x
′
ia
′
i. The relation between the

old and new coordinates is then

xi =
∑

j

(δij + eij)x
′
j . (2.21)

or in matrix notation:

r = r′ +←→e · r′ (2.22)

The relationship between momentum operators in old and new coordinates

is then up to terms linear in strain

p̂i =
∑

j

(δij − eij)p̂′j . (2.23)
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The transformed strained potential has the form:

V ′←→e (r
′) = V←→e (r

′ +←→e · r′) (2.24)

Returning the notation from r′ to r one obtains the potential V←→e (r +

←→e · r) which now has the same periodicity as unstrained crystal potential

V (r). Bloch’s theorem can now be applied only if the transformed potential

and momentum are used in Hamiltonian (2.1), notated with old coordinates

if one wishes. The real crystal potential V←→e (r+
←→e ·r) is up to terms linear

in strain then given by [97]:

V←→e (r +←→e · r) = V (r) +
∑

ij

Vij(r)eij , (2.25)

where

Vij(r) =
1

2− δij
lim←→e →0

V←→e (r +←→e · r)− V (r)

eij
(2.26)

The factor in front of the limit is due to identical terms arising from ex-

changing the indexes i and j. The exact derivation of this perturbation

term is given via considerations based on microscopic approach and crystal

point group symmetry properties and is given in Ref. [97]. New strained

k · p envelope function matrix in old coordinate notation reads as [90]:

h′mn = hmn +D0
mn +D1

mn, (2.27)

where

D0
mn = −

∑

ij

eij

〈

um0

∣

∣

∣

∣

p̂ip̂j
m0

∣

∣

∣

∣

un0

〉

+
∑

ij

eij 〈um0 |Vij(r)| un0〉 (2.28)



2.1. Envelope Functions Methods 38

and

D1
mn = −i ~

m0

∑

ij

eij 〈um0 |p̂j| un0〉∇i. (2.29)

The terms that couple the strain to the spin-orbit interaction have been

neglected as is exclusively done in the literature [91, 89].

The finite number of chosen bands included in the k · p model is clearly

an approximation. Not included bands may influence the model and a smart

way of their inclusion should be applied. Bare increasing of the number of

included bands increases computational cost significantly and cannot be ap-

plied. There is, however, a more attractive approach due to Löwdin [98],

which allows one to perturbatively take into account the influence of the

states outside the chosen manifold (so called remote bands), and at the

same time keep the size of the Hamiltonian matrix at the same value. Within

Löwdin’s perturbation theory, the Hamiltonian U with second-order pertur-

bative corrections due to the influence of remote bands is given by

Uαβ = Hαβ +
∑

r

HαrHrβ

E −Hrr
, (2.30)

where the indices α and β refer to states within the chosen bands, and r to

all other bands. The eigenvalue problem of U obviously a nonlinear problem

since the energy E explicitly appears in the expression for the correction.

It is convenient then to replace E with specific value. The logical choice

is to replace E with EV when indices α and β run through valence band,

and with EC when the same indices run through conduction band. When

indices α and β run through both conduction and valence bands then E is

replaced with 1
2 (EC + EV ) [90]. The exact matrices containing the effects

of strain and Löwdin correction are given in Refs. 93 and 90.
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2.2 Quantum Dot and Well with Infinite Potential

Barriers

In order to obtain simplified picture of various interesting phenomena dis-

cussed in this thesis, the effective mass model will be firstly demonstrated

on a three simple examples: the cuboid quantum dot, spherical quantum

dot and quantum well, all with infinite potential walls.

Consider the cuboid quantum well with infinite potential walls which

will be subsequently referred to as quantum box. The base of such cuboid is

a square with side length a with its height denoted as d. Envelope function

eigenproblem described by equation (2.12) for infinite cuboidal symmetry is

solved with separation of variables. Thus, i-th eigenvector for such eigen-

problem is:

Ψi (x, y, z) =
2
√
2

a
√
d
sin

(

xnixπ

a

)

sin

(

yniyπ

a

)

sin

(

znizπ

d

)

(2.31)

with energy

Ei =
π2~2

2m∗a2
(

ni2x + ni2y
)

+
π2~2

2m∗d2
ni2z . (2.32)

For d > a first excited state is with quantum numbers nx = 1, ny = 1, nz = 2

and second and third one are degenerated due to square shape basis.

In the same manner, one band model for infinitely deep well is solved by

separation of variables and eigensolutions are

Ψkx,ky,n (x, y, z) =

√
2

a
√
d
eikxxeikyy sin

(znπ

d

)

(2.33)

and corresponding eigen-energies

Ekx,ky,n =
~
2

2m∗
(

k2x + k2y
)

+
π2~2

2m∗d2
n2. (2.34)
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Quantum number n counts well boundstates as subbands with parabolic

dependance of energy on kx and ky.

Electronic structure of colloidal nanocrystals can also be considered

within the effective mass approximation. Colloidal nanocrystals are gen-

erally of spherical shape embedded in insulating dielectric which can be

considered as infinite potential barrier for carriers. Therefore, Eq. (2.12)

can be neatly solved in spherical coordinates. By separation of variables

due to spherical symmetry, following eigenfucntions are obtained for the

quantum dot of radius a and infinite well walls:

Ψlmn (r) =

√

2

a3j2l+1 (αnl)
jl (knr)Ylm (θ, φ) (2.35)

where kn is radial wavevector determined by the boundary condition

Ψlmn (a) = 0, (2.36)

i.e. kn = αnl

a where αnl is the nth zero of the spherical Bessel function of

order l: jl. Ylm (θ, φ) are spherical harmonics. Energy spectrum is given as:

Elmn =
α2
nl~

2

2m∗a2
(2.37)

One can see, from the presented models for spherical and cuboidal quan-

tum dot, that the ground electronic state in quantum dots resembles s atomic

orbital and will be further refered to as s-like electronic state. Furthermore,

first excited state in both cases resembles p orbitals and will be refered to

as p-like electronic state.
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2.3 Electronic Structure of Quantum Rods

2.3.1 Full Simulation for the Electronic Structure

It has been pointed out in section 1.2.2 that one of exotic modifications of

quantum dots are elongated quantum dots, so called quantum rods. Quan-

tum rods are elongated InGaAs quantum dots embedded in a InGaAs quan-

tum well sandwiched by two GaAs bulk regions. They are roughly cylindrical

in shape with relatively very large and fully controllable height-to-diameter

aspect ratios. Such controllability is of great importance and allows experi-

mental study of the electronic structure in terms of the height-to-diameter

aspect ratio. This is the main reason why the electronic properties of these

structures are studied by means of theoretical modeling. The exotic features

such as height controllability and coexistence of the well and the dot appear

very interesting for the potential applications.

A simplified model for geometric and compositional properties of these

nanostructures are presented in Fig. 2.1. This structure consists of the

GaAs/InGaAs quantum well of width h over the region between −h/2 and

h/2. The quantum dot is positioned within the quantum well so that the

bulk region is above and below the dot in the z-direction and the quantum

well is surrounding the rod in the radial direction. In contrast to regular self-

assembled quantum dots with typical heights of a few nanometers, quantum

rods can be grown with heights up to several tens of nanometers. More

details of the fabrication process have been given in section 1.2.2. The entire

structure is optically active giving the combined features of dot, well and the

bulk as it is obvious from PL measurements [1, 99]. The height of the rod

and the width of the surrounding well are the same. This simplified model

assumes that entire structure is cylindrically symmetric, even though such
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QUANTUM
WELL

In Ga   Asx 1−x

z

ρ
0

ρ

GaAs BULK

GaAs BULK

−h/2

h/2

QUANTUM
y 1−y

DOT

In Ga   As

Figure 2.1: Simplified geometric model of a quantum rod. Cylindrical sym-
metry is assumed, so the entire structure can be depicted within the z − ρ
plane. Indium content of the dot region is larger than in the well region, i.e.
x < y. The Figure has been taken from Ref. 3.

strict symmetry has not been reported. However, the general conclusions

that follow do not depend on the exact shape of the rod basis. Therefore,

we choose the circular shape of the basis in order to simplify theoretical

consideration. The quantum rod has higher In content then the surrounding

quantum well which makes the dot energetically deeper than the surrounding

well.

A recent experiment on carrier capture dynamic in quantum rod struc-

tures excited by optical pump in terahertz range[100] imply that quantum

rods are becoming highly attractive nanostructures for future device appli-

cations. Moreover, the most recent report[101] that charged quantum rods

and their quantum well matrix can result in a perforated electron gas (per-

forated electron gas is 2D electron gas with electronless holes dispersed all

over the 2D plain of the gas) has contributed significantly to raising interest
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in these novel structures. It is therefore of great importance to develop a

full theoretical description of electronic and optical properties which would

enable the purpose-engineering of quantum rod structures.

Initial work in this area was focused on the calculation of energy levels

and interband optical properties [1, 21, 102] as well as theoretical exami-

nations of dominant physical effects affecting interband optical properties

[103].

The electronic structure of quantum rods will be calculated using 8 band

k · p envelope functions model described in 2.1.2, due to complex com-

positional properties that these structure exhibit. The strain distribution

was found within the continuum mechanical model[87], with the calculation

based on the finite element method[104]. The size of the box used in cal-

culation of the strain distribution is significantly larger then the size of the

rod and it was chosen by increasing until numerical convergence has been

achieved.

Rods of cylindrical shape were considered and the cylindrical symmetry

approximation [105] was introduced. In such a way, the problem was reduced

from a three dimensional one to a two dimensional one. The Hamiltonian

eigenvalue problem was then solved by using the orthonormal function ex-

pansion method where the basis was formed from the direct product of

Bessel functions in the radial direction and the plane waves in the growth

(z) direction. The cylindrical symmetry of the rods introduces a good quan-

tum number of the z−component of the total quasi-angular momentum mf

which takes the half-integer values [105, 106]. The optical transition se-

lection rules then allow only the transitions with ∆mf = 0 in the case of

z−polarized radiation and |∆mf | = 1 for x−polarized radiation.

The quantum rod material composition and geometric parameters were
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taken in accordance with recent experiments from the literature. The diam-

eter was taken to be equal to 10 nm [1]. The height of the rod was varied

from 2.5 nm to 60 nm, which covers the typical range of quantum rod heights

[1, 21]. The InAs/GaAs short-period superlattice, away from the quantum

rod, becomes an InGaAs quantum well layer with an In composition of 16%

[1] during the growth of the structure. The In content in the quantum rod

is approximately 45% [1]. As it is cylindrically symmetric, i.e invariant on

rotations around z - axis for any angle φ(polar coordinates) such structure

is schematically shown in z - r plain in the upper part of Figs. 2.2 and 2.3

for rod heights of 10 nm and 60 nm. On the same figure is presented profile

of conduction band edge in addition with energy of hydrostatic potential in

the growth direction for r = 0. The position of the ground electronic state is

also outlined on both figures. One can also regard this structure as quantum

well with z axis as growth direction with additional deepening potential in

the radial direction until r = 5 nm which corresponds to rod’s radius.

Different bulk GaAs conduction band bottoms in Figs. 2.2 and 2.3 may

seem surprising. Strain box was not taken big enough in order to relax

strain completely on its edges. The reason for that is the fact that realistic

structures consist of rod arrays and adjacent rods do not allow each other

to relax the strain completely. Anyway, insufficient size of the strain box

influences entire structure uniformly so the confinement effects are not in-

fluenced by the choice of the strain box. For that reason the position of the

conduction band bottom of the entire structure with incorporated deforma-

tion potential correction due to hydrostatic strain increases with increasing

the rod height.

Electronic structure diagram for rod heights of 60 nm and 10 nm is

presented in Fig. 2.4. Wavefunctions module squared for number or relevant
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Figure 2.2: Profile of the conduction band with included additional hydro-
static strain potential for 10 nm tall quantum rod. Inset: Structural scheme
in z − r plain of the structure and compounds involved in building of it.
Dashed line shows the approximate position of the dot-well barrier in radial
direction. The Figure has been taken from Ref. 4.

states are also presented in same diagram for both structures. As already

stated, the relative position of the ground electronic state denoted as A1 is

marked on the Figs. 2.2 and 2.3 so one can estimate the depth of the ground

state in the dot.

Analyzing the quantum well potential deepened with quantum rod, all

electronic states can be seen as bound, (quasi-bound) and free states in

classical manner for the quantum well. Energy of the quasi bound states

is lower than barrier in growth direction and energy of free states is higher

than the same barrier.

Numerical simulation was executed in the subspace defined with basis

functions which form Hilbert space in closed box and thus solutions are

completely discrete. Such a situation can be regarded as approximation if
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in z − r plain of the structure and compounds involved in building of it.
Dashed line shows the approximate position of the dot-well barrier in radial
direction. The Figure has been taken from Ref. 4.

we are dealing with continual spectra as we certainly are, in this case free

states above barrier and quasi bound subbands in the well. All bound states

can be further distributed in three subgroups. The first subgroup consists of

localized states inside the dot whose existence is tailored by the dot. Those

states are labeled with A on Fig. 2.4. The energy of the ground electronic

state A1 slightly approaches the bottom of the bulk conduction band of the

dot material with increasing the dot height as shown on Figs. 2.2 and 2.3.

This is expected since increased dot size toward the bulk limit should bring

the ground state to the conduction band bottom value. However, this effect

is not that strong as expected from Eqs. (2.32). The reasons for that might

be non-infinite realistic barrier, some kind of combined effect of the growth

and lateral direction confinement or simply just insufficient precision of the
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numerical model.

The energy of A-states does not have to be lower than dot - well barrier in

radial direction. In fact, states like A4 for 60 nm height rod and state A2 for

10 nm height rod are so high above dot-well barrier that some pure well states

(which will be introduced in next paragraphs) are below them. As it will

be shown later, these are so called bound states in the continuum. Reasons

why those states exist even for energies higher then the barrier is due to

additional confinement in z - direction. Dot - well barrier in radial direction

is about 2 times lower then barrier in growth direction because In content in

the dot is 3 times smaller then in the well, but the strain induced hydrostatic

potential is higher in the well region than in bulk. Those states behave like

bound states in the infinite dot described by Eq. (2.31). By increasing nz

in those equations increases the number of nodes along the growth direction

which is in agreement with the shapes of dot states. Quantum number mf

from 8 band k · p model plays the similar role to quantum numbers nx and

ny for envelope function quantum box model.

For taller rods energy difference between those bound states decreases,

also in agreement to Eq. (2.32). It can be also seen from Fig. 2.4. For 60 nm

rod height states A1, A2, A3 are in order with energy differences of about

5 meV. For 10 nm rod height the first excited bound state A2 is far from

the ground state A2 and it even exceeds not just the radial dot-well energy

barrier, but the ground well state (which will be be introduced later).

Third state A3 does not exist for 10 nm rods height as number of bound

states in the well and the dot is reduced by decreasing the height of the dot,

i.e. width of the well. However, there are some “bound” states labeled on

Fig. 2.4 with H for 10 nm tall rod and with I for 60 nm tall rod. Some of

those states are somewhat delocalized outside the dot but they still should
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be regarded as dot tailored states. Some of those states are with no nodes

like H states or one node like I states in the growth direction which confirms

the order of their quantization. It may be that these states are hybrid states

arising from the dot states above the dot-well-barrier. Since those states are

surrounded by the well subband continuum then coupling of the dot state

to the continuum may produce these slightly delocalized H and I states.

Since initial electronic Hamiltonian solved was fully Hermitian, all states

are expected to be orthogonalized. H and I states are partially localized to

the dot and at first glance one might think that orthogonality between these

states and A states is not satisfied. However, H and I states have different

orbital quantum number for azimuth coordinate from A states. Since the

quantum number mf corresponds to total angular momentum composed

of orbital and spin angular momentums then states H and I have orbital

quantum number 1 which in combinations with spin quantum number −1
2

gives value mf = 1
2 . A states have orbital quantum number 0 which in

combination with spin quantum number 1
2 gives the same value mf = 1

2 .

Even though A and H states have the same value of mf and the similar look

in radial direction they are orthogonal since their azimuth angle dependences

and spins are different.

The second subgroup appears for energies much higher than dot well bar-

rier in radial direction and lower then dot-bulk barrier in the growth direc-

tion, and those states are completely delocalized outside the rod (labels B,

C and D) They are tailored by the well and will be referred to further as

well states. Those states are, actually, quantum well quasibound states be-

having like plane waves in the radial direction and can be distributed into

subbands according to Eq. (2.33) and Eq. (2.34). Among the well states it is

possible to recognize states from the same subband which have similar look
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i.e. same number of nodes in the growth direction and similar wave behavior

in the radial direction. In such manner, in Fig. 2.4, B denotes the first sub-

band with no nodes in growth direction, C denotes the second subband with

one node in the growth direction, and D denotes the third subband with

two nodes in the growth direction. All those states are behaving like plane

waves in radial direction. Fig. 2.4 shows that by increasing the quantum

number mf it is possible to observe certain parabolic subband. That is in

full analogue to the simple infinite well wave in the radial (x or y) direction

and its parabolic dependence of subbands when quantum numbers kx and

ky increase.

As for the dot states, energy differences between quantum well states

within different subbands with same mf are decreased by increasing the

rod’s height, Eq. (2.34). There is also a larger number of subbands in the

well. This causes more complicated situation in states ordering for taller

rods. The density of states increases and thus interlacing of states from

different subbands increases as clearly seen in Fig. 2.4.

The states which are mainly delocalized but extending to the dot as

well form the third subgroup of bound states, denoted as mixed states. For

example, one of those states is marked in Fig. 2.4 as E0-state. Similar

to them, more delocalized states are denoted as E, F and G which also

form bands as states B, C and D. Their behavior in the radial direction is

different. States E, F and G are not homogeneous waves in radial direction

though they are delocalized. Furthermore, increasing the height of the rod

has no consequence in decreasing of the energy separation between those

quasi-subbands and other bands. Consequently, energy of those subbands

does not depend strongly on the height of the structure or on the width

of the well. The state E0 behave as ground states for E quasi-subband,
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therefore those bands are tailored both by the quantum rod and quantum

well. States F0 and G0 as ground states for subbands F and G could be

added on the diagram, but they are not marked on the Fig. 2.4 as their

exact nature is less clear.

To conclude, by varying the height of the quantum rod structure, it is

possible to tune the energy difference of all bound states in the way those

differences are adjustable in quantum well or quantum dot separately. The

energy separation between consecutive dot bound states is decreasing by

increasing the rod height. The same phenomena occurs for energy difference

between consecutive well states with same mf , but from different subbands.

The described phenomena has an impact on the order of the states as well as

on frequency tunability of absorption spectra of growth direction polarized

incident radiation. This will be more elaborated in section 4.7.

The main conclusion is that electronic spectra in conduction band of the

quantum rods is extremely complex showing features of the pure quantum

dot, pure quantum well and mixed states. There is vast number of hybrid

states partially delocalized in the well and partially localized in the dot. Such

states promise as very exotic for potential applications in optoelectronics

since their boundness may increase the strength of the optical transitions

while maintaining free carrier component important for efficient transport.

2.3.2 Bound States in the Continuum in Quantum Rods

If one takes closer look on the Fig. 2.4 one can notice that energies of some

pure dot states marked with A lie above the energies of well states B. This

exotic case means that fully localized state has an energy higher then some

delocalized states which form the continuum.

Generally, semiconductor quantum dots exhibit full 3D confinement for
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carriers, giving a few bound integrable states with a discrete spectrum below

the barrier, and free non-integrable states with continuum spectrum above

the barrier (for SAQDs). Quantum dots are often referred to as ”artificial

atoms” due to their discrete part of spectrum and discrete optical reso-

nances arising from transitions between bound orbital states. Both atoms

and SAQDs can be ionized, when electrons gain sufficient energy to escape

the binding potential, and subsequently occupy free states - in vacuum in

the case of atoms or bulk in the case of SAQDs.

However, boundness and discreteness of an orbital state in quantum dots

do not come necessarily together. As stated above, quantum rods, exhibit

bound excited state with an energy embedded in the continuum of other free

electronic states, above the ionization threshold. This is a so called bound

state in continuum (BIC). There are various types of BIC reported since

the foundation of quantum mechanics, but none of them were reported for

atomic or condensed matter systems. In what follows, a few BIC reported

are listed.

The first prediction originates back to 1929 when von Neumann and

Wigner showed such a possibility by mathematical construction of a bounded

potential accommodating a BIC [107]. This issue was revitalized by Still-

inger and Herick [108] pointing out, 46 years later, that a BIC could occur

in some specific molecular systems. The first artificial semiconductor nanos-

tructure accommodating the bound state above ionization threshold, was

reported in Ref. [109]. This bound state was argued to be a consequence

of Bragg reflection due to the superlattice. Even though above the barrier,

this state wasn’t surrounded by a continuum of states and it was strictly

speaking a quasibound state with free motion in the lateral direction. Some

theoretical proposals and proofs for the BIC existence were reported for
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more complex quantum mechanical systems. For example, coupled system

of electrons and nuclei in molecules [110] was considered. BIC, as an quan-

tum mechanical interference effect can occur in various abstract models.

Some examples of theoretical abstract systems that support BIC were re-

ported in Refs. [111, 112, 113, 114, 115, 116]. Experimentally, only photonic

crystal systems with the BIC were reported [117, 118]. A theoretical de-

sign of one-dimensional photonic heterostructure, supporting the BIC was

provided in Ref. [119].

One can expect that the quantum rod would accommodate bound states

only below the quantum well barrier in the radial direction. However, due

to bulk confinement in the z-direction, bound states could also appear with

energies above the well barrier where also well continuum states are present

giving the BIC. Such a situation resembles the one from Ref. [109] where a

bound state occurs above the barrier of a superlattice, but it isn’t surrounded

by continuum states because the state itself is an impurity state in the

superlattice, spaced from the continuum superlattice bands. Also, such

a BIC is strictly speaking a quasibound state. The main aim here is to

prove that in the case of a quantum rod, such state above the barrier is

indeed surrounded by the continuum and is indeed bound for a wide range

of parameter space. This has to be done by using some simple model in

order to determine the originating nature of the BIC existence.

Existence of the BIC in quantum rods is purely due to the interplay of

the combined well and dot confinement. In order to prove this statement,

consider the idealized quantum rod structure presented in Fig. 2.1. The

quantum rod is considered isolated from the other quantum rods. We assume

cylindrical symmetry of the entire structure, and the value of the embedding

bulk barrier is set to infinity. The assumption of infinitely high bulk walls
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does not affect the general conclusion since the same conclusion follows from

the full 8-band k · p model where the values for all barriers in the structure

were taken with precise offsets and included strain effects. Now it becomes

clear that this simplified model of realistic quantum rods presents the 3D

generalization of the 2D potential constructed by Robnik et al. [120] in order

to obtain the BIC, with the quantum well as escaping channel. However, it

was pointed out in the same reference that existence of BIC in such potential

is sensitive to perturbation, especially the one which might break the parallel

geometrical shape of escaping channel. That should not be a problem in this

case, since the existence of quality quantum well seems very probable, and

the walls of quantum well escaping channel can be considered parallel to the

infinity.

The simplest approach to confinement effects on electron wavefunction

is to consider one spinless electron single-band envelope function equation

in polar coordinates:

(

~
2

2
∇ 1

me (r)
∇+ Ec (ρ) +Ez

c (z)

)

Ψ(r) = EΨ(r) (2.38)

where

Ec (ρ) =















0 for ρ < ρ0

Ub for ρ > ρ0

and

Ez
c (z) =















0 for − h
2 < z < h

2

∞ for z < −h
2 or z > h

2

Values of the effective mass me (r) are md and mw in the dot and the well

respectively. In the bulk, where the value of the potential is set to infinity,

the value of the effective mass is unnecessary. The potential offset between
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dot and the well region is Ub. Parameters ρ0 and h are the radius and the

height of the QR. Due to infinite bulk barrier and cylindrical symmetry,

one can separate the variables of the wavefunction Ψ (r) = Φ (φ)Z (z)R (ρ).

Furthermore, the solutions for Φ (φ) and Z (z) are Φl (φ) = 1√
2π
eilφ and

Zn (z) =
√

2
h sin

(

nπ
h

(

z + h
2

))

where we introduce good quantum numbers l

and n, integer and positive integers respectively. The remaining Schrödinger-

like equation in the radial direction reads:

− ~
2

2

1

ρ

d

dρ

ρ

me (ρ)

d

dρ
Rnl (ρ)+ (2.39)

+

(

Ec (ρ)− E +
~
2

2me (ρ)

(

n2π2

h2
+
l2

ρ2

))

Rnl (ρ) = 0

Eq. (2.39) can be rewritten as

ρ2
d2R (ρ)

dρ2
+ ρ

dR (ρ)

dρ
+
(

(knd/w)
2ρ2 − l2

)

R (ρ) = 0 (2.40)

where the radial wavenumber depends on quantum number n only and is

defined as

(knd/w)
2 =

2md/w

~2

[

E − Ec,d/w −
~
2n2π2

2md/wh2

]

. (2.41)

Subscripts d and w refer to the dot and well domain, respectively. All

material parameters are constant within each of these regions. For a fixed

n, the wavenumber squared for the dot region (knd )
2 is positive in the range

of energies E > ~2n2π2

2mdh2 . However, the wavenumber squared for the well

region (knw)
2 is negative in energy interval E < Ub +

~2n2π2

2mwh2 .

Therefore, the solution for an energy in the interval ~
2n2π2

2mdh2 < E < Ub +
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~
2n2π2

2mwh2 reads

Rnl (ρ) =















C1Jl (k
n
dρ) for ρ < ρ0

C2Kl (κ
n
wρ) for ρ > ρ0

(2.42)

where the standard Bessel function notation was used. New wavenumber

(κnw/d)
2 = −(knw/d)

2 (2.43)

was introduced which is positive real number for the considered energy inter-

val. The Bessel function of the second kind Yl and modified Bessel function

of the first kind Il are absent from the solution due to their divergent be-

havior in corresponding domains. Boundary conditions at ρ = ρ0 are the

continuity of radial wavefunction and continuity of its derivative divided by

effective mass, and lead to homogeneous system of linear equations in C1

and C2 which has a solution if

κnw
mw

Jl (ρ0k
n
d )

d

dρ
(Kl (ρ0κ

n
w)) =

knd
md

Kl (ρ0κ
n
d )

d

dρ
(Jl (ρ0k

n
d )) (2.44)

By solving this transcendent equation one obtains the discrete energy spec-

trum for fixed n and l and those solutions are numbered with index j. The

Eq. (2.44) has to be solved in the energy range ~
2n2π2

2mdh2 < E < Ub +
~
2n2π2

2mwh2 ,

but further narrowing of this range exists for l 6= 0. Taking into account

the condition that energies of discrete levels have to be above the minima

of effective potential one can show that narrowed energy range for solving

the Eq. (2.44) is ~2

2md

(

n2π2

h2 + l2

ρ20

)

< E < Ub +
~2n2π2

2mwh2 .

Each discrete energy defines the radial wavenumbers knjw/d and κ
nj
w/d which

do not depend explicitly on l (only implicitly, via the solutions for discrete
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spectrum). The corresponding radial wavefunctions are

Rnlj (ρ) =















C1Jl

(

knjd ρ
)

for ρ < ρ0

C1
Jl(knj

d
ρ0)

Kl(κnj
w ρ0)

Kl

(

κnjw ρ
)

for ρ > ρ0

(2.45)

where the C1 is determined by normalization.

For the remaining range of energies, i.e. E > Ub +
~2n2π2

2mwh2 the spectrum

is continual and for each energy the corresponding radial wavefunction is

RnlE (ρ) =















C1Jl (k
n
dρ) for ρ < ρ0

C2Jl (k
n
wρ) +C3Yl (k

n
wρ) for ρ > ρ0

(2.46)

By using the same boundary and normalization condition one can obtain

the constants C1, C2 and C3. There are infinitely many continuum states

for any energy counted by quantum number l, in contrast to discrete part

of the spectrum where boundary conditions do not allow solutions to exist

for values of quantum number l higher than some critical value. Such upper

bound to the quantum number l depends also on quantum number n. For

increasing value of n, the upper bound of l decreases and eventually there

will be no discrete states for some crucial value of quantum number n.

In order to maintain the simplicity, the existence of the BIC by con-

sidering only the case with l = 0 and n = 1, 2 will be demonstrated.

The effective potential for the last eigenproblem in Eq. 2.39 is the ex-

pression given in brackets. The effective potential for n = 1 is Ueff (ρ) =

Ec (ρ) + ∆U (ρ), where ∆U (ρ) = ~
2π2/2me (ρ)h

2 and for n = 2 it is

Ueff (ρ) = Ec (ρ) + 4∆U (ρ). The effective potential for l = 0 and n = 1, 2 is

given on Fig. 2.5. Note that the effective mass depends only on the radial

coordinate since the value of the effective mass in bulk is irrelevant due to
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infinite potential.

For n = 1 continuum states or quasi-bound well states occur for E > Ub+

~
2π2/2mwh

2. For n = 2 bound states might occur for E < Ub+~
22π2/mwh

2,

whereas continuum states occur for E > Ub + 2~2π2/mwh
2. Therefore,

the excited bound state for n = 2 in the well quasi-band continuum for

n = 1 (above the ionization threshold) might occur at an energy between

Ub+~
2π2/2mwh

2 < E < Ub+2~2π2/mwh
2. Note that the first bound states

for l = 0, n = 1, 2 are so called s-like and p-like states.

For the fabricated rods reported in Ref. [1], the In content in the dot

and the well is typically 0.45 and 0.16, respectively, and their radius was

estimated to be around 5 nm. For such a structure one can extract the

value of the dot-well band offset Ub =120 meV, by using the strain effects

included as explained in section 2.3. The height of the rods from Ref. [1] is

in the range 10-40 nm.

In the following, all energies are referenced to the bottom of the con-

duction band of the rod material. For the typical rod height of 10 nm, the

continuum for n = 1 starts at 182 meV, and the p-like bound state for n = 2

is below the n = 2 continuum, starting at 356 meV. The splitting between

s-like ground state and p-like first excited state (which is the BIC) is 200

meV. For the same rod, but with 15 nm height, 2 additional bound states

exist, for l =0 and n =3 and 4, which are also embedded in the continuum.

There are no discrete states solutions for l > 0. By increasing the rod height

more bound states in the continuum are obtained, since new bound states

with higher values of n appear. However, the energy of all bound states gets

lower with increasing the quantum rod height [4], and consequently bound

states with the lowest n might sink under the n = 1 continuum, ceasing

to be BIC. Also, by increasing the rod radius, additional states may appear
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with higher value of quantum number l. These states may also become BIC.

Energy diagram of a 10 nm tall rod calculated by 8-band model is pre-

sented in Fig. 2.4. Energy diagram clearly show the existence of the BIC.

The higher the rod, the higher is the excited dot state embedded in contin-

uum. For the 10 nm tall rod, the splitting between ground state and the

bound state in the continuum is 150 meV. Higher value of s-p splitting is

due to infinite potential barrier in growth direction which was realistically

taken to be finite in 8-band model. In this work we used one-band model

with infinite barriers as a default model in order to get insight in physics

arguments of the BIC existence.

Hereby, the existence of the bound state in continuum has been demon-

strated as a sole consequence of combined well-dot confinement, and for a

wide range of structure parameters, especially the adjustable rod height.

Consider now the general case of discrete states with quantum numbers

n = qn and l = ql. Such states can occur in the energy range

~
2

2md

(

q2nπ
2

h2
+
q2l
ρ20

)

< E < Ub +
~
2q2nπ

2

2mwh2
. (2.47)

(It is implicitly assumed that qn and ql are small enough so ~2

2md

(

q2nπ
2

h2 +
q2
l

ρ20

)

<

Ub +
~
2q2nπ

2

2mwh2 .) We want to find the conditions for which the continuum with

quantum number n = p can embed the given bound state. The continuum

with quantum number n = p exists for energies E > Ub+
~
2p2π2

2mwh2 . Therefore,

if Ub+
~2p2π2

2mwh2 <
~
2

2md

(

q2nπ
2

h2 +
q2
l

ρ20

)

, then a bound state with quantum numbers

n = qn and l = ql can occur in the continuum of quantum number p in the

range of energies ~2

2md

(

q2nπ
2

h2 +
q2
l

ρ20

)

< E < Ub +
~2q2nπ

2

2mwh2 .

On the other hand, if Ub+
~2p2π2

2mwh2 >
~
2

2md

(

q2nπ
2

h2 +
q2
l

ρ20

)

then bound state in

the continuum occurs for energies satisfying Ub +
~2p2π2

2mwh2 < E < Ub +
~2q2nπ

2

2mwh2 .
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Figure 2.5: Illustration of the energy span where a BIC can occur. The ef-
fective potential Ueff for the remaining one-dimensional radial eigenproblem
is given for l = 0 and n = 1, 2. For n = 1 continuum states or quasi-bound
well states occur for E > Ub + ∆U . For n = 2 bound states might occur
for E < Ub + 4∆U , whereas continuum states occur for E > Ub + 4∆U .
Therefore the excited bound state in the well quasi-band continuum might
occur for energies in the range Ub + ~

2π2/2mwh
2 < E < Ub + 2~2π2/mwh

2.
The Figure has been taken from Ref. 3.

The above consideration shows that BIC occurs for higher values of the

quantum number n, i.e. BIC has at least one node in the growth direc-

tion. The quantum rod must be sufficiently tall in order to support at least

two bound states (s-like and p-like) localized in the dot due to the growth

confinement, i.e. with quantum number n > 0. With increasing quantum

number n, the effective potential Ueff (ρ) = Ec (ρ) + ∆U (ρ) might become

a barrier instead of a well, since md < mw. Therefore, the upper bound on

a value of n for which BIC exists is imposed n < h
π

√

Ub

~2
mwmd

mw−md
where mw

and md are effective masses of the well and the dot respectively. It can be

concluded that confinement in the growth direction has to be stronger than
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the confinement in the radial direction caused by the shallower well. At the

same time, well subbands may have energies lower than the bulk barrier,

opening the possibility that their energy equals the energy of the excited

bound state of the dot.

In similar nanostructures, quantum dots in a quantum well (DWELL),

this effect does not exist. Conventional quantum dots have very low height

to diameter aspect ratio and an excited bound state is guided by the radial

confinement, i.e. the excited bound states have nodes in the radial direction

and there is no bound state with nodes in the growth direction. Therefore,

energy of such an excited state cannot be higher than the well barrier in the

radial direction. One thus concludes that quantum rods are unique semicon-

ductor nanostructures with 3D bound state in continuum as a consequence

of their distinct features: high value of height-to-diameter aspect ratio and

existence of the shallower surrounding well.

In summary, it has been proven that quantum rods can accommodate

the excited normalizable state, energetically embedded in the continuum of

the subband of the quantum well embedding it, where the electrons can

be ionized into. Also, it has been proven that existence of such states is

entirely due to the interplay of two different types of confinement, namely

the dot 3D confinement and the well confinement in the growth direction. It

is worth noting that oversimplified picture of the ideal cylindrical symmetry

assumed also plays role of the mandatory condition for the existance of

the BIC. The breaking of this symmetry may cause mixing of the bound

state with surroundings. In such situation, BIC cease to exist, but the state

with high level of localization remains which is the most important property

regarding the THz detection purposes. Any kind of external perturbation

also couples BIC with surrounding continuum and breaks ideal boundness
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of such state. For example phonons might play the role of one such external

perturbation.

QRs are unique structures with BIC. As recently realized structures,

quantum rods have not been extensively studied experimentally, and in-

teresting dynamical features could arise due to the combined properties of

bound and free states.



Chapter 3

Vibrational Structure

Condensed matter systems consist of large number of atoms arranged in the

sites of underlying crystal lattices. The entire Bloch theory of bulk mate-

rials and all electronic structure models for heterostructure materials rely

on the fact that constituent atoms are fixed at the sites. This, however, is

not true since atoms are bound between each other by elastic forces able to

move accordingly. This gives rise to the vibrational spectra of all condensed

matter materials. This vibrational movement can be modeled as a large

number of entangled harmonic oscillators. Quantization of these oscillator

modes gives rise to the phonons. Phonons cause further physical properties

of quantum dots to a great extend. Phonons in any condensed matter system

influence its thermal properties such as heat conductivity [121]. However,

phonons influence the optoelectronic properties of quantum dots as well,

mainly through the electron-phonon interaction. The main aim of this chap-

ter is to present models of obtaining the phonon spectra in semiconductor

heterostructures and to present models of electron-phonon interaction. In

this way, electron and phonons are two main types of particles in quantum

dots governing their optoelectronic properties.
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Standard models of vibrational structure in solids are readily divided

into two big groups. The first group of models is based on microscopic

consideration of ion displacements as a displacements of each ion separately

uµ (R) [121] where R is position of lattice site and superscript µ denotes

position of the µ-th atom within the unit cell for lattices with the basis. Such

approach is feasible only to the bulk case due to crystal symmetry of the

bulk. SAQDs are embedded within the host, bulk semiconducting material

of the same crystal lattice type as the dot itself. The lattice type of the

entire structure remains the same and only strain could arise due to lattice

constant mismatch. Therefore, bulk model for phonons can be applied to

study vibrational structure of SAQDs and it is done so in this thesis.

However, when it comes to CQDs, bulk model cannot be applied since

nanocrystals are usually embedded within the host insulating material, dif-

ferent from the semiconducting material of the nanocrystal. For such case it

is better to use continuum models where ion displacement is considered as

continuum field uµ (r) which can be determined by the classical continuum

mechanics and electromagnetism approach. Furthermore, continuum mod-

els are easily adjusted to the case of small nanocrystals giving the confined

phonon modes.

Regardless of the model used, two main types of vibrational modes exist

in solids, namely optical and acoustical modes [121]. These types of modes

arise directly through the consideration of phonon modes in bulk materi-

als [121]. Continuum models are more empirical and are adjusted to each

group of modes. For optical modes of polar semiconductors one can apply

dielectric continuum model and for acoustic modes of all semiconductors

elastic continuum model.

The contribution of this chapter reflects in applying the continuum mod-
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els in order to obtain discrete phonon spectra in CQDs. It turns out that

the strength of the coupling (the strongest coupling comes from longitudinal

optical phonons) is significant enough that formation of polarons takes place

and that will be further studied in the last chapter.

Beside this contribution, the bulk model of phonon modes in SAQDs will

be used in order to demonstrate formation of polarons in SAQDs. By using

such polaron picture, one can explain the absence of the bottleneck effect

predicted in SAQDs. Results of this consideration will be further used in the

fourth chapter of the thesis where the connection between the non-radiative

lifetime due to electron-phonon interaction and optical matrix element will

be demonstrated.

3.1 Bulk Phonon Modes in SAQDs

Detailed consideration of bulk phonon modes is given in Ref. 121. Phonons

in bulk are divided into acoustical and optical and each of these groups con-

tains two branches of transversal and branch of longitudinal modes for the

case of solids with diatomic basis of the unit cell which are solely considered

in this thesis. Displacement for each site R, basis atom µ and phonon mode

with wavevector k from a branch s is given as

u
µ
s,k (R) =

1√
N

ǫµs (k) e
ik·R, (3.1)

where ǫ
µ
s (k) is polarization vector for mode with wavevector k from the

branch s and N is the number primitive cells in the bulk material. Polar-

ization vectors obey orthonormality relation:

∑

µ

ǫµs (k) · ǫµ∗s′ (k) = δs,s′ , (3.2)
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and completeness relation:

∑

s

ǫµs,i (k) · ǫν∗s′,j (k) = δi,jδµ,ν , (3.3)

where subscripts i and j denote Cartesian components of corresponding

vectors. Therefore, all modes are mutually orthonormalized:

∑

R,µ

uµs,k (R) · uµs′,k′ (R) = δs,s′δk,k′ . (3.4)

Second quantization starts with introduction of annihilation and creation

operators instead of the displacement and momentum operators of each ion:

ûµ (R) =
∑

s,k

√

~

2MµΩs,k

(

âk,s + â†−k,s

)

u
µ
s,k (R), (3.5)

and

p̂µ (R) = −i
∑

s,k

√

~MµΩs,k

2

(

âk,s − â†−k,s
)

u
µ
s,k (R). (3.6)

where Mµ denotes mass of the µ-th ion in the polar bulk and Ωs,k denotes

frequency of the bulk mode k In terms of new operators Hamiltonian reads

as [121]

Ĥ =
∑

s,k

~Ωs,k

(

â†s,kâs,k +
1

2

)

. (3.7)

It is very difficult to entirely model the vibrational structure of bulk mate-

rial in this way since the eigenproblem of the motion equation of all atoms

is untrackable. Therefore, dispersion curves for frequencies Ωs,k are readily

directly measured from experiments and up to date, these branches are very

precisely obtained in the literature for all solids of interest. Acoustic modes

have linear-like behavior, whereas optical modes are nearly constant, espe-

cially in the vicinity of Gamma point [121]. In polar semiconductors, LO
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branch is split from other optical branches (transversal). This is because

longitudinal propagation of the phonon wave couples with polarization field

produced by the same mode. This issue will be addressed in sections re-

garding the continuum models.

3.1.1 Electron-Phonon Interaction in Bulk

The electron-phonon interaction can be examined within the scope of pre-

sented bulk model. However, empirical assumption is made that conducting

carriers, electrons and holes, for which carrier-phonon interaction is exam-

ined are free from ions, and all other electrons from lower bands are con-

sidered as bound to ions. The exact nature of coupling will be considered

later. One can write down the full Hamiltonian of the system having one

conduction electron, ion with non-conductive electronic shell core and their

mutual interaction [122]:

H =
p2

2m0
+Hph +

∑

Rµ

V µ
ei (r −Rµ), (3.8)

where the terms on the right hand side of equation are kinetic energy of

electron, harmonic vibrational potential of the lattice and lattice-electron

interaction respectively.

Ions are numbered with Rµ where R accounts for each cell and µ ac-

counts for each subcell, i.e. each type of ion in lattice with basis such as

for diatomic polar compounds, materials of interest in this thesis. Two ions

numbered with µ contained within that cell are positioned at Rµ = R+dµ.

As already labeled, bulk model of phonons will be used for the case of

SAQDs, which are predominantly made of semiconductors with zincblende

symmetry. Therefore, it will be assumed that d1 = 0, i.e. R1 = R and
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d2 =
a
4 (1, 1, 1), i.e. R

2 = R+ a
4 (1, 1, 1) which corresponds to statement that

zinc-blende crystal structure is obtained by duplicating face-centered cubic

lattice and translating the duplicate along diagonal for one fourth of that

diagonal.

Exact position of each “rigid” ion is r = Rµ + uµ(R). Potential in-

teraction between each ion and electron can be expanded in Taylor series

restricted to the second order:

V µ
ei (r −Rµ − uµ(R)) = V µ

ei (r −Rµ)+ (3.9)

+ (uµ(R) · ∇)V µ
ei (r −Rµ)+

+
1

2
(uµ(R) · ∇)2 V µ

ei (r −Rµ) + ...,

where the first term on the right hand side is periodic crystal potential which

gives rise to the band electronic structure or in the case of heterostructures

envelope functions band electronic structure:

He =
p2

2m0
+
∑

R,µ

V µ
ei (r −Rµ), (3.10)

and all remaining terms represent electron – phonon interaction Hamilto-

nian:

He−ph = H
(1)
e−ph +H

(2)
e−ph + ..., (3.11)

where

H
(1)
e−ph =

∑

R,µ

(uµ(R) · ∇)V µ
ei (r −Rµ), (3.12a)

H
(2)
e−ph =

1

2

∑

R,µ

(uµ(R) · ∇)2 V µ
ei (r −Rµ). (3.12b)

Only linear term will be considered in the thesis whereas consideration of the
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quadratic term can be done as well. However, it is expected that quadratic

term is of several order of magnitudes weaker then linear term.

Linear Electron-Phonon Interaction Term

The first term on right hand side of (3.11) is linear in ion displacement.

Firstly, one has to expand the electron ion interaction in Fourier series

V µ
ei (r −Rµ) =

1

N

∑

q

V µ
q e

iq·(r−Rµ), (3.13)

where V µ
q is Fourier component of electron-ion interaction.

Putting (3.5) and (3.13) in (3.12a) and taking into account that

∑

R

eiq·R =















N if q reciprocal lattice vector

0 if q not a reciprocal lattice vector,

(3.14)

one obtains:

H
(1)
e−ph =

∑

k,s

Mk,s (r)
(

âk,s + â†−k,s

)

eik·r, (3.15)

where

Mk,s (r) =
i√
N

∑

G,µ

√

~

2ωk,sMµ
(k −G) · ǫµs (k)V µ

k−Ge
iG(dµ−r), (3.16)

and G represents reciprocal lattice vector, i.e. eiG·R = 1 for each R and G.

Due to product k ·ǫµs (k), dominant terms stem from longitudinal modes.

In principle Fourier components (3.13) contain two main types of forces

towards electrons: short-range and long-range electrostatic forces, i.e. V µ
k =

V µ
short(k) + V µ

long(k) . Coefficients (3.16) are non-trackable using ab-initio

physics, but one must approach problem semi-empirically. Outcome of such
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approach is briefly summarized in what follows.

• Long range forces and polar coupling to LO phonons.

In principle, nuclei charge causes Coulomb type of potential which acts

on all electrons. However, realistic situation is quite more complicated.

Non-conductive electrons bound to ion are following the nuclei in their

movement. Thus, one conduction electron feels screened Coulomb po-

tential which is practically zero potential for non-polar semiconductors

such as Si or Ge. In polar compounds such as III-V compounds there

is net charge transfer from one ion to another which gives rise to ef-

fective dipole moment which can be felt from other remote electrons.

Therefore, one has to consider effective Coulomb electrostatic poten-

tial between conductive electron and ion-bound-electrons system with

Fourier component

V µ
long(k) =

(−1)µβ
k2

(3.17)

where factor (−1)µ comes due to the fact that different ions within the

same unit cell carry opposite charge. Factor β is just suitable factor

of proportionality which carries information on microscopic nature of

coupling beyond present scope. For example it carries information on

geometrical structure of ion, screening effects and net charge caused

by transfer from second ion in the primitive cell of polar compounds.

The dominant terms in effective Coulomb electrostatic potential come

from long wavelengths modes fro small k. Therefore, Fourier compo-

nents V µ
long (k−G) are assumed to be significant only for G = 0.

For LO modes one can approximately write k ·ǫµLO (k) = (−1)µk
∣

∣ǫ
µ
LO

∣

∣

since different ions within the same unit cell oscillate in opposite di-

rections. This also means that only LO modes significantly couple
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to electrons via long range forces. Optical phonons are nearly dis-

persionless and for simplicity, a constant LO phonon energy ωLO is

assumed. With all that, coefficients (3.16) for the electron-LO phonon

interaction via short range forces read as

Mk =
i√
N

√

~

2ωLO

1

k
β
∑

µ

∣

∣ǫ
µ
LO

∣

∣

√

Mµ

(3.18)

This type of interaction is readily seen as charged dipoles oscillating

in opposite directions creating an effective electric field that electrons

interact with. Again, only LO phonons create this potential.

Another expression for the coefficients (3.16) can be obtained from

dielectric continuum model. Dielectric continuum model will be intro-

duced later in this chapter. It can be applied to any semiconductor

heterostructure and to a bulk as well. The bulk result is very well

known and it is given as [123]:

Mk =
1

k

√

e2~ωLO

2V

(

1

ε∞
− 1

εst

)

, (3.19)

ε∞ and εst are high frequency and static dielectric constants, respec-

tively. This expression will be further used in the thesis.

Now it is possible to relate microscopic conductive electron-ion poten-

tial and macroscopic measurable dielectric parameters:

β
∑

µ

∣

∣ǫ
µ
LO

∣

∣

√

Mµ

= −ieωLO

√

N

V

(

1

ε∞
− 1

εst

)

. (3.20)

This connection can be utilized in the pseudopotential theory of solids

as it gives Coulomb contribution for polar compounds to the pseu-
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dopotentials for the conductive electrons in terms of experimentally

measurable static and high frequency dielectric constants.

• Short range forces and deformation potential coupling to

acoustic phonons.

Short range forces account for entire interaction except for Coulomb-

like interaction between conductive electron and ion with all bound

electrons. For example, Pauli exclusion principle does not allow con-

ductive electron to approach near it due to fermionic repulsion with

bounded electrons of the ion. The most important feature of short

range forces is that they act repulsively onto the conductive electron

in vicinity of the ion. Therefore, short range potential contains delta-

like singularity near the ion. Also, those forces are approximately the

same for all types of ions within the unit cell.

Since the microscopic nature of short range interactions is very com-

plex, the Eq. (3.15) cannot be further simplified as it was done for

long range Coulomb type of interaction. Instead, it is easier to ob-

serve acoustic vibrations as time varying strain field. As explained in

Chapter 2 strain induces additional potential to the electrons and that

is the basis for consideration of electron-acoustic phonon interaction.

Deformation potential coupling is coupling of electron with strain-

disordered crystal due to phonon oscillations. Note that only acoustic

phonons produce the strain similar to the strain considered in Chap-

ter 2. Optical phonons modes have very different displacement pat-

terns (opposite oscillations of adjacent atoms in the same unit cell)

and therefore cannot be considered as time dependent strain intro-

duced in Chapter 2. The dominant term in deformation coupling is
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proportional to divergence of displacement field [124]. This can be also

seen through corrections of diagonal elements of the k · p matrix due

to strain (see Sec. 2.1.3). Electron-acoustic phonon coupling will be

considered only within the effective mass model in this thesis. There-

fore, relevant Hamiltonian correction matrix elements in Sec. 2.1.3 are

those defined in Eq. (2.28), i.e. D0
cc (c denotes the conduction band).

They are given as [90, 97]

D0
cc = Ed(exx + eyy + ezz) (3.21)

where so called deformation potential coupling constant for the con-

duction band is defined as:

Ed =

〈

uc0

∣

∣

∣

∣

p̂ip̂i
m0

+
∂V0(r)

∂xi
xi

∣

∣

∣

∣

uc0

〉

(3.22)

This expression for the coupling relies upon the assumption that strain

is homogeneous. However, time dependent strain induced by the

acoustic phonons is not generally homogeneous in space. However, the

modes of the interest are the long wavelength phonons since they are

the only ones coupling to confined carriers. Therefore, induced strain

close to the confined electron can be considered as homogeneous and

proposed form of coupling is then justified.

By using the expression for ion displacement for bulk phonons (3.5)

together with linearly approximated dispersion curve for LA modes

ωk,LA = cLAk and by using the alignment pattern for LA modes k ·
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ǫ
µ
LA (k) = k

∣

∣ǫ
µ
LA

∣

∣ one finally obtains:

Mk =

√

E2
d~k

2ρcLAV
. (3.23)

• Piezoelectric coupling to acoustic phonons.

As already discussed, acoustic phonons can be considered as time de-

pendent induced strain in crystals. Strain also induces piezoelectric

polarization field in crystals lacking inversion symmetry. Such polar-

ization induces electrostatic potential for carriers and that is origin of

piezoelectric coupling of carriers to acoustic phonons. Within the bulk

model the strength of piezoelectric coupling scales with ∼ 1/
√
q, in

contrast to deformation potential interaction where it scales as ∼ √q.

Therefore, for sufficiently large energy spacing (greater then 10 meV),

typically present in quantum nanostructures, deformation potential

coupling to acoustic phonons is much stronger than piezoelectric cou-

pling and therefore piezoelectric coupling to acoustic phonons will be

neglected in the bulk model. However, for the case of CQDs, piezolec-

tric field will be taken into account.

3.1.2 Formation of Polarons in SAQDs

Dynamics of carriers in QDs is of great importance for optoelectronic ap-

plications of QDs. As explained in Sec. 1.4.2, optical transitions between

discrete QD levels can be used for optoelectronic applications and long non-

radiative lifetime is required for radiative transition to take place. Electron–

phonon interaction, if treated perturbatively does not yield agreement with

finite non-radiative lifetimes of excited electrons to the experimentally mea-

sured values. However, if problem of electron-phonon interaction is treated
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in strong coupling regime then formation of polarons takes place and within

such picture it is possible to provide theoretical explanations of the short

non-radiative lifetimes measured in experiments. In this section, simple

theoretical model will be introduced in order to demonstrate formation of

polarons in QDs.

In terms of vibrational structure, SAQDs can be seen as slightly disor-

dered bulk lattice due to presence of the dot material which has the same

lattice type as the surrounding bulk material. Therefore, introduced bulk

model for phonons can be used in order to simulate vibrational structure

of SAQDs together with electron-phonon interaction. The strongest inter-

action is the interaction with LO phonon modes. Electron wavefunctions

of bound states in SAQDs are confined. Because of that bound electron-

phonon interaction in quantum dots is significantly increased. These facts

are the first indicator that electron-LO phonon interaction in SAQDs as-

signed to bound states cannon be treated perturbatively, but instead full

diagonalization of electron-phonon Hamiltonian should be done. This gives

rise to polaron bound states in SAQDs. Entire intraband physics should be

then considered within the polaron picture.

As said in Chapter 1 detailed examination of non-radiative relaxation

mechanisms in SAQDs is needed in order to study and design SAQDs for

possible intraband lasing applications. The best way to study these proper-

ties is to take the SAQD out of thermodynamic equilibrium by light pulse

and to study evolution of a excited state by pump-probe technique [61].

The main source of non-radiative transitions must come from the electron-

phonon coupling. As already outlined and indicated in Chapter 1, the

most recent understanding is that dominant electron-phonon interaction,

i.e. Fröhlich interaction of electrons and longitudinal optical (LO) phonons
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couples electrons and LO phonons strongly [125, 57] and thus polarons in

SAQDs occur. Detailed theoretical demonstration of such effect follows,

manly by following the Ref. 60.

The full Hamiltonian to be considered accounts for the Fröhlich coupling

between electrons and LO phonons, i.e.:

H = He +Hph +

√

e2~ωLO

2V

(

1

ǫ∞
− 1

ǫst

)

∑

ijk

Hk
ij â

+
i âj

(

b̂k + b̂+−k

)

(3.24)

whereHe is the electronic part of the Hamiltonian, Hph is the phonon part of

the Hamiltonian, b̂k and b̂+k are phonon annihilation and creation operators

and âi and â+j are the corresponding operators for electrons. It has been

argued that one has to diagonalize this full Hamiltonian in order to obtain

agreement with results obtained in magneto-optical experiments [57, 58, 56].

The diagonalization procedure from Ref. 60 has been adopted here. The

Hamiltonian, equation (3.24), commutes with the electron number operator

N̂ and, therefore can be solved in each subspace for a constant number of

electrons. Therefore, the one-electron limitation is introduced here together

with the two-level system having an s-like ground state and first p-like ex-

cited state as explained in Chap 1.

The eigenstates of the trivial case of the Hamiltonian without electron–

phonon interaction is a simple uncorrelated eigenbasis formed by the direct

product of a pure electronic eigenstates and pure phonon eigenstates. When

it comes to the full Hamiltonian, as it has been proved in Refs. 58 and 60,

only a finite number of LO modes couples with a finite number of electronic

states in the non-dispersive phonon modes approximation. The limitation

is introduced to a two level electronic system. Those electronic states will

be further labeled with |ψa〉 and |ψb〉, or shortly |a〉 and |b〉, with energies
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Ea and Eb.

For two-level electronic systems only three LO modes are considered

(These modes are not bulk-like and are properly defined via expansion in

bulk LO phonon modes near band edge which only significantly couple to

carriers and can be also considered as non-dispersive). Their further or-

thonormalization [126] and proper unitary rotation gives three new modes

which are coupled to a two-level system with one electron. Only one mode

couples the s-p resonant transition to the classical emission or absorption of

one phonon and will be denoted as B1. The second mode couples the s-p

resonant transition with the self-translation which gives rise to the Franck-

Condon factors [60]. It will be denoted as Bγ
2 = B2+γ where the parameter

γ represents translation. The third mode is properly translated, so it does

not couple to the resonant s-p transition in the one-electron case and can

be omitted from further consideration.

Further space reduction was obtained in Ref. 60 by introducing the ro-

tating wave approximation, by choosing only the coupling states differing by

the detunings δ± = Eb−Ea±~ωLO. The first state has the electron in state

b and “certain phonon configuration”. The second state has the electron in

state a and the same phonon configuration, with only one additional phonon

in mode B1 and “translated” mode Bγ
2 with the same occupation number.

The relationship between these translated and initial modes is determined

by general Franck-Condon factors. By neglecting the polaronic shifts terms,

it is possible to obtain approximate analytical solution of any such 2 × 2

Hamiltonian. Thus, the basis considered is:

∣

∣2′
〉

=
∣

∣b;n01;n
γ
2

〉

,

∣

∣3′
〉

=
∣

∣a;n01 + 1;n02
〉

.
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where n1 = n2 = 0. We additionally take two adjacent states into account,

namely the ground state a with zero phonons (i.e. uncorrelated ground

state) and its coupling state b with one phonon in mode B1 and the “trans-

lated” mode Bγ
2 with the same occupation number:

∣

∣1′
〉

=
∣

∣a;n01;n
0
2

〉

,

∣

∣4′
〉

=
∣

∣b;n01 + 1;nγ2
〉

.

The superscript at the phonon modes denotes translation of the mode from

the bulk one. This is relevant only for the second phonon mode since trans-

lated mode Bγ
2 = B2 + γ couples to the electron in the excited state b only.

Enumeration of the basis states is made to order the states according to their

increasing energy, i.e. we consider the case where the detuning is δ− < 0.

The solution of this model is also given in Ref. 60 and it reads:

|1〉 =
√

1

2

(

1− δ+
R+

)

∣

∣4′
〉

+

√

1

2

(

1 +
δ+
R+

)

∣

∣1′
〉

,

|2〉 =
√

1

2

(

1− δ−
R−

)

∣

∣2′
〉

−
√

1

2

(

1 +
δ−
R−

)

∣

∣3′
〉

,

|3〉 =
√

1

2

(

1 +
δ−
R−

)

∣

∣2′
〉

+

√

1

2

(

1− δ−
R−

)

∣

∣3′
〉

,

|4〉 =
√

1

2

(

1 +
δ+
R+

)

∣

∣4′
〉

−
√

1

2

(

1− δ+
R+

)

∣

∣1′
〉

,

where R+ =
√

δ2+ + 4 |F γ
nCab|2 and R− =

√

δ2− + 4 |F γ
nCab|2 are the Rabi

splittings, while F γ
n = 〈n|n〉γ is the Franck-Condon factor and Cab is a
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normalization constant used to normalize the mode B1 and it reads as

Cab =
e2~ωLO

16π3

(

1

ǫ∞
− 1

ǫst

)∫

d3k
∣

∣

∣
Hk

ab

∣

∣

∣

2
(3.25)

and will be further referred to as the Fröhlich coupling constant. If one

assumes zero energy of the state |1′〉 the eigenenergies of this polaron model

are:

E1 =
1

2
(δ+ −R+) ,

E2 =
1

2
(δ+ −R−) ,

E3 =
1

2
(δ+ +R−) ,

E4 =
1

2
(δ+ +R+) ,

In conclusion to this section, the most important quantity, directly re-

sponsible for formation of the coherent polaron modes, is the Fröhlich cou-

pling constant Cab.

Therefore, the polaron problem consisting of two electron states, one

electron and LO phonon modes has been solved exactly. These polaron

states will be further used in order to examine carrier relaxation as polaron

relaxation in SAQDs due to anharmonicity of crystal lattice.

3.1.3 Anharmonicity Driven Polaron Scattering

Phonons present quantized form of crystal lattice vibrations arising from

harmonic approximation, i.e. under assumption that additional potential

coming from lattice movement is proportional to squared displacements.

Beyond this approximation, one can include anharmonicity terms. Anhar-
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monicity forces enable energy exchange between modes, thus maintaining

the thermodynamical equilibrium. The most dominant anharmonicity term

considered in the literature is qubic term and it was taken into accoun pertur-

batively [127, 128, 129] to calculate non-equilibrium lifetimes of longitudinal

optical phonons.

It is still an issue in which modes it is possible for longitudinal optical

mode to decay into. In Ref. [128] possible channels are briefly summarized.

Theoretically, it has been proposed in Ref. [127] that decaying occurs in

two acoustical modes which is called Klemens channel. Experimentally,

it has been measured in Ref. [130] that Klemens channel is not dominant

one and instead of it authors introduced channel with decaying into one

Brillouin zone edge optical phonon and transversal acoustical phonon. For

GaN in [131] decaying into transverse optical and longitudinal acoustical

has been considered.

However, there is no strong consensus in literature about the particular

decaying channel. In this thesis it will be assumed that non-equlibrium

longitudinal phonons decay in acoustic phonons with the aim to develop

a empirical model which does not take into account detailed microscopical

nature of decaying, but will only hold to account for experimental results of

polaron decaying processes.

Anharmonicity of the crystal lattice can trigger the nonequilibrium po-

laron decaying. Referring to [129], anharmonicity perturbation Hamiltonian
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is of the form

Va =
Ω

3!
√
N

(

~

2M

)
3
2

× (3.26)

×
∑

k,s,k′,s′,k′′,s′′

P (k, s;k′, s′;k′′, s′′)
√
ωk,sωk′,s′ωk′′,s′′

δk+k′+k′′×

×
(

b̂k,s + b̂†−k,s

)(

b̂k′,s′ + b̂†−k′,s′

)(

b̂k′′,s′′ + b̂†−k′′,s′′

)

(3.27)

where constants P (k, s;k′, s′;k′′, s′′) are presenting strength of inter-modal

anharmonic coupling and following [132], which extends [127] one can use

∣

∣P
(

k, s;k′, s′;k′′, s′′
)∣

∣ =
2ργ

ca
ωk,sωk′,s′ωk′′,s′′ (3.28)

where γ is mode-averaged Gruneisen constant and ca is mode-averaged

acoustic phonon speed.

Once the polaron states are obtained it will be possible to find anhar-

monicity driven transition rates from one polaron state to another using

Fermi golden rule and perturbation Hamitlonian (3.26).

3.1.4 Non-Radiative Polaron Lifetime

After excitation, the relaxation of non-equilibrium polarons is enabled by

anharmonic perturbation of the crystal. So far, this has been the most

reliable theoretical explanation of the finite excited carrier lifetime proposed

in Ref. 133. This potential acts only on the phonon factor in the polaron

state. Besides the zero-phonon component in the excited polaron state, there

is also a one-phonon component responsible for non-radiative relaxation of

the excited polaron due to crystal anharmonicity potential. Therefore, the

non-radiative decay rate has to be proportional to the absolute squared value
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of the weights of the relevant components:

Γ (Ei) =
1

4
Γph (Ei)

(

1 +
δ+
R+

)(

1 +
δ−
R−

)

(3.29)

The quantity Γph (Ei) represents the bare decay rate of phonons which would

have polaron energies driven by anharmonicity potential:

Γph (Ei) =
2π

~

∑

j

∣

∣〈j|Va
∣

∣3′
〉∣

∣

2
(3.30)

The summation is performed over all possible decay channels of mode B1

with one phonon. Detailed discussion on decay channels and the derivation

of analytical expression for Γph (Ei) can be found in Ref. 133.

It was pointed out in Ref. 61 that a strong inhibition of this mechanism

occurs at lower values of the energy splitting between the electronic ground

and excited states. In other words, the squared detuning δ2− becomes sig-

nificantly larger than the squared Fröhlich coupling constant, leading to a

simplified linearized ratio of detuning and Rabi splitting:

1 +
δ−
R−
≈ 2
|F γ

nCab|2

δ2−
(3.31)

Furthermore, by using an additional approximation δ+
R+
≈ 1 and F γ

n ≈ 1,

which holds for small values of the parameter γ, one can write:

Γ (Ei) = Γph (Ei)
|Cab|2
δ2−

(3.32)

Therefore, the Fröhlich coupling constant is inversely proportional to the

lifetime of the excited carrier in the quantum dot. It will be demonstrated

in next chapter that the same Fröhlich coupling constant can be linearly
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related to coordinate matrix element responsible for radiative transitions.

Based on that, an expression for the ration of radiative and non-radiative

lifetimes will be derived. Such parameter becomes important when it comes

to exploitation of radiative transition in optoelectronics applications, par-

ticularly lasing.

3.2 Confined Phonon Modes in CQDs

Introduced bulk model can be used in the case of SAQDs since the crystal

symmetry of the bulk approximately remains valid. Fabricational process of

CQDs leaves them surrounded by completely different material and crystal

symmetry of the entire structures remains broken. Surrounding dielectric

material can also be viewed as electronically and vibrationally decoupled

from the CQD. In that case, it is more plausible to use empirical mod-

els for modeling of the vibrational structure of CQDs. In Sec. 3.1.1, final

expressions for electron-phonon couplings were given at the end in terms

of macroscopic measurable quantities and those equations follow from the

continuum models.

The main aim is to obtain the phonon spectra and electron-phonon cou-

pling constants for CQDs by using the continuum models. Obtained phonon

spectra will be further used in the fifth chapter in order to study transport

properties of CQD supercrystals in terms of the phonon spectra.

3.2.1 Elastic Continuum Model

Elastic continuum model gives acoustic-like modes due to elasticity of the

considered continuum system. In order to model acoustic-like modes in

semiconductor materials by continuum displacement field u (r), one applies

appropriate vector differential equation to the displacement field (Note that
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index µ which counts basis atoms within the unit cell is not important here

since the object material is considered as one homogeneous continuum):

ρ
∂2u

∂2t
= (c11 − c44) grad div u+ c44∇2u. (3.33)

The equation (3.33) follows from classical mechanics of continuum elastic

media [123] and relies upon elastic mechanical properties of materials,namely

the mass density ρ, elastic constants c11, c44 and corresponding Lame’s

constants λ = c11 − 2c44 and µ = c44.

3.2.2 Acoustic Modes in Spherical CQDs

The full solution to the equation (3.33) for colloidal spherical quantum dots

is given in Ref. 124. The boundary condition for the Eq. (3.33) is that dis-

placement field vanishes at the dot-dielectric interface [124]. Such boundary

condition may seem incorrect. The surface layer of atoms on each CQD is

practically free and bounded to next layer of atoms positioned beneath the

surface layer. Therefore, free boundary conditions seem as better choice.

However, zero-field boundary condition will be adopted here as it gives far

simpler mathematical treatment and it is not expected that boundary con-

ditions affect overall results greatly. Also, coupling to acoustic-like phonons

is certainly weaker than the coupling to optical-like phonons due to polar

nature of CQDs.

There are two kinds of eigenmodes, namely torsional modes and spheroidal

modes. Three solution counting numbers are introduced, n, l, m in accor-
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dance with spherical quantum numbers. Torsional modes are given as:

Tlmn (r) = cljjl
(

ktljr
)

× (3.34)

×
(

1

sin θ

∂Ylm (Ω)

∂φ
eθ −

∂Ylm (Ω)

∂θ
eφ

)

,

where radial wavenumber ktlj depends only on quantum numbers l and j

(superscript t refers to the torsional mode). In order to obtain possible

values of ktlj one has to solve the following equation for each l:

ktljaj
′
l

(

ktlja
)

− jl
(

ktlja
)

= 0. (3.35)

Different solution for each l are counted by quantum number j. Coefficient

clj is determined by normalization condition. For both types of modes the

following normalization condition is adopted:

∫

d3rTlmn (r) · Tlmn (r) = (3.36)

=

∫

d3rSlmn (r) · Slmn (r) = 1.

Spherodial modes are given as

Slmn (r) = Plj (r)Ylm (Ω)er+ (3.37)

+Blj (r)
∂Ylm (Ω)

∂θ
eθ +Blj (r)

1

sin θ

∂Ylm (Ω)

∂φ
eφ,

where radial functions are defined as

Plj (r) = pljj
′
l

(

hsljr
)

+ qlj
l (l + 1)

ksljr
jl
(

ksljr
)

(3.38)
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and

Blj (r) = plj
jl

(

hsljr
)

hsljr
+ qlj





jl

(

ksljr
)

ksljr
+ j′l

(

ksljr
)



 . (3.39)

For l 6= 0 andm 6= 0, coefficients plj and qlj are determined by normalization

condition above and by the set of linear equations:

plj

[

−c11
c44

hsljajl
(

hslja
)

+ 2 (l + 2) jl+1

(

hslja
)

]

+ (3.40)

+qlj
[

lksljajl
(

kslja
)

− 2l (l + 2) jl+1

(

kslja
)]

= 0,

plj

[

−c11
c44

hsljajl
(

hslja
)

+ 2 (l − 1) jl−1
(

hslja
)

]

+

+qlj(l + 1)
[

2 (l − 1) jl−1
(

kslja
)

− ksljajl
(

kslja
)]

= 0,

The condition that determinant of this system equals zero gives the values for

radial wave numbers hslj or k
s
lj which are connected via c11(h

s
lj)

2 = c44(k
s
lj)

2.

For l = m = 0, only radial wave number hslj and coefficient plj are relevant.

Radial wave number hslj is determined by

−c11
c44

hsljaj0
(

hslja
)

+ 4j1
(

hslja
)

= 0, (3.41)

and coefficient plj is determined by normalization condition. Mode angular

frequencies for both types of modes are determined by ω
s/t
lj =

√

c44
ρ k

s/t
lj .

3.2.3 Dielectric Continuum Model and Generalized Lyddane-

Sachs-Teller relation

Optical phonon modes are strongly influenced by the polar nature of polar

crystals as explained previosly in Sec. 3.1.1. Within the dielectric continuum

model, different microscopic approach is used with the aim to define certain

microscopical quantities depicting the polar nature of the crystal and to
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relate them to the macroscopic measurable quantities. Some conclusions

regarding the nature of vibrational structure in bulk will be used as starting

point in macroscopic models.

Microscopically, net charge which we denote e∗ is transfered from the

ion of one kind to the ion of opposite kind. LO phonon modes have the

adjacent atoms oscillating against each other which creates microscopical

dipoles due to net charge e∗. Created polarization in return affects the

oscillation of the optical mode. One considers continuum approximation

where ion displacement of positive ions is denoted as u+ (r) and of negative

ions as u− (r). It is also assumed that vibrational problem is solved for the

lattice without ionic properties taking only short range elastic forces into

account. Corresponding harmonic frequency to the elastic restoring force

will be denoted as ω0. We are interested in the relative ion displacement

u (r) = u− (r)−u+ (r), i.e. we move the problem in the mass center system

and accordingly introduce effective mass µ = m−m+

m−+m+
. One can show that

driven oscillator microscopic equation for relative displacement reads

µ
d2u (r)

dt2
= −µω2

0u (r) + e∗Eloc (r) , (3.42)

and equation for the macroscopic polarization field is:

P (r) = ne∗u (r) + nαEloc (r) , (3.43)

where e∗ and α are charging and polarizability of electron clouds around two

different adjacent atoms in dipolar semiconductor material. Local electric

field Eloc does not equal to the macroscopic electric field around atoms

E. Induced microscopic polarization gives rise to the electric field Enear

of neighboring atoms acting upon the observed atom. Such field should
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be added to the macroscopic electric field E (r). However, only part of

the electric field from the neighboring atoms should be taken in account.

Namely, one should subtract the electric field which comes from macroscopic,

i.e. averaged polarization P (r) because this part of the field is already taken

into account through our macroscopic approach. One can show [134] that

such field is given by

EP = − P

3ǫ0
. (3.44)

One can write down the expression for local field Eloc (r) = E (r)+Enear+

P (r)
3ǫ0

. Actual electric field originating from nearby atoms is zero Enear = 0

for the case of cubic-based lattices [134]. This gives

Eloc (r) = E (r) +
P (r)

3ǫ0
(3.45)

This is so called Lorentz relation between macroscopic field E (r) and local

electric field. For the sake of better understanding of the theory, one can

assume more general, but still linear relation between local electric field and

macroscopic electric field

Eloc (r) = E (r) + κP (r) (3.46)

where parameter κ measures the strength of polarization influence on the

local electric field. For Lorentz relation it is κ = 1
3ǫ0

.

The gist of dielectric continuum model is to derive the formalism which

will enable treatment of macroscopic values such as macroscopic electric

field, polarization and electrostatic potential in terms of macroscopic, mea-

surable medium parameters such as static dielectric constant ǫ (ω = 0), dy-

namic dielectric constant ǫ (ω =∞), longitudinal and transversal frequencies
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of bulk optical modes at the Brillouin zone center ωLO and ωLO. The model

determines electromagnetic macroscopic quantities inside the medium and

relates them to the displacement field, linearly as previously assumed. All

microscopic parameters such as e∗, α, n and µ can be eliminated and ex-

pressed via macroscopic measurable quantities.

Beside the equations (3.42), (3.43) and (3.46) it is necessary to include

Maxwell equations(in absence of external charges and currents) for macro-

scopic fields E (r) and P (r). It is possible to derive equation which relates

E (r) and P (r) from Maxwell equations. The solutions for mentioned fields

is searched in plane wave form ∼ ei(k·r−ωt) Using these equations one solves

eigenproblem of homogeneous system of equations for fields u (r), E (r) and

P (r) in order to obtain eigenfrequencies for optical modes as done in de-

tails in Ref. [135]. Once the eigenproblem is solved it is easy to derive the

expression for macroscopic relative permittivity ǫr from its definition

P (r) = ǫ0 (ǫr − 1)E (r) . (3.47)

The detailed procedure can be found in Ref. [135] and here, only intuitive

approach will be presented.

Due to Maxwell equation

div (ǫ (ω)E (r)) = iǫ (ω)k ·E (r) = 0

and assumed plane-wave solution only transversal (k ⊥ u (r)) and longitu-

dinal (k ‖ u (r) and ǫ (ω) = 0) modes are allowed. Eigenfrequency of longi-

tudinal modes is conditioned by ǫ (ωLO) = 0, whereas all other frequencies

are equal to the oscillator frequency arising from elastic force and the force

due to induced polarization. In order to obtain this frequency one has to
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eliminate Eloc (r) and P (r) from equations (3.42), (3.43) and (3.46) and to

establish microscopic equation relating displacement field and macroscopic

electric field:

µ

(

d2

dt2
+ ω2

0 −
κn(e∗)2

µ (1− κnα)

)

u (r) =
e∗E (r)

1− κnα (3.48)

One can see here that frequency of non-longitudinal modes, i.e. transver-

sal modes is given as

ω2
TO = ω2

0 −
κn(e∗)2

µ (1− κnα) . (3.49)

By using the equations (3.42), (3.43) and (3.46) one can relate macro-

scopic electric field and polarization end extract expression for dielectric

constant

ǫ (ω) = ǫ0 + n
α− (e∗)2

µ(ω2−ω2
0)

1− κn
(

α− (e∗)2

µ(ω2−ω2
0)

) (3.50)

Now it is possible to introduce following macroscopical parameters

ǫ (∞) = ǫ0 +
nα

1− κnα. (3.51)

and

ǫ (0) = ǫ0 + n
α+ (e∗)2

µω2
0

1− κn
(

α+ (e∗)2

µω2
0

) . (3.52)

Longitudinal mode frequency can be related to microscopic parameters

from the condition that ǫ (ωLO) = 0 and equation (3.50)

ω2
LO = ω2

0 +
n(e∗)2

µǫ0

1− κǫ0
1 + αn (1− κǫ0)

. (3.53)
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Dielectric constant in terms of empirical parameters reads as

ǫ (ω) = ǫ (∞)
ω2 − ω2

LO

ω2 − ω2
TO

, (3.54)

which is well known generalized Lyddane-Sachs-Teller relation. One can

express frequency corresponding to elastic force ω0 in terms of empirical

parameters

ω0 = ωLO

√

ǫ(∞) (1 + κ (ǫ(0)− ǫ0))
ǫ(0) (1 + κ (ǫ(∞)− ǫ0))

. (3.55)

Maxwell equations combined with generalized Lyddane-Sachs-Teller re-

lation provide the basis of dielectric continuum model. However, in order

to obtain expressions for electron phonon coupling it is very important to

keep track of microscopical parameters and their relation to macroscopic

parameters.

3.2.4 LO Modes in Spherical CQDs

One can obtain confined optical modes in spherical nanocrystal by employing

dielectric continuum model [136, 137, 138]. Optical modes can induce polar-

ization inside the lattice. Dielectric continuum model is based on solving the

Laplace equation for the electrostatic potential induced by that polarization:

ǫ△φ = 0, (3.56)

where ǫ is given by (3.54). Longitudinal optical(LO) modes are obtained

as solutions of ǫ = 0 and surface modes are obtained by setting △φ = 0.

Obviously, frequencies of confined optical modes are the same as those of

bulk ωLO. In the case of LO modes, φ can be any function which vanishes

at the boundary of the nanocrystal. It can be thus expanded in the basis
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of spherical harmonics φ (r) =
∑

lmn φlmnjl (knr)Ylm (θ, φ). Each spherical

harmonic defines the mode labeled by l, m and n with frequency ωLO. Val-

ues of longitudinal wavevector kn can be obtained by setting the boundary

condition φ (a) = 0. Therefore, the condition jl (kna) = 0 gives kn = αnl

a

where αnl is nth zero of the spherical Bessel function of order l.

Given the potential one readily obtains electric field as

E (r) = −grad (φ (r)) . (3.57)

Displacement field is proportional to the electric field and (lmn) mode of

the displacement field can be written as

Llmn (r) = L0
lmngrad (jl (knr)Ylm (θ, φ)) . (3.58)

Normalization constant is determined from the normalization condition

∫

d3rLlmn (r) ·Llmn (r) = 1, (3.59)

calculated with the use of Green’s first identity

1 =
(

L0
lmn

)2
∫

d3r [grad (jl (knr)Ylm (θ, φ))]2 = (3.60)

=−
(

L0
lmn

)2
∫

d3rjl (knr)Ylm (θ, φ) div [grad (jl (knr)Ylm (θ, φ))] =

=
(

L0
lmn

)2
k2n
a3

2
j2l+1 (kna) .

Therefore normalization constant reads as L0
lmn =

√

2
a3

1
knjl+1(kna)

. Pre-

sented continuum models will be used for the case of spherical CQDs. In the

last chapter, transport properties of CQD-solids will be presented. Trans-

port for such case occurs through conduction band and approximation is
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adopted that it occurs through ground s-like states. The electron wavefunc-

tion of s-like electronic state is given with Eq. (2.35) for the case of ground

state. Due to spherical symmetry of the assumed electron wavefunction it

turns out that only LO modes with l = 0 and m = 0 couple with electrons

and thus surface modes will not be considered here and could be found

elsewhere [137, 136, 138, 135].

3.2.5 Second Quantization of Phonons in CQDs

In order to examine physical properties arising due to the electron-phonon

interaction, one has to switch to the second quantization formalism. Proce-

dure is the same as it was for the bulk modes in Sec. 3.1. One starts with

the proper Hamiltonian within the continuum model and then switches from

displacement and momentum operators to the annihilation and creation op-

erators.

For elastic continuum model, Hamiltonian is given as

H =

∫

(ρ

2
u̇2(r) +

c11
2
(divu(r))2 +

c44
2
(rotu(r))2

)

d3r, (3.61)

while for dielectric continuum model(only LO phonons are considered due

to their dominant interaction with carriers) it is given as

H =
ρ

2

∫

u̇2(r)d3r +
ρ

2
ω2
LO

∫

u2(r)d3r. (3.62)

Annihilation and creation operators can be introduced as follows:

û(r) =
∑

lmn

τlmn

(

âlmn + (−1)mâ†l−mn

)

ulmn(r), (3.63)

where (−1)m factor is introduced to achieve Hermicity of the Hamiltonian.
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Modes ulmn(r) can in general be torsional Tlmn (r), spherodial Slmn (r) or

LO Llmn (r) modes. Postulating the commutation relations between dis-

placement vector u and canonically conjugate momentum vector ρu̇ one

obtains

τ2lmn =
~

2ρωlmn
. (3.64)

The Hamiltonian is then

Ĥ =
∑

lmn

~ωlmn

(

â†lmnâlmn +
1

2

)

. (3.65)

3.2.6 Electron-Phonon Interaction for Continuum Models

It was demonstrated in Sec. 3.1 that electron-phonon interaction in bulk

arises due to two different types of forces between electrons and phonons.

Acoustic phonons affect electrons via short range forces and will be firstly

examined in what follows.

The dominant term in deformation coupling is proportional to divergence

of displacement field as explained in the Sec. 3.1.1. Note that approximation

is made if one uses bulk value parameter Ed for the treatment of CQD

problem, since the size of CQD is not comparable with the bulk.

Since electron-phonon deformation coupling is proportional to divergence

of displacement field, i.e. exx + eyy + ezz, only longitudinal component of

spheroidal modes couples to electron via deformation coupling:

gdef (re) = Eddiv (Slmn (re)) . (3.66)

The same phonon-induced lattice strain produces piezoelectric polarization

which significantly affects electron energy. CdSe nanocrystals can have zinc-

blende, wurtzite and rock salt lattice type. We choose zinc-blende lattice



3.2. Confined Phonon Modes in CQDs 95

type and for zinc-blende crystals, induced piezoelectric polarization is given

as:

PPZ (r) = e14 (eyz, ezx, exy) , (3.67)

where strain tensor is defined as exx = ∂ux

∂x and exy = 1
2

(

∂ux

∂y + ∂ux

∂y

)

and e14

is piezoelectric constant. Electron-lattice interaction is then given as the po-

tential energy of the electron inside the piezoelectric polarization field [134]:

gpiez (re) = −
e

4πǫ

∫

d3r∇r

(

1

|r − re|

)

· PPZ (r). (3.68)

As already indicated, continuum models will be used in order to obtain

electron-phonon interaction in spherical CQDs and only s-like ground state

will be considered. Taking into account the symmetry of s-like electron wave-

function it turns out that torsional modes do not couple with electron in the

ground state. Spheroidal modes with l = 0 and m = 0 couple with elec-

trons via both deformation potential and piezoelectric coupling. Spheroidal

modes with l = 2 and m = 0 couple with electrons only via piezoelectric

coupling. We take into account only values j = 1, 2 since coupling is sig-

nificantly decreased with increasing the quantum number j (as shown by

calculations).

LO phonons couple to carriers only via long range forces due to oppo-

site oscillations of different ions with opposite charges within the same unit

cell of a polar crystal. Macroscopically, it means that electrostatic potential

introduced in subsection 3.2.4 due to induced polarization within the elec-

tric continuum model act as potential on carriers induced by LO phonon

modes. Therefore, such potential can be considered as a basis for electron-

LO phonon interaction. Therefore, one starts derivation from macroscopic

potential defined via −grad (φ(r)) = E(r). For LO modes permittivity is
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zero and −ǫ0E(r) = P (r) holds. Equation (3.43), therefore gives

grad (φ(r)) =
ne∗

ǫ0(1− κnα) + nα
u(r) (3.69)

Equations (3.51) and (3.52) give following relations

nα =
ǫ(∞)− ǫ0

1 + κ (ǫ(∞)− ǫ0)
(3.70)

and

n(e∗)2

µω2
0

=
(ǫ(0)− ǫ0) (1− κnα)− nα

1 + κ (ǫ(0) − ǫ0)
. (3.71)

Exploiting equations (3.70) and (3.71) one can transform equation (3.69)

into

grad
(

φ̂(r)
)

= ωLO
√
nµ

√

1

ǫ(∞)
− 1

ǫ(0)
û(r) (3.72)

For LO modes, displacement operator is given as

û(r) =
∑

lmn

√

~

2nµωLO

(

âlmn + (−1)mâ†l−mn

)

Llmn(r) (3.73)

where

Llmn (r) = L0
lmngrad (jl (knr)Ylm (θ, φ)) (3.74)

Therefore, electron-LO phonon interaction operator is given as

gpolar (re) =
∑

lmn

L0
lmn

√

1

ǫ(∞)
− 1

ǫ(0)

√

~ωLO

2
× (3.75)

×
(

âlmn + (−1)mâ†l−mn

)

jl (knre)Ylm (θe, φe)

where L0
lmn =

√

2
a3

1
knjl+1(kna)

has been defined previously.

For further consideration, only modes with the largest ratio of electron-
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Mode Types → Acoustic
Spheroidal

Acoustic
Spheroidal

Acoustic
Spheroidal

Acoustic
Spheroidal

Parameters [meV] → ~Ω1 G1 ~Ω2 G2 ~Ω3 G3 ~Ω4 G4

2.0 nm 3.40 -3.36 7.29 0.48 1.32 -1.29 2.60 0.86
2.5 nm 2.72 -2.49 5.83 0.49 1.05 -1.03 2.08 0.69
3.0 nm 2.27 -1.96 4.86 0.47 0.88 -0.86 1.73 0.57
3.5 nm 1.95 -1.61 4.16 0.44 0.75 -0.74 1.48 0.49
4.0 nm 1.70 -1.36 3.64 0.40 0.66 -0.64 1.30 0.43

Table 3.1: Acoustic Phonon energies ~Ω and electron-phonon coupling con-
stants to the electronic ground state G in a CdSe NC for different values of
the dot radius.

Mode Types → Longitudinal
Optical

Longitudinal
Optical

Parameters [meV] → ~Ω5 G5 ~Ω6 G6

2.0 nm 24.00 43.00 24.00 7.45
2.5 nm 24.00 38.46 24.00 6.66
3.0 nm 24.00 35.11 24.00 6.08
3.5 nm 24.00 32.51 24.00 5.63
4.0 nm 24.00 30.41 24.00 5.26

Table 3.2: LO Phonon energies ~Ω and electron-phonon coupling constants
to the electronic ground state G in a CdSe NC for different values of the dot
radius.

phonon coupling and corresponding phonon energy are chosen. Selected

modes and corresponding parameters are presented in Tab. 3.1 for acous-

tic modes and in Tab. 3.2 for LO modes. The inclusion of additional

modes has no significant effect on the simulation of transport through CQD-

supercrystal in the fifth chapter. At the end, one can conclude that both

phonon energies and coupling strength constants decrease with the increas-

ing of the dot radius. Decreasing of the frequency of the acoustic modes

with increasing of the dot radius is expected as it mimics the limit of the

bulk where acoustic modes have linear dispersion with the ground phonon

mode having the zero frequency. The decreasing of the coupling is due to

lesser confinement of both electron wavefunction and phonon modes and

thus more inefficient overlaping in larger dots.



Chapter 4

Intraband Optical Properties

of SAQDs

In Chapters 2 and 3, theoretical modeling of intrinsic properties of quantum

dots have been introduced. Electrons and phonons are intrinsic particles

in any condensed matter system defining most of physical properties of the

system. The main aim of this thesis is to study intraband opoelectronic

properties of heterestructures based on quantum dots. Therefore, modeling

of optical properties plays a crucial role in description of these heterostruc-

tures and their potential applications in the field of optoelectronics.

Most of the experiments studying optical properties of quantum dots are

based on measuring the absorption spectrum of incident light and measuring

of luminescence spectra (if any). It is also possible to measure the evolu-

tion of the absorption spectra with the picosecond resolution which can give

information on dynamical properties of the carriers. Absorption and lumi-

nescence spectrum can exhibit all types of broadening, but remarkable fact

is that up to date resolution of optical experiments is very good enabling the

study of the light-single quantum dot interaction. In such way, inhomoge-

98
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neous type of broadening of absorption and emission lines due to distribution

in quantum dot size can be avoided and only broadenings of homogenous

type due to intrinsic properties of single quantum dot can be captured. In

such way, it is possible to study influence of electron and phonon spectrum

and their mutual interaction on the optical properties of quantum dots.

This chapter is organized as follows. First the modeling of the incident

light is given and proper Hamiltonian is derived for the interaction between

carriers and photons. Then, quantum mechanical modeling of experimen-

tally accessible absorption and emission spectrum is presented together with

the modeling of the evolution of the optically excited quantum dots.

Some of the presented models are then used to study optical properties

of quantum rods which is the part of the contribution of this chapter. Polar-

ization independent THz photodetector based on the BIC in quantum rods

is then presented.

The second part of the contribution of this chapter is establishment

of the connection between electron-photon and electron-phonon types of

coupling. Since the electron-photon coupling is responsible for absorption

spectrum of carriers and electron-phonon coupling is responsible for non-

radiative lifetime of carriers then the connection between readily measurable

absorption spectrum and non-radiative lifetimes can be established.

4.1 Hamiltonian and Dipole Approximation

Hamiltonian of the electron inside the electromagnetic field is given as [134]

Ĥ =
(p̂+ e0A)2

2m0
− e0φ+ V0(r), (4.1)
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where V0(r) is the static potential of the considered sample structure. For

the type of electromagnetic field of the radiation present in the studied

sample is usually considered in the Coulomb gauge with scalar potential

φ = 0 and the vector potential given in the form of plane wave [134]:

A (r, t) = A0e
i(k·r−ωt). Alternative microscopic one-electron Hamiltonian

can be obtained by introducing a new gauge transformation which trans-

forms vector potential to A (r, t) = 0 and gives rise to the electrostatic

potential which can be further used for the Hamiltonian of the interaction.

Such gauge transformation is the Göppert-Mayer transformation and it is

obtained by using the gauge function Γ(r, t) = −r · A (r, t). The trans-

formed scalar potential then reads as φ(r, t) = −r ·E (r, t) and vector po-

tential disappears A (r, t) = 0. The microscopic Hamiltonian of interaction

of electrons with electromagnetic radiation is given via one-electron dipole

operator Π̂ = −e0r̂ and it reads:

Ĥ ′(t) = −E (r, t) · Π̂ (4.2)

This Hamiltonian will be used further, but the final results do not depend

on the choice of the gauge. The Coulomb gauge gives the interaction ex-

pressed via momentum operator and that will be demonstrated in the next

chapter. However, in the later sections of this chapter, the linear relation

between coordinate and momentum matrix elements will be demonstrated.

Such relation is the basis of the equivalence of the two different interaction

Hamiltonians arising from two different gauge transformations. Therefore,

the whole presented approach that follows is gauge invariant.

One considers electric field E as a classical variable which is satisfactory

approach for semiclassical modeling of induced emission and absorption with
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main aim to model coefficient of loss or gain in active medium or to estimate

homogeneous broadening due to intrinsic interactions. In this case, state of

the system is electron state and electric field E just creates additional poten-

tial upon electrons. The equivalent approach would be without introducing

the Göppert-Mayer gauge transformation and expressing the Hamiltonian

in terms of the vector potential and momentum operator. Such approach

will be used in the next chapter. The equivalence will be demonstrated in

this chapter as well via relation of the electron coordinate and momentum

matrix elements.

The wavelengths of interest will be those in the mid-infrared region of

the spectrum, when the wavelength of the radiation is much larger than

the size of the quantum dot. Therefore, in a certain moment of time, the

dot effectively sees a constant electromagnetic field, and consequently the

spatial dependence of E can be neglected: E (r, t) = E0e
−iωt.

4.2 Linear Response Theory

Any condensed matter system such as quantum dots, can be described by

some intrinsic Hamiltonian Ĥ accounting for electronic and vibrational de-

grees of freedom. When such samples are exposed to external electromag-

netic field through incident radiation or applied voltages, additional Hamil-

tonian term linear in electromagnetic field, usually dependent on time, ap-

pears which can be considered perturbatively. Dynamic perturbation per-

turbates the system and thermodynamical average, i.e. expected value of

random observable (operator) B̂ changes accordingly. The change is de-

picted with quantity δ
(

B̂
)

called response. Kubo formula for perturbation

adiabatically turned on at t0 = −∞ and linear response measured at some
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moment t is given by [139]

δ
(

B̂
)

=
i

~

∫ t

−∞
dt′
〈[

Ĥ ′I
(

t′
)

, B̂I (t)
]〉

, (4.3)

where subscript I denotes operator in interaction picture, i.e. B̂I (t) =

eiĤtB̂e−iĤt. Angle brackets denote thermodnamic average in canonic en-

semble with respect to the system Hamiltonian.

4.3 Linear Susceptibility and Absorption Lineshape

Linear susceptibility establishes linear relation between Fourier components

of external electric field and induced polarization:

Pν (r, t) = ǫ0
∑

µ

χνµ(ω)Eµ (r, t) (4.4)

Linear susceptibility can be obtained following the Kubo formula (4.3).

Hence, one has to apply Kubo formula for the change of expectation value

of the ν-th Cartesian component of the dipole operator:

δ
(

Π̂ν

)

=
i

~

∫ t

−∞
dt′
〈[

Ĥ ′I
(

t′
)

, Π̂νI (t)
]〉

, (4.5)

δ
(

Π̂ν

)

= − i
~

∑

µ

E0µe
−iωt

∫ t

−∞
dt′eiω(t−t

′)
〈[

Π̂µI

(

t′
)

, Π̂νI (t)
]〉

. (4.6)

Commutator expression in the last equation depends only on t − t′.

Changing the variable of integration t − t′ → t and taking into account

the polarization and dipole operator are related via P̂ν = Π̂ν

V where V is the
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volume of considered system, one obtains expression for linear susceptibility

χνµ(ω) =
i

ǫ0V ~

∫ ∞

0
dteiωt

〈[

Π̂νI (t) , Π̂µI (0)
]〉

. (4.7)

In order to obtain imaginary part of susceptibility, which further gives

absorption lineshape, one examines complex conjugate expression:

χ∗νµ (ω) =
−i
ǫ0V ~

∫ ∞

0
dte−iωt

〈

[

Π̂νI (t) , Π̂µI (0)
]†
〉

(4.8)

Following the rules for the Hermitian adjoint of an operator product, one

can easily show that

〈

[

Π̂νI (t) , Π̂µI (0)
]†
〉

=
〈[

Π̂µI (0) , Π̂νI (t)
]〉

. (4.9)

Hence

χ∗νµ (ω) =
−i
ǫ0V ~

∫ ∞

0
dte−iωt

〈[

Π̂µI (0) , Π̂νI (t)
]〉

, (4.10)

and changing the time variable from t to −t one obtains:

χ∗νµ (ω) =
−i
ǫ0V ~

∫ 0

−∞
dteiωt

〈[

Π̂µI (t) , Π̂νI (0)
]〉

. (4.11)

Here, one assumes that µ-polarized incident radiation induces µ-polarized

polarization only, i.e. the only case of interest in the last commutator expres-

sion is when µ = ν. In such case, commutator expressions from Eqs. (4.7)

and (4.11) are identical. The imaginary part of susceptibility follows from

its mathematical definition:

Im (χµµ (ω)) =
χµµ (ω)− χ∗µµ (ω)

2i
(4.12)
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and it reads:

Im (χµµ (ω)) =
1

2ǫ0~V

∫ ∞

−∞
dteiωt

〈[

Π̂µI (t) , Π̂µI (0)
]〉

. (4.13)

In order to eliminate commutator in the last equation, one uses following

identity:

e−β~ω
∫ ∞

−∞
dteiωt

〈

Π̂µI (t) Π̂µI (0)
〉

= (4.14)

=

∫ ∞

−∞
dteiωt

〈

Π̂µI (0) Π̂µI (t)
〉

,

which finally gives:

Im (χµµ (ω)) =
1− e−β~ω
2ǫ0~V

∫ ∞

−∞
dteiωt

〈

Π̂µI (t) Π̂µI (0)
〉

. (4.15)

Imaginary part of susceptibility can be used in order to provide absorp-

tion and gain lineshapes in active media. Let the µ-polarized radiation mode

propagates through active medium with spatial exponential dependence of

its intensity Iµ(z) which correspond to spatial differential equation

αµ = − 1

Iµ

dIµ
dz

(4.16)

where αµ is absorption-gain coefficient depending on its sign. Complex

susceptibility corresponds to complex refraction index via n2C = (n+ iη)2 =

1 +Re {χ}+ iIm {χ} and absorption coefficient is given as α = 2ωη
c , i.e.

α =
ωIm {χ}

nc
(4.17)

Therefore, absorption coefficient of the µ-polarized incident radiation is
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given as:

αµ (ω) =
ω

ǫ0nc

1− e−β~ω
2~V

∫ ∞

−∞
dteiωt

〈

Π̂µI (t) Π̂µI (0)
〉

(4.18)

Specific configuration of interest is a single quantum dot. Quantum dot con-

tains electrons and phonons and with electron-phonon interaction included,

correlation function from the last equation becomes difficult to calculate.

Electron-phonon coupling gives rise to homogeneous broadening to the ab-

sorption lineshape as indicated in many places in literature(for interband

transitions see Refs. 140, 141, 142, 143, 144, 126, 145, 146, 147, whereas

for intraband transitions see Refs. 148, 34, 56, 133, 61). Linewidth of such

broadening defines coherence lifetime of induced polarized collective state of

considered electron system. This spectral line consists of zero phonon line

with linewidth less than 1 meV and very broad pedestal which is usually

related to acoustic phonon induced decoherence [148, 34].

In order to study optical properties of ensembles of quantum dots it is

sufficient to consider only pure electronic optical resonances as inhomoge-

neous broadening of the entire ensemble goes larger than phonon-induced

homogeneous type of broadening. Therefore homogeneous broadening ef-

fect will not be considered in this thesis, but this is the starting point for

its consideration. Lineshape broadening in such case comes only from the

inhomogeneous type of broadening due to nonuniformity in the sizes of the

quantum dots in an ensemble. Influence of inhomogeneous type of broaden-

ing will be considered in next section.

For a single quantum dot, dipole operator, i.e. µ-th Cartesian component
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of it, can be written as:

Π̂µ = −e
∑

fi

Rµ
fiÂ
†
f Âi, (4.19)

where subscripts f and i count basis states of single quantum dot obtained

by solving electronic structure eigenproblem and Rµ
fi = 〈f |rµ| i〉 is matrix

element of the µ-th Cartesian component of the electron radius vector sub-

ject to further discussion in Sec. 4.5. Thus, one is interested in diagonal

correlation function which can be expanded as:

〈

Π̂µI (t) Π̂µI (0)
〉

= e2
∑

fimn

Rµ
fiRµ

mn〈Â†fI (t) ÂiI (t) Â
†
mÂn〉. (4.20)

By using the Wick’s theorem [122] one can calculate thermodynamic average

from the last equation:

〈Â†fI (t) ÂiI (t) Â
†
mÂn〉 = ei

Ef−Ei

~
t× (4.21)

× (δf,iδm,nnfnm + δf,nδi,mnf (1− nm)) ,

where Ei and ni are energy of the i-th electronic eigenstate and correspond-

ing Fermi-Dirac distribution. In order to obtain absorption lineshape one

has to consider only the term δf,nδi,mnf (1− nm) which contributes to the

non-zero frequencies.

By putting (4.21) into expression for the correlation function (4.20) one

obtains expression for the absorption lineshape for µ-polarized incident ra-

diation:

αµ (ω) =
πωe2

ǫ0nc

1− e−β~ω
~V

∑

fi

∣

∣

∣
Rµ

fi

∣

∣

∣

2
nf (1− ni) δ

(

ω +
Ef − Ei

~

)

(4.22)
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Moving ω dependent factors into the sum one finally obtains:

αµ (ω) =
πe2

~2V ǫ0nc

∑

fi

(Ef − Ei)
∣

∣

∣
Rµ

fi

∣

∣

∣

2
(ni − nf ) δ

(

ω +
Ef − Ei

~

)

(4.23)

4.4 Inhomogeneous Broadening and Cross Section

Realistic devices based on quantum dots contain many quantum dots with

significant inhomogeneity in size distribution. Let the set of quantum dots

considered contains NQD quantum dots within the considered volume of

the system V . Each quantum dot contributes equally to the absorption

coefficient and the last expression for the absorption has to be multiplied

by the number of quantum dots. Defining the density of quantum dots as

nQD =
NQD

V and rescaling the argument of delta functions to energy units,

one finally obtains:

αµ (ω) =
2πe2

~ǫ0nc

∑

f>i

(Ef − Ei)
∣

∣

∣Rµ
fi

∣

∣

∣

2
nQD (ni − nf ) δ (~ω + Ef − Ei).

(4.24)

Note that the summation has changed from f, i to f > i in order to present

net absorption or emission (depending on the level of populations ni and

nf ) between every possible combination of states i and f without repetition.

Multiplying factor 2 is added therefore.

As said earlier, the linewidth of the transition is entirely determined by

the nonuniformity in the sizes of the quantum dots in an ensemble. These

linewidths are of the order of at least several meV and are larger than the

inherent homogeneous linewidths of a transition in a single dot. Therefore,

in order to treat the inhomogeneous broadening one has to replace the delta
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functions in (4.24) with a Gaussian, i.e.

δ(x)→ g(x, 2σ) =
1

σ
√
2π

exp

(

− x2

2σ2

)

. (4.25)

where linewidth σ depicts the inhomogeneity of the ensemble and can be

used as fitting parameter.

The optical cross section of the i→ f transition is the quantity propor-

tional to the absorption due to the same transition, but does not depend

on concentration of quantum dots nQD and population difference of the op-

tically active carriers ni − nf . The definition of the optical cross-section is

given in connection to the absorption lineshape:

αµ (ω) =
∑

f>i

nQD (ni − nf ) σµif (ω) (4.26)

Cross section σµif (ω) is very important quantity which quantifies strength of

the optical transition regardless of the concentration of quantum dots and

level of doping. Cross section of the i→ f transition is:

σµif (ω) =
2πe2

~ǫ0nc
(Ef − Ei)

∣

∣

∣
Rµ

fi

∣

∣

∣

2
g (~ω + Ef − Ei) . (4.27)

4.5 Envelope Functions Matrix Elements

Matrix elementRµ
fi = 〈f |r̂µ| i〉 plays crucial role in the expression for the ab-

sorption. The expression for the absorption was derived under the Göppert-

Mayer gauge transformation and it was pointed out in Sec. 4.1 that the

approach is gauge invariant. If one had used the Coulomb gauge, momen-

tum matrix element instead of the coordinate matrix element would have

occurred in he final expression. Therefore, there should be relation between



4.5. Envelope Functions Matrix Elements 109

these two matrix elements in order to satisfy the gauge invariance. This

relation will be demonstrated in what follows.

The following commutation relation holds for time independent Hamil-

tonian of the general form: Ĥ = p̂2

2m0
+ V̂ (r) [149]:

[

r̂, Ĥ
]

= i
~

m0
p̂ (4.28)

one gets

P if = −im0

~
(Ef − Ei)Rif (4.29)

where Pµ
if = 〈i |p̂µ| f〉. Therefore, matrix elements of the momentum and

coordinate operators are proportional to each other. As shown in section 4.4,

squared absolute values of these matrix elements determine gain and absorp-

tion between states |i〉 and |f〉. From now on, vector Rif will be referred

to as a “dipole coupling vector” between states |i〉 and |f〉. Thus, within

the one band approximation for quantum dots, knowledge of dipole cou-

pling vector provides us information on interaction between electron and

electromagnetic radiation. It will be shown in subsequent chapters that it

also provides information on matrix elements of interaction between electron

and longitudinal optical phonon which establish a good basis for parallel in-

corporation of electron – phonon and electron – photon interaction in design

of intraband laser and detector based on semiconductor quantum dots.

Further, one has to examine the recipe for calculation of the coordinate

and momentum matrix element by using electronic structure formalisms

derived in chapter 2.

The matrix element of the momentum and coordinate operators between
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two states i and f whose envelope function representations are given as:

Ψ(i)(r) =
∑

n

ψ(i)
n (r)un0(r), (4.30a)

Ψ(f)(r) =
∑

m

ψ(f)
m (r)um0(r), (4.30b)

are then given by

P if =

∫

d3rΨ(i)∗(r)p̂Ψ(f)(r), (4.31a)

Rif =

∫

d3rΨ(i)∗(r)r̂Ψ(f)(r), (4.31b)

leading to

P if =
∑

mn

∫

d3rψ(i)∗
n u∗n

[

ump̂ψ(f)
m + ψ(f)

m p̂um

]

, (4.32a)

Rif =
∑

mn

∫

d3rψ(i)∗
n u∗nr̂umψ

(f)
m . (4.32b)

The slowly varying envelope functions F (r) feel only the average value over

the unit cell of Bloch functions that vary rapidly, which can mathematically

be expressed as

∫

d3rF (r)u(r) =

∫

d3rF (r)〈u(r)〉, (4.33)

where 〈u(r)〉 is the average value over unit cell of a rapidly varying function.

After exploiting this relation, and using the condition of orthonormality
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of the Bloch functions, one arrives at

P if =
∑

mn

∫

d3rψ(i)∗
n (δnmp̂+ pnm)ψ(f)

m , (4.34a)

Rif =
∑

n

∫

d3rψ(i)∗
n r̂ψ(f)

n , (4.34b)

where

pmn =
1

Ω

∫

um(r)∗p̂un(r)d
3r, (4.35a)

rmn =
1

Ω

∫

um(r)∗r̂un(r)d
3r, (4.35b)

In case of one band (conduction band) approximation equation (4.34)

reduces to:

P if =

∫

d3rψ(i)∗p̂ψ(f), (4.36a)

Rif =

∫

d3rψ(i)∗r̂ψ(f), (4.36b)

4.6 Optical Properties of Quantum Box

Electronic structure of two very simple models, so called quantum box and

infinite quantum well, has been presented in section 2.2. In order to utilize

expression (4.27), one needs to determine coordinate or momentum matrix

elements by using results of the electronic structure calculations presented

in section 2.2. Momentum matrix elements are easier for calculations.

To estimate absorption of light polarized to z direction, (growth direc-

tion), associated with unit vector k and a direction from symmetric xy plane,

(“radial” or “in-plane” direction), lets say x direction associated with unit
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vector i, i.e. ǫ = ǫxi+ ǫzk. After simple derivation expression, (4.36a) takes

the form

P
x
if =















−4i~φx
if

a for
(

nix − nfx
)

odd

0 for
(

nix − nfx
)

even

(4.37a)

P
z
if =















−4i~φz
if

d for
(

niz − nfz
)

odd

0 for
(

niz − nfz
)

even

(4.37b)

where

φxif = ǫxδni
yn

f
y
δ
ni
zn

f
z

nixn
f
x

nf2x − ni2x

φzif = ǫzδni
xn

f
x
δ
ni
yn

f
y

nizn
f
z

nf2z − ni2z

All selection rules are included in the equations (4.37a) and (4.37b).

For infinite quantum well only nonzero matrix element for growth direc-

tion component of the incident radiation exists

pzkx,ky,n,k′x,k′y,m =















−4iǫz ~

dδkxk′xδkyk′y
mn

m2−n2 for (m− n) odd

0 for (m− n) even

(4.38)

This simple model accounting for optical resonances indicates that dom-

inant optical transition in quantum dots is transition between s-like and

p-like electronic state, i.e. between ground and first excited state. This

is in agreement with the experiments [69, 71] where it was suggested that

the dominant transition observed in the PL spectra of SAQDs is indeed
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the transition between s-like and p-like states, which was based on numer-

ical calculation of electronic states and optical matrix elements within the

dipole approximation.

4.7 Absorption Spectra of Quantum Rods

Calculated electronic structure in Sec. 2.3 can be used to simulate the intra-

band absorption spectra of quantum rods. One needs to consider absorption

independent from the concentration of the dots since such concentration is

hard to estimate. Therefore, the quantity of interest which will be calculated

is so called “temperature and Fermi level dependent total cross-section”:

σµif (ω, T,EF ) =
∑

f>i

(ni − nf) σµif (ω). (4.39)

The notation of the electronic structure used in Sec. 2.3 will be used. The

optical transition selection rules allow only the transitions with ∆mf = 0

in the case of z−polarized (growth polarized) radiation and |∆mf | = 1 for

x−polarized (radially polarized) radiation.

Since temperature dependence has been taken into account, one has to

consider the electron population of characteristic rod states which enter the

expression for the total cross section as ni and nf .

The first dot state is the ground state for all examined heights of the rod.

If one excludes extremely tall rods, e.g. the rod with height of 60 nm, then

the following states are states from the first well subband (see Fig. 2.4). Due

to continual nature of the subband, relatively large number of electrons can

be placed in that subband. Furthermore, one can assume that number of

electrons per one rod is small enough that only the ground dot state and the

lowest subband states are significantly populated, i.e. Fermi level is placed
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very close to the bottom of the first subband of the well. In this case the

transitions from those states to higher excited states will mostly contribute

to total absorption cross section of the rod.

As all states are twofold degenerate in orbital factor space with oppo-

site values of good quantum number mf (note that electron spin has been

incorporated into these quantum number via total angular momentum), as-

sumption of exclusive occupation of the ground state on T = 0 permits no

more than 2 electrons per quantum dot. We choose to calculate the ab-

sorption for 1 electron per quantum post as such level of doping was readily

achievable in SAQDs [61].

The temperatures were taken to be 1K and 77K. The later allows ther-

mal population of higher states according to Fermi-Dirac distribution. The

inhomogeneity of the quantum rod ensemble was taken into account by as-

suming a Gaussian lineshape in (4.27) as suggested in (4.25) with a standard

deviation σ equal to 10% of the transition energy i.e. σ = 0.1 (Ef − Ei).

4.7.1 Absorption of growth polarized radiation

It is well known that growth polarized photons are more likely to be absorbed

if such excitation changes parity of the function in that direction. This can

be simply explained through the simple effective mass model described by

equations (4.37b) and (4.38).

For example, according to (4.37b) it is expected that the first dominant

matrix element for z-polarized radiation from the ground state with quan-

tum numbers nfx = 1, nfy = 1, nfz = 1 or s-like state, is one with different

parity in the quantum numbers nfx = 1, nfy = 1, nfz = 2 or p-like state.

Such excited state would have one node in growth direction. Indeed, 8-band

simulation gave quantitatively the same result. The final state for the first
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dominant transition from the ground state (a dot state in this case) also has

one node in growth direction (also a dot state). The same rule applies for

transition between subbands of the well. For example, the first dominant

matrix elements are from states with quantum number n = 1 with no nodes

in growth direction to ones with n = 2 with one node in growth direction,

see (4.38). As seen in Fig. 2.4, the dominant dipole matrix elements are

mostly between states A with different parity index, e.g. between A1 and

A2, and between subbands B and C or C and D.

The equation (4.37b) shows that an increase of the dot height decreases

the momentum matrix element and increases corresponding cross section

increment. As seen from equations (4.37a), (4.37b) and (4.38), components

of momentum matrix elements depend only on the corresponding dimen-

sions of the structures. The dimensions of quantum dot are fixed and only

the growth direction dimension is varied, hence only variation of absorption

properties of growth polarized radiation can be examined using the sim-

ple model. This simple model is also in agreement with the 8-band model

simulation results.

To conclude, the leading transitions caused by absorption of the growth

polarized incident radiation are from ground state to the p-like dot state

and from the first subband to the next subband with different parity and its

intensity decreases by increasing the height and destination state with the

different parity.

The leading transitions are not entirely responsible for peaks of optical

cross section at higher temperatures as other transitions from higher states

in quantum dot can also significantly contribute. This contribution has low

impact on the peaks positions of the total cross section for z-polarized radia-

tion. That implies that dominant transitions from higher states have similar
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transition energy to the as the dominant transition from the ground state.

This is a direct consequence of the fact that all dominant transitions are

between states of different parity, and the energy separation between any

two dot or well states with different parity is approximately same. However,

taller rods have smaller energy separation which reduces the energy of pho-

tons involved in the absorption. The conclusion is clear, tunability of the

absorption of growth-polarized radiation would be possible by changing the

height of the rod structure.

That completely explains the cross section calculated by using the Eq.

(4.39) and presented on Figs. 4.1 and 4.2. For T = 0K only transitions from
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Figure 4.1: Cross Section for growth polarized radiation for T = 0K and
four different heights of the rod. Peaks have monotonic behavior in terms
of rod heights, except for the shortest rod due to different nature of the
dominant optical transition. The Figure taken from Ref. 3.

the dot bound state occurs (for maximum two electrons per dot) to the same

type state with different parity. It has been argued in Sec. 2.3.2 that such

dot state with different parity is p-like state, very likely positioned within the
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Figure 4.2: Cross Section for growth polarized radiation tailored by bound
state to bound state transitions for T = 77K. The Figure taken from Ref. 4.

well continuum. Therefore, one can state that growth polarized radiation

can effectively induce transitions to the well states due to expected strong

coupling between p-like BIC and surrounding well subband continuum.

The monotonic behavior of the peaks of the absorption for taller rods is

observed due to monotonic energy separation of the s-p transition. However

for shorter rods, p-like state does not exist and dominant transition is bound-

continuum like and due to such different nature of the transition the shortest

rod does not obey regular monotonic behavior of higher rods.

At elevated temperature, i.e. T = 77K, an additional transition occurs

from the first well subband but they are on similar energies as transitions

from the bound state and are also shifted in the same manner. Therefore,

Figs. 4.1 and 4.2 look similar to each other.

It is important to outline that inhomogeneous broadening of the transi-

tions was taken as 10 percent of the energy separations of the transitions.
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Because of this, absorption lineshapes due to lower energy transitions are

more sharper and higher and this is not related to the oscillator strength of

the transitions.

4.7.2 Absorption of in-plane polarized radiation

The important issue in quantum well intraband photodetectors is that there

is no absorption for in-plane polarized radiation which can be quantitatively

explained using Eq. (4.38). It is expected that quantum rods will have non-

zero absorption for in-plane polarized radiation due to the dot presence.

According to Eq. (4.37a), (4.37b) and (4.38) only transitions from dot

states can contribute significantly to absorption of radially polarized radi-

ation. Hence, those transitions are restricted from states with quantum

number mf = 1 and mf = −1 to higher states, in line with selection rules,

because significantly populated dot states exist only for the mf = 1 and

mf = −1 (see Fig. 2.4). Possible dot states with higher values of mf are

not observed in the simulation, and therefore absorption of radially polar-

ized radiation, in this case, cannot be supported by dot-state to dot-state

transitions.

This detailed examination of dominant momentum matrix elements in

the structure shows that transitions between bound states in the dot and

higher well states due to the absorption of in-plane polarized radiation, are

the most prominent ones.

The restriction has been made to absorption from lower states and since

transitions from the first subband are not allowed due to selection rules for

the in-plane polarized radiation, all absorption comes from transition from

the first bound state. The bound-to-subband absorption peak is tunable

with dot height and results of calculation of the total cross section are pre-
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sented in Figure 4.3. Absorption peaks of bound-to-subband transitions are
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Figure 4.3: Cross Section for in-plane polarized radiation for T = 0K. The
Figure taken from Ref. 4.

also tunable with rod height as for the growth-direction polarized radia-

tion. Calculations show that corresponding momentum matrix elements are

larger when increasing the dot height, opposite to the case of absorption of

the growth direction polarized radiation.

This opposite direction of the tunability of absorption peaks for different

polarized radiation creates an opportunity to engineer the structure with cer-

tain hight-to-diameter aspect ratio in order to obtain optimal functionality

for both direction of incident radiation in the terahertz frequency range.

4.7.3 Optical Properties of the BIC

Intraband resonances of quantum rods were experimentally investigated in

Ref. [101], where the rods were charged with several electrons, enough to

completely fill the 3D confined states below the well barrier. Authors then
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used growth-polarized radiation to excite electrons, and they recognized a

clear difference between well and dot resonances. The leading rod resonance

comes from transition from excited and fully charged rod states to unoccu-

pied states higher in the conduction band. However, authors in Ref. [101] ar-

gued that electron-electron interaction in fully charged rods shifts the bound

electronic states to higher energies. Detailed theoretical examination of that

situation is required due to electron-electron interaction which is responsible

for perforation of the 2-D electron gas, i.e. continuum. Nevertheless, the

short lifetime of the BIC via fast scattering into the well subband was also

indicated in Ref.[101]. It is intuitively clear that such fast scattering occurs

due to the availability of the continuum of free states around the energy of

the BIC.

Altogether, one can conclude that carriers from the bound state of the

quantum rod can be efficiently scattered into the continuum of the well by

strong optical resonance, i.e. ground state-BIC transition followed by ef-

ficient coupling between the BIC and surrounding continuum states. The

similar effect, where strong optical resonance can trigger ionization from

bound-like state to continuum state where carriers can freely move was ex-

plained in Ref. [150] for the case of 1-D supercrystal formed of the verti-

cally stacked self-assembled quantum dots. Specifically, first supercrystal

miniband occurs in the barrier gap and second one in the conduction band.

Optical transitions between these two minibands are strong since those mini-

bands were formed of s-like and p-like states respectively. Therefore, this

structure, if constructed as a solar cell, exhibits increased efficiency due to

strong transitions between first miniband buried in the barrier gap and sec-

ond miniband buried within the conduction band continuum. In addition,

strong optical transitions between below-the-barrier and above-the-barrier
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(so called Bragg confined) bound states were observed experimentally in

Ref. [109] in a Bragg-confined quantum well structure.

These exotic optical properties of the BIC could allow experimental ob-

servation of the BIC and associated effects. The simplest version of such

an experiment is based on doped structures with up to one electron per

rod. In such a case, intraband optical transitions at low temperatures are

limited to the transitions from the ground state. One could measure the

absorption of far-infrared light in such doped quantum rods at low temper-

atures for two linearly polarized directions of incident light. We have also

shown in Ref. [4] that radially polarized light can excite the electron from

the same ground dot state to the first well subband. This transition is not

expected to be a single broadened line due to the continuum of the well

subband, but resonances are expected to start at an energy corresponding

to the bottom of the first subband of the well. If these resonances for the

radially polarized radiation were at lower energy than the first resonance

for the growth-polarized radiation, this would present a clear evidence that

the excited bound state has a higher energy than the minimum of the well

subband, proving the existence of BIC.

4.7.4 Polarization Independent THz Photodetector

Conclusions from previous sections are that dominant optical transitions

from the ground state in quantum rods are to the first subband of the well.

Growth polarized radiation induces such transition indirectly via p-like dot

BIC state while radially polarized radiation induces such transitions directly

to the same subband.

A possible application of these effects is construction of the polariza-

tion independent THz photodetector. If an electron, excited into the BIC,
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efficiently scatters into the well subband, as indicated in Ref.[101], then a

radially directed electric field can be used for efficient transport of carriers

in the lateral direction. Strong optical resonance for the growth-polarized

radiation is due to bound-to-bound transition and efficient transport can

occur via radially free state channels around the excited bound state. On

the other hand, for radially polarized incident radiation, carriers are excited

directly into the well subband, from which they can be easily extracted by

a lateral electric field. Therefore, strong resonance and efficient transport

can be obtained for either polarization of the incident light, paving the way

for polarization-independent terahertz detector. Such a detector is schemat-

ically depicted in Fig. 4.4. Contacts are positioned so to provide a lateral

electric field. Upon absorption of the incident radiation the electron concen-

tration in the well increases and leads to a photocurrent. However, strong

reverse process was indicated in Ref. [100] that carriers in the conduction

band of the well and bulk also efficiently scatter into the rod which can

degrade the effect of detection. Therefore, this proposition for the efficient

photodetector utilizing bound-to-BIC transition still needs to be carefully

examined and some future work should be assigned to this issue.

CONTACTS

BULK

BULK QUANTUM
WELL

QUANTUM
ROD

Figure 4.4: Illustration of the polarization-independent terahertz photo-
detector. In this geometry, the electric field due to the bias on contacts
is in the lateral direction. The Figure taken from Ref. 3.
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4.8 Intraband Laser based on SAQDs

It was pointed out in the Sec. 1.4.2 that SAQDs are in the research focus

regarding the possible application as active media for intraband lasing. Brief

overview of physical mechanisms regarding lasing was presented as well. The

polaronic nature of carriers was explained in Sec. 3.1 involving s-like and p-

like electronic bound states and their coupling to bulk phonons of polar type.

The aim of this section is to examine optical properties of SAQDs based on

the resonant s-p like transition which might be used for lasing in future

designs of the QD intersublevel emitter as indicated in Chapter 1. Even if

this is not true, consideration to this transition and the derived theory can

be applied to other cases with a few modifications.

It has been demonstrated in Sec. 3.1.4 that the electron–phonon interac-

tion remains the fundamental factor governing excited carrier non-radiative

relaxation in QDs. Non-radiative relaxation reduces inversion population

needed for lasing. On the other hand strong optical transition favors the

lasing process. Therefore it would be very good to establish the connection

between non-radiative relaxation mechanism and photon emitting mecha-

nism based on s-p like optical transition.

The main aim of this work is to develop a simple model to establish a

relationship between the radiative and the non-radiative transition strengths

of carriers in QDs. The basis for it is, a similar physical electromagnetic

interaction between electrons and phonons, and electrons and photons.

After establishing the connection between these relaxation mechanisms,

the model will then be used to derive important conclusions on the geomet-

rical and compositional optimization of QDs as possible active media.
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4.8.1 The Relationship between Electron-Phonon

and Electron-Photon Interaction

Since one is interested only in s-p like resonant coupling we introduce a

reduction of the one-electron subspace into only two isolated states, per-

forming lasing. Those electronic states will be further labeled with |ψa〉 and

|ψb〉, or shortly |a〉 and |b〉, with energies Ea and Eb.

In this, two level system, the most important parameter regarding the

electron-light interaction in dipole approximation is coordinate matrix ele-

ment Rab =
∫

d3rψ(a)∗(r)r̂ψ(b)(r) or so called “dipole coupling vector”. On

the other hand, the same parameter for the Fröhlich interaction of the elec-

tron with the LO phonon mode with wavevector k isHk
ab =

∫

d3rψ(a)∗ eik·r
k ψ(b)

and will be referred to as a “Fröhlich coupling function”(FCF) on wavevector

k. The main aim here is to find a relationship between the dipole coupling

vector Rab and Fröhlich coupling function Hk
ab.

In quantum dots, due to confinement, the Fröhlich coupling function falls

rapidly to zero even for relatively small values of wavevector k. It behaves

as a distribution function with p-orbital-like shape with the maximum value

in the limit k → 0. With the aim of estimating this value, one has to expand

the expression for the Fröhlich coupling function as:

Hk
ab =

∫

d3rψ(a)∗ cosk · r
k

ψ(b) + i

∫

d3rψ(a)∗ sink · r
k

ψ(b) = (4.40)

=
1

k

∫

d3rψ(a)∗ψ(b) + iek ·
∫

d3rψ(a)∗rψ(b)−

− k

2

∫

d3rψ(a)∗ (ek · r)2 ψ(b) − ik
2

6

∫

d3rψ(a)∗ (ek · r)3 ψ(b) + · · · ,

where the second equation represents the Taylor series of sine and cosine

functions, and ek = k
k .
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Given that electronic states |ψa〉 and |ψb〉 are states with a dominant

optical transition, i.e. the intensity of the dipole coupling vector between

these two states, Rab, is significant then, in most cases, one concludes that

states ψ(a) and ψ(b) have well defined and opposite parity. Therefore, in

such a case, the first term in equation (4.40) vanishes and one gets:

Hk
ab = i

(

ek ·Rab −
k2

6

∫

d3rψ(a)∗ (ek · r)3 ψ(b) + · · ·
)

. (4.41)

In the limit k → 0 expression (4.41) becomes:

Hk
ab = ek ·Rab. (4.42)

Hence, the maximum at k → 0 of the scalar field Hk
ab is proportional to the

intensity of the dipole coupling vector.
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Figure 4.5: a) The Fröhlich coupling function for a hard-wall box calculated
in the kx − kz plane. The height of the dot is 20 nm and the square basis
side is 15 nm and b) The Fröhlich coupling function modeled by a Gaussian
with fitted linewidth inversely proportional to the dot dimensions of the
hard walled QD. The whole Gaussian is multiplied by the cosine of the
angle between k and kz. Model function is approximately the same for long
wavelengths where both functions have the most significant values. However,
the difference increases by increasing the wavevector k where these functions
have low values and therefore that domain is less important. The Figure
taken from Ref. 5.
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It should be pointed that the FCF is singular at k = 0, and also the

vector k does not have a defined direction, and therefore the expression

ek ·Rab is not defined. However, the factor ek ·Rab indicates that even

for small k the distribution Hk
ab has a strongly anisotropic behavior. For

k pointing in the direction of the dipole coupling vector, the FCF exhibits

the weakest negative slope. This slope is increasing with increasing angle

between k and the dipole coupling vector and decays rapidly to zero when

k becomes almost perpendicular to the dipole coupling vector. In the limit

where k is exactly perpendicular, the FCF is zero. All these features prove

that the FCF has a p-orbital like shape. This was indeed expected, since

the FCF is essentially a Fourier transform of an even function.

One can demonstrate these statements by taking a simple example of a

hard-wall cuboid quantum dot where it is possible to calculate analytically

Hk
12 between the ground and the first excited state. The results for the

quantum box of height 20 nm and square basis side of 15 nm are presented

in Fig. 4.5(a) in the kx − kz plane without losing generality. The FCF

behaves in the same way in the direction kx as in ky, for a square base case.

Therefore, we can model the Fröhlich coupling function by a bell-shaped

distribution function, with the maximal value at k → 0 proportional to the

intensity of the dipole coupling vector and multiplied by the ki
k , where i

denotes the direction of the dipole coupling vector. This model gives:

∣

∣

∣Hk
ab

∣

∣

∣ = |Rab|
kz

√

k2x + k2y + k2z

I (k) , (4.43)

where I (k) is the anisotropic distribution function with maximum I (0) =

1. Therefore, we have parametrized the FCF via two factors. One is the

dipole coupling vector Rab which is a well known spectroscopic quantity,
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and the second is the distribution function with the property I (0) = 1. All

details of the quantum dot are hidden in the width and lineshape of this

function. It has been shown in Eq. (3.32) that the most important quantity

regarding non-radiative relaxation is the Fröhlich coupling constant (3.25)

which is in fact the integral over FCF. This is why the exact lineshape has

a limited significance. On the other hand, we will show that widths of the

distribution functions are closely related to the size of the quantum dot in

the corresponding direction.

4.8.2 Influence of QD Geometry and Composition

In the following a quantitative description of the influence of the QD con-

finement on the value of FCF consisted of two factors distribution function

and dipole coupling vector is given. Consider first the distribution function.

Anisotropy of this function stems from the dimensional anisotropy of the

dot. Thus, for anisotropic QDs the linewidth of such a distribution function

varies with the direction in k-space.

The Fröhlich coupling function can be thought of as a Fourier transform

of the product of wave functions in the ground and excited state divided

by k. By varying the dot dimensions we can shrink or expand the envelope

wave functions. This can be modeled by:

ψ (x, y, z)→ √αxαyαzψ (αxx, αyy, αzz) (4.44)

Using these scaled wave functions in the Fröhlich coupling function, and

taking a particular direction, e. g. “x”-direction, (i.e. setting ky = kz = 0)
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one concludes that the FCF has the behavior:

Hab (kx, 0, 0)→
1

αx
Hab

(

kx
αx
, 0, 0

)

(4.45)

However, the prefactor 1
αx

is already included in the scaling of the dipole

coupling vector, and therefore only the scaling of the distribution function

width has to be considered further. By increasing the dot size in the chosen

direction one can decrease the distribution function width in that direction.

However, this trend remains up to some minimal, critical size in a particular

direction. Beyond this point, the envelope wave function does not shrink any

further, but instead starts leaking outside the dot. In the hard-wall example,

it is possible to use a Gaussian without a normalization pre-factor as a dis-

tribution function. The results of such a model are presented in Fig. 4.5(a).

The width of the Gaussian is inversely proportional to the dot extension in

the corresponding direction. The modeling by the Gaussian curve is also

the exact solution for a parabolic QD (See Appendix of Ref. [60]).

For calculations with better accuracy one uses an 8-band k · p method

with strain effects included (see Sec. 2.1.2) to calculate the Fröhlich coupling

function and demonstrate its dependence on the dot size. In Figs. 4.6(a)

and 4.6(b), the calculated FCF for lens shaped dots of height 8nm, indium

content 1 and radius 22 nm are presented. The second dot is twice as

high, 16nm, and one notes that FCF has accordingly shrunk twofold in this

direction. The In content in the QD also affects the width of the distribution

function. By decreasing the In content, the QD potential well as well as

the confinement is decreased. The wave functions then expand and the

FCF consequently shrinks, and so does the distribution function. This is

demonstrated in Figs. 4.7(a) and 4.7(b), where two geometrically identical
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Figure 4.6: FCF for two different lens shaped cylindrically symmetric QDs
calculated in the kx−kz plane by the 8-band k ·p method with strain effects
included. Indium content in both dots is 1, radius is 22 nm and their height
is a) 8 nm and b) 16 nm. The Figure taken from Ref. 3.

QDs (cylinder shaped) have different In content, of 1 and 0.6 respectively.

We note that FCF in Fig. 4.7(b) is slightly narrower than that in Fig. 4.7(a).

It is expected that the maximal possible width of the distribution function

in terms of QD depth occurs for the hard-wall QD, since it has infinite

potential well. The opposite limit occurs in bulk, where the width is zero,

i.e. the wave function is a pure plane wave. It is difficult to predict a

more accurate dependence of the width of the distribution function, but a

monotonic behavior is expected between these two limits.

In summary, four parameters have been introduced: αx, αy, αz and σ.

The first three parameters measure the relative QD extension in a specified

direction, and the parameter σ is an increasing function of the In content

in QD. By varying these geometrical parameters the distribution function

evolves as:

I (kx, ky, kz)→ I
(αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)

(4.46)
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Figure 4.7: a) FCF for two different cylinder shaped QDs calculated in the
kx−kz plane by the 8-band k ·pmethod with strain effects included. Indium
content in dots is a) 1 and b) 0.6, and their radius and height are 22 nm
and 12 nm, respectively, in both cases. The Figure taken from Ref. 5.

and consequently the coupling integral constant evolves as:

S →
∫

d3k
k2z

k2x + k2y + k2z
I
(αx

σ
kx,

αy

σ
ky,

αz

σ
kz

)

(4.47)

which gives:

S → σ3

αxαyαz

∫

d3k
k2z

(

αz

αx

)2
k2x +

(

αz

αy

)2
k2y + k2z

I (k) = σ3

αxαyαz
S′ (4.48)

Eq. (4.48) describes the variation of the coupling integral constant in terms

of quantum dot geometric and composition parameters. The largest contri-

bution comes from the pre-factor. Coupling integral constant S is slightly

different from S′, i.e. it differs only by the “cosine part”. In the case of

an isotropic enlargement of the QD size, the “cosine part” in the integrals

remains unchanged and therefore so do the constants S and S′.
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4.8.3 Light Absorption and Stimulated Emission

The polaron ground state is |1〉 with the dominant component being the

electron ground state. In the case of δ− < 0, the first excited polaron state

is |2〉. As expected, the dominant component of that state is the first excited

electron state, which enables efficient optical excitation of that polaron state

from the ground state. Therefore, when dealing with optical excitation, we

will omit the polaronic nature of the carriers in QDs and will derive ex-

pressions for the quantities of interest with pure electronic notation. Later,

we will only replace the electronic notation with the corresponding pola-

ronic notation. Let the system be described semiclassically, with particular

interest in estimating the transition rate between the lower state |a〉 with

energy Ea and the higher state |b〉 with energy Eb. Within this semiclassical

approach, Fermi’s Golden rule transition rate can be used to find the co-

efficients of absorption and stimulated emission gain in the active medium.

The optical cross section gives the absorption line and gain when multiplied

by the population difference. With the “−er̂ ·E” interaction the expression

for optical cross-section reads [151]:

σεab(ω) =
4π|e|2ω
nε0cm2

0

|Rab · ε|2 g (Eb − Ea ∓ ~ω) , (4.49)

where g (Eb − Ea ∓ ~ω) is the normalized distribution function (e.g. Gaus-

sian profile), recovering the inhomogeneous broadening due to the size inho-

mogeneity of the quantum dot ensemble and ε is the light polarization unit

vector. Constants e, m0, n and c are electron charge and mass, refractive

index of the quantum dot and speed of light. The sign “–” corresponds to

absorption and “+” to emission.
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4.8.4 Lasing Efficiency

In order to consider a transition as a possible lasing transition, both the

radiative and non-radiative lifetimes are important. The longer the non-

radiative lifetime, the higher is the likelyhood of photon emission. Thus, we

define a figure of merit for such a transition as the ratio of the optical cross-

section and the non-radiative transition rate for the light polarized along

the dipole coupling vector Kab (ω) =
σab(ω)
Γ(Ei)

. By using the equations (4.27)

and (3.32) the lasing figure of merit becomes:

Kab (ω) =
64π4g(Ei ∓ ~ω)

nε0cm2
0~

2ωLO

(

1
ǫ∞
− 1

ǫst

)

δ2−
S (Ei)

Ei

Γph
(4.50)

The inhomogeneous broadening g(Ei ∓ ~ω) clearly affects this laser ef-

ficiency coefficient, via the optical cross section. Increasing the inhomo-

geneous broadening width will decrease the laser efficiency for a specific

frequency of light.

The ratio Ei

Γph
is proportional to 1

En
i
, where n is an integer depending

on the active decaying channel. A detailed discussion on this subject is

presented in [133], but general conclusion is that a decrease of polaron s-p

like splitting Ei will lead to improved lasing efficiency.

Dot enlargement and a reduced In content also lead to a decrease of the

quantity S, as explained in the previous section. Furthermore, the squared

detuning δ2− then increases and leads to improved lasing efficiency.

It is clear now that novel post-fabrication techniques such as rapid ther-

mal annealing [18], or quantum rod elongation [1, 21] could produce struc-

tures with higher lasing efficiency coefficient. One can enlarge the dot, or

reduce the In content by using those techniques. In Ref. 61, it has been

demonstrated that the non-radiative polaron lifetime is increased by rapid
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thermal annealing. However, we have shown here that this does not af-

fect adversely the radiative lifetime, thus increasing the overall figure of

merit 4.50.

In summary, the relationship between two entities has been established.

One is electron-phonon interaction responsible for non-radiative lifetime and

dipole matrix element responsible for the cross-section of the optical transi-

tion. Both, non-radiative lifetime and the cross-section of the optical transi-

tion are very important quantities for lasing and can be related by using the

established relationship. The relationship is based on the fact that dipole

matrix element is proportional to both electron-phonon interaction in QDs

and to the optical cross-section of the optical transition. This relationship

can be exploited in many ways. The proper figure of merit, defined as the

ratio of the optical cross-section and the non-radiative transition rate can be

then analyzed without knowing the value of dipole coupling vector and thus

avoiding the more microscopic approach. The another way for this relation

to be exploited is to test the proposed theory of non-radiative decaying of

the excited polarons via anharmonicity driven scattering by measuring the

strength of luminescence and extracting the value of dipole coupling vector

from it. Then the value of dipole coupling vector can be used in order to

estimate the strength of the electron-phonon coupling directly.



Chapter 5

Transport Properties of

CQD supercrystals

The significance of the potential applications of CQD supercrystals together

with state of the art experimental achievements have been elaborated in

Chapter 1. The scope of this chapter is to build a model of CQD supercrystal

and to study transport properties of such system with the emphasis on the

electron–phonon interaction.

The model of CQD supercrystal is readily accepted in tight binding

spirit [152, 92, 31, 85]. This means that electrons are localized in each

dot, but may hop to adjacent dots under applied electric field. The other

possibility is that electron cloud of each site is significantly spread around

adjacent sites giving rise to the band-like conductivity due to supercrystal

periodicity as reported in Refs. 7, 6, 86.

In order to study effect of electron–phonon interaction on transport prop-

erties one has to assume that carrier population in the considered system

is very low in order to remove effects of electron–electron interaction and

one has to obtain all modes in single quantum dot contributing significantly

134
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to electron–phonon coupling as done in Sec. 3.2. Transport properties for

low carrier concetrations can be studied experimentally as well [6, 7] which

justifies theoretical approach for low carrier concentrations.

Electron-phonon coupling strengths seem strong according to the data

presented in Tabs. 3.1 and 3.2. Among other mechanisms, electron–phonon

coupling may be the main mechanism which enhances hopping between dif-

ferent sites, but at the same time prevents band-like conduction. However,

this expectation has to be proven within the detailed theoretical considera-

tion and that is the main aim of this chapter.

Outline of this chapter is the following. Firstly, linear response theory of

electron conductance due to applied external electric field is presented. Then

the many-body model of CQD supercrystal is introduced and an approxi-

mate diagonalization formalism within the framework of variational polaron

theory is performed. Such an approach treats equally all possible cases of

input parameters of the model and provides the nature of coupling in the

model. Finally, armed with optimal representation of the model, mobilities

of carriers in CQD supercrystals are readily obtained and nature of charge

transport is discussed.

Accurate calculation and qualitative examination of carrier mobilities

in CQD supercrystals made of polar compounds is the main contribution

of this chapter. It gives readily experimentally measurable temperature vs

mobility curve. Applied approximations to the model are justified from the

experimental point of view, such as low carrier concentration approximation.

Therefore, obtained results can be compared to available experimental data

on the issue and it is done so in this chapter.
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5.1 Hamiltonian of Interaction

Experimentally, charge transport is studied by applying an AC electric field

to the sample, inducing the currents. The applied electric field determines

the vector magnetic potential in the Coulomb gauge and without external

charges (φ = 0):

A (t) =
i

ω
E0e

iq·r−iωt. (5.1)

The microscopic one-electron Hamiltonian of interaction of electrons with

electromagnetic field [134, 153] for the case φ = 0 in Coulomb gauge is

obtained from Eq. (4.1) and it reads

Ĥ =
(p̂+ e0A)2

2m0
+ V0(r). (5.2)

Interaction Hamiltonian is defined as

Ĥ ′ =
(p̂+ e0A)2

2m0
− p̂2

2m0
. (5.3)

The main interest will be in the linear response to external electromagnetic

field, therefore the terms quadratic in A will be neglected. Applied electric

field is usually of low frequency and can be considered as a constant in space

over the studied sample in a certain moment of time. This mean that only

the case q = 0 is relevant and interaction Hamiltonian becomes

Ĥ ′(t) =
ie0
ωm0

p̂ ·E0e
−iωt. (5.4)

The derived Hamiltonian of interaction can be given in terms of the
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many body current operator:

Ĵ = − e0
m0

∑

n

p̂n, (5.5)

where summation goes over all carrier particles in the considered system.

The interaction Hamiltonian is then:

Ĥ ′ (t) =
i

ω
Ĵ ·E0e

−iωt. (5.6)

Current operator is difficult to handle directly in the Fock space and it

would be easier if one relates the current operator to the dipole operator

which is much easier to handle. Defining the many body dipole operator as

Π̂ = −e0
∑

n

r̂n, (5.7)

and taking into account that
[

r̂i, Ĥ
]

= i~
m0
p̂i where i denotes Cartesian

component, the current operator is given as:

Ĵ =
1

i~

[

Π̂, Ĥ
]

. (5.8)

5.2 Kubo Formula for DC mobility

The electrical conductivity is the physical quantity which linearly relates ex-

ternal applied electric field with frequency ω to the induced density current.

The conductivity tensor σν,µ (ω) is defined as the ratio of the ν-th Cartesian

component of the induced density current δ
(

ĵν

)

and µ-th Cartesian compo-

nent of the applied electric field of frequency ω which induces the mentioned
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current density:

δ
(

ĵν

)

=
∑

µ

σνµ (ω)E0µe
−iωt. (5.9)

The exact relation between coordinate dependent density current operator

and current operator is given as Ĵ =
∫

d3rĵ (r). Since one is interested in

the averaged conductivity of the entire considered system one can neglect

spatial dependence of the density current operator and use the following

relation: ĵ = Ĵ
V .

The mobility of the carrier in the considered system is then given as

µνµ = lim
ω→0

Re (σνµ (ω))

nee0
, (5.10)

where ne = Nc

V is electron concentration and Nc is number of all electrons

in our system of volume V . The mobility is central quantity of interest as

it gives the pure transport response of carriers independent of their concen-

tration.

Conductivity tensor can be obtained from Kubo formula (4.3) for the

current operator and interaction Hamiltonian (5.6):

δ
(

Ĵν

)

= − 1

~ω

∑

µ

E0µe
−iωt× (5.11)

×
∫ t

−∞
dt′eiω(t−t

′)
〈[

ĴµI
(

t′
)

, ĴνI (t)
]〉

,

and it reads:

σνµ (ω) =
1

~ωV

∫ t

−∞
dt′eiω(t−t

′)
〈[

ĴνI (t) , ĴµI
(

t′
)

]〉

. (5.12)

Again, as in Sec. 4.3, one is interested in the component of the response

in the same direction as an applied electromagnetic field. By following the
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analog prescription as in Sec. 4.3 mobility defined as in Eq. (5.10) becomes:

µµµ =
β

2Nce0

∫ ∞

−∞
dteiωt

〈

ĴµI (t) ĴµI (0)
〉

. (5.13)

5.3 The Model of CQD Supercrystal

The main aim is to calculate the mobility of the carriers in CQD supercrys-

tals which has to be appropriately modeled. Even though current technology

does not support fabrication of ideal superlattices [2, 32], and even though

the lattices reported are of hexagonal type, an ideal cubic lattice of CQDs

with lattice constant C will be considered. The reason of choosing the

cubic type of the lattice is that it allows relatively simple theoretical treat-

ment especially when it comes to the calculation of the free energy of the

electron-phonon system (which will be done later). Also, the main interest

is to study transport properties influenced by electron-phonon interaction

and it is expected that qualitatively same conclusions follow for any type of

the lattice. Each CQD is assumed to have the shape of a sphere with radius

a in the 2.0-4.0 nm range [2, 85] that provides three dimensional confine-

ment for electrons with infinitely high potential barrier(due to embedding

insulating matrix). The interdot spacing of d = 1 nm is assumed, which

gives C = 2a + d (see 5.1). The electronic structure of a single CQD was

considered within the effective mass approximation in Chapter 2. The en-

ergy separation between s-like ground and p-like first excited state in the

conduction band is above 200 meV for all realistic values of dot radius a

of order of few nanometers. Therefore one assumes that transport at low

carrier concentrations, where the effects of charging [85, 92, 154, 152] are

negligible, occurs only through ground s-like states, since these are the only

ones that are significantly populated. Within the effective mass approxima-
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Figure 5.1: 2D sketch of a colloidal nanocrystal solid with nanocrystal radius
a, interdot spacing d and lattice constant C.

tion, the s-like wave function of the ground state is given in Eq. (2.35) and

it reads

ψ (r) =

√

1

2πa3j21 (α00)
j0

(α00

a
r
)

(5.14)

where jn is the spherical Bessel function of order n and α00 is the first zero

of j0.

The electronic coupling between ground states of neighboring CQDs de-

pends on various factors, such as the dot size, the interdot spacing, the type

of ligands at the surface of the dots, as well as on the linker molecules that

can be used to increase the coupling between the dots [155, 156, 82, 157, 158,

159]. Recent ab-initio calculations [155] have shown that electronic coupling

in CdSe CQDs linked with Sn2S6 molecule strongly depends on the dot size

and the type of molecule attachment and takes the values below 10 meV
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for dots with the radius above 2 nm. Since the electronic coupling between

the dots is the parameter that depends on many different factors and since

it can be engineered, it will be used as an input fitting parameter in the

presented theory and will be discussed accordingly.

The relevant phonon modes within the single CQD have been obtained

in Sec. 3.2 and listed in in Tabs. 3.1 and. 3.2. A limited number of phonon

modes with the strongest coupling to electrons will be included by choos-

ing the modes with the largest ratio of electron–phonon coupling Gf and

phonon energy ~Ωf . Confined LO phonon modes at energies of 24 meV are

responsible for strongest electron–phonon coupling constants of the order of

(30 − 40) meV. These values are significantly larger than typical electronic

transfer integrals [154] which gives a first indication that electron–phonon

interaction is so strong that it entirely defines a picture of transport. Having

the importance of the values of electron–LO phonon coupling constants in

mind, one has to check that they are reasonable by also computing them us-

ing the bulk phonon model and taking the standard expression for Fröhlich

coupling. The root of the sum of all electron–LO phonon coupling constants

squared is in the range (46−66)meV within the bulk phonon model, and in

the (31− 44) meV range within the confined phonon model for the value of

radius in the (4.0 − 2.0) nm range. Similarity of these values suggests that

the values of electron–LO phonon coupling constants obtained from the used

model are in accordance with expectations.

With the obtained phonon modes, frequencies and coupling strengths,

one can construct the Hamiltonian of an infinite three dimensional CQD

supercrystal:

Ĥ = Ĥe + Ĥph + Ĥe-ph, (5.15)
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where

Ĥe =
∑

RS

JR−SÂ
†
RÂS, (5.16)

Ĥph = ~

∑

R,f

Ωf B̂
†
R,f B̂R,f , (5.17)

Ĥe-ph =
∑

R,f

Gf Â
†
RÂR

(

B̂†
R,f + B̂R,f

)

. (5.18)

In the previous equations Â†R and ÂR are the creation and annihilation

operators for an electron in CQD at site R, B̂†R,f and B̂R,f are the corre-

sponding operators for a phonon mode f in CQD at the same site, while

JR−S is electronic coupling (electronic transfer integral) between the ground

states of CQDs at sites R and S. Only the coupling between nearest neigh-

bors is included because electronic coupling between more remote neighbors

is negligibly small as discussed in Ref. [92].

Now, it is possible to express the current and dipole operators defined

in Eqs. (5.7) and (5.5). Coordinate matrix elements between adjacent site

wavefunctions can be neglected and within such approximation the dipole

operator takes the form: Π̂ = e0
∑

R RÂ†RÂR. and J is just a current

operator. By using the identity (5.8), one obtains the current operator in

the tight binding representation: Ĵ = e0
i~

∑

R,S (R− S)ER−SÂ
†
RÂS .

5.4 Variational Polaron Theory

The indicated strong electron–phonon interaction in Hamiltonian (5.15)

means that any direct perturbative approach for such system does not hold.

Instead, changing of the eigenbasis of the electron–phonon Hilbert space by

some unitary transformation is needed where the new basis would provide a

good starting point for not just the perturbative approach but for even the
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approximate diagonalization of the problem. For example, small polaron

transformation when applied to independent boson model [122] exactly di-

agonalize the given model. The presented model in Eq. (5.15) is similar,

but more complex than that of independent boson model and small polaron

transformation could be used only for the case of strong coupling [160].

Therefore, a proper formalism has to be introduced which accounts for dif-

ferent possible input parameters of the Hamiltonian (5.15) such as electron–

phonon coupling form factors and transfer integrals. Such a formalism

should be able to answer the question whether electrons and phonons are in

strong, weak or intermediate coupling regime and should provide starting

basis in the electron–phonon Hilbert space which can be considered as an

approximate diagonalization of the initial model (5.15).

5.4.1 Merrifield’s Unitary Transformation

To establish the nature of charge carriers described by (5.15) and their trans-

port regime, one could follow the variational polaron approach of Refs. 161,

160. The main idea in such an approach is to apply the Merrifield’s uni-

tary transformation of the Hamiltonian Ĥ (D) = Û−1 (D) ĤÛ (D), where

unitary transformation is given as

Û (D) = e
∑

R Â†
R
ÂR

∑

S,f DS,f

(

B̂R+S,f−B̂†
R+S,f

)

. (5.19)

The coefficients DS,f in the unitary transformation are obtained from the

condition that Bogoliubov upper bound on the free energy of the Hamilto-

nian Ĥ (D) is minimal [160] which is equivalent to the variational principle

as explained in later paragraphs. A single variational parameter is deter-

mined by superlattice site index S and particular phonon index f . This
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doesn’t mean that variational parameters are assigned to each phonon mode,

but polaron assigned to each lattice excitation is “dressed” by all phonon

modes by the strength valued by parameter DS,f . In numerical calculations

only finite number of the coefficients DS,f are used. The coefficients DS=0,f

are expected to have the largest values and the values of other coefficients

DS 6=0,f are expected to decrease by increasing the S. Eventually, the value

of variational coefficients can be approximated as zero for sufficiently large

S. It is easy to show that standard small polaron transformation [122, 160]

is a special case of the Merrifield’s transformation (this will be elaborated in

more detail later). Thus, the Merrifield’s transformation can be considered

as a generalization of the small polaron transformation.

Firstly, one has to explicitly derive the transformed Hamiltonian. In

order to do so, one has to introduce a Wannierized Bloch basis defined with:

ÂR =
1√
N

∑

k

Âke
−ik·R (5.20)

Âk =
1√
N

∑

R

ÂReik·R,

and “phonon dressing” operators:

Θ̂R (D) = e
∑

S,f DS−R,f

(

B̂S,f−B̂†
S,f

)

. (5.21)

The transformed Hamiltonian is then of the form

Ĥ (D) = Ĥ0 (D) + V̂ (D) , (5.22)
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where term Ĥ0 (D) describes noninteracting fermions and bosons:

Ĥ0 (D) =
∑

k

Ēk (D) Â†kÂk + ~

∑

R,f

Ωf B̂
†
R,f B̂R,f , (5.23)

where the following quantities have been introduced:

Ēk (D) = E0 +
∑

R+

JR (D) cos (k ·R) + E′ (D) , (5.24)

JR (D) = 2ERe−
1
2

∑

R′,f (DR′−DR′−R)
2
coth

β~Ωf
2 , (5.25)

and

E′ (D) =
∑

f

(

∑

R

~ΩfD
2
R,f − 2GfD0,f

)

. (5.26)

The second term V̂ (D) contains the interaction between fermions and

bosons as a perturbation if the DS,f coefficients are chosen appropriately.

This interaction term consists of two readily distinguishable terms:

V̂ (D) = V̂1 (D) + V̂2 (D) . (5.27)

The first interaction term is given as

V̂1 (D) =
1

N

∑

k,q

Â†k+qÂk

∑

f

Φf,q (D)
(

B̂†−q,f + B̂q,f

)

, (5.28)

where

B̂q,f =
∑

R

eiq·RB̂R,f , (5.29)

and

Φf,q (D) = Gf − ~Ωf

∑

S

DS,fe
−iq·S. (5.30)
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The second interaction term is given as

V̂2 (D) =
∑

k,q

F̂k,q (D) Â†kÂq, (5.31)

where

F̂k,q (D) =
1

N

∑

R,S

ER−Se
i(k·R−q·S)× (5.32)

×
(

Θ̂†R (D) Θ̂S (D)−
〈

Θ̂†R (D) Θ̂S (D)
〉

ph

)

.

The average over the product of phonon dressing operators is

〈

Θ̂†R (D) Θ̂S (D)
〉

ph
= (5.33)

= e−
1
2

∑

R′,f (DR′−R−DR′−S)
2
coth

β~Ωf
2 .

5.4.2 Variational Principle

The choice of the variational coefficients takes place through variational

principle. The free energy of the system described by the full Hamilto-

nian should not differ significantly from the free energy described by the

transformed non-interacting Hamiltonian Ĥ0 (D). Therefore, the theory is

based on the assumption that transformed Hamiltonian without perturba-

tion (5.23) defines the approximate ground state, i.e. statistical operator of

such ground state is:

ρ̂0 (D) =
e−βĤ0(D)

Tr
(

e−βĤ0(D)
) . (5.34)

It is important to emphasize that fermionic part of the non-interacting trans-

formed Hamiltonian includes phonon parameters from the starting model
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Hamiltonian and therefore it introduces polaronic features into the formal-

ism even without the interaction part.

The free energy of the system is invariant under unitary transformation

and Gibbs-Bogoliubov inequality for free energy holds for any such trans-

formed Hamiltonian and for any trial statistical operator ρt:

F = −kBT ln Tr
(

e−βĤ
)

= (5.35)

= −kBT ln Tr
(

e−βĤ(D)
)

≤

≤ Tr
(

ρ̂tĤ (D)
)

+ kBTTr (ρt ln ρt) .

Setting the trial approximate solution of a transformed Hamiltonian in

the form of ρ̂0 (D) and taking into account that the interaction term in (5.22)

has the property:

Tr
(

ρ̂0 (D) V̂ (D)
)

= 0, (5.36)

the inequality (5.35) becomes:

F = −kBT ln Tr
(

e−βĤ(D)
)

≤ (5.37)

≤ −kBT ln Tr
(

e−βĤ0(D)
)

.

This inequality provides the basis for the optimization of parameters D by

minimizing the right-hand side of (5.37) which presents the upper bound of

free energy of the considered Hamitlonian. By using this procedure, one ob-

tains the optimal unitary transformation, for which we assumed in advance,

it will give optimal separation between interacting and non-interacting term,

so the whole problem can be treated perturbatively. Also, such an optimiza-

tion process gives the optimal separable statistical operator ρ̂0 (Dopt) which

will be only used in order to obtain thermodynamical averages.
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There is no certain physical argument that this formalism can enable

a perturbative approach for all possible input parameters of the model and

that thermodynamical averages can be taken approximately with the respect

to the ρ̂0 (Dopt). However, if it is possible to treat the problem perturba-

tively, the formalism presented should be correct in finding the optimal

transformation which enables a perturbative approach.

5.4.3 Equations for Variational Parameters

This section deals with the procedure of solving the system of equations

for the variational parameters set up by minimizing the right-hand side

of (5.37). One considers cuboid superlattice in the nearest neighbor ap-

proximation. By putting the transformed Hamiltonian (5.23) into inequal-

ity (5.37) and exploiting the fact that Tr
(

ρ̂0 (D) V̂ (D)
)

= 0, one gets the

inequality for relevant fermionic factor of free energy:

F ≤ −kBT ln
∑

k

(

e−βĒk(D)
)

. (5.38)

The reason why only the electron factor of free energy is observed is that

variational parameters only appear in transformed electron energy bands.

By puting the expression (5.24) into the (5.38) one gets

F ≤ E0 + E′ (D)− (5.39)

− kBT ln

(

V

8π3

∫

FBZ
d3ke−β

∑

R+ JR(D) cos (k·R)

)

.

In the case of cubic superlattice, the first Brillouin zone extends between

− π
Cx

< kx <
π
Cx

, − π
Cy

< ky <
π
Cy

and − π
Cz

< kz <
π
Cz

. Summation over

positive lattice vectors in (5.39) can be approximated with the three nearest

neighbor terms in all three Cartesian directions. Taking into the account the
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integral representation of modified Bessel function I0 (z) = 1
π

∫ π
0 e±z cos θdθ

one gets

F ≤ E0 + E′− (5.40)

− kBT ln
(

NI0 (βJCx) I0
(

βJCy

)

I0 (βJCz)
)

.

One further declares E0 = 0 and omits the lnN term which finally gives the

function to be minimized:

Fu (D) = E′ − kBT ln
(

I0 (βJCx) I0
(

βJCy

)

I0 (βJCz)
)

. (5.41)

Setting the extrema condition for each variational parameter and taking

into account that for cubic lattice Je = JCx = JCy = JCz , one obtains the

system of equations:

∂Fu

∂DR,f
=0 = 2DR,f~Ωf − 2Gf δ0,R+ (5.42)

+ Je
I1 (βJe)

I0 (βJe)
coth

β~Ωf

2
(6DR,f −DR−Cx,f −DR+Cx,f−

−DR−Cy ,f −DR+Cy ,f −DR+Cz ,f −DR+Cz ,f ).

By solving this system of equations, one obtains the optimal parameters

Dopt which further define the optimal unitary transformation of presented

model. Having found the optimal transformation, further examination of

the system is now possible.

5.4.4 Polarons in CQD Supercrystals

The coefficients DS,f quantify the degree of dressing of an electron at site R

by phonon of mode f at site R+ S. In the case of strong electron–phonon
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interaction, the electrons are dressed by phonons from the same site and

these coefficients take the form DS,f = δS,0
Gf

~Ωf
. On the other hand, for a

weak electron–phonon interaction, these coefficients have smaller values but

their range is much longer and phonons from many different sites participate

in dressing the electron. Therefore, one can in principle establish that the

charge carrier is a small polaron if the dependence of DS,f on S is strongly

peaked at S = 0.

It is however more convenient to have a single number which describes

whether the carriers are small polarons or not. The electron–phonon in-

teraction also leads to renormalization of the band dispersion from the

Ek =
∑

R
JRe

ik·R to the Ek (D) =
∑

R
JR (D) eik·R + E′ (D) dependence,

where

JR (D) = JRe
− 1

2

∑

R′,f (DR′−DR′−R)
2
coth

(

β~Ωf
2

)

, (5.43)

with β = 1/(kBT ), where T is the temperature. Term E′ (D) does not

depend on the wavevector k and can be further omitted from discussion.

Therefore, the electron–phonon interaction leads to the reduction of the

bandwidth by a factor of κ = JR (D) /JR (In the case of nearest neigh-

bor approximation κ is unambiguously defined). If the carriers are small

polarons, then the condition κ ≪ 1 is satisfied[160]. In Fig. 5.2 values of

variational parameters averaged over all phonon modes in terms of integer

lattice site and for several values of parameter κ are presented. For maximal

value of κ ≈ 1, variational parameters exhibit significant values for relatively

far sites. With decreasing κ, the central coefficient becomes larger, but the

coefficients far from central site decrease. Eventually, for κ ≈ 0, parameters

are strongly peaked at S = 0 and formation of small polaron takes place.

Consequently, one introduces the criterion κ < 0.05 which can be used as a

threshold beyond which the small polaron formation takes place as indicated



5.4. Variational Polaron Theory 151

in Fig. 5.2.
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Figure 5.2: Dtotal
R =

√

∑

f D
2
R,f for 1D lattice model for the several values of

parameter κ. Phonon spectrum is taken from Tabs. 3.1 and 3.2. The value
of κ=0.96 corresponds to the J =-40 meV and T =4 K, κ=0.60 corresponds
to the J =-20 meV and T =83 K, κ=0.02 corresponds to the J =-2.5 meV
and T =4 K and κ=0.09 corresponds to the J =-7 meV and T =4 K.

In Fig. 5.3 one presents for the several different values of dot radius the

region of (J, T ) parameters for which the condition κ < 0.05 is satisfied.

Negative values for transfer integrals J are adopted so the corresponding

Bloch energies have the minimum for k = 0 according to Eq. (5.24). These

results unambiguously demonstrate that at room temperature the charge

carriers in NSs are small polarons for all realistic values of electronic coupling

and dot dimensions. As seen from Fig. 5.3, electronic coupling of at least 15-

30 meV would be required to break the small polaron at room temperature, a

value much larger then theoretical [155] and experimental [7, 156] estimates

of electronic coupling both less then 10 meV.
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Figure 5.3: J vs T diagram demonstrating the areas of strong and weak
coupling regimes. The limiting curve has been chosen so the parameter

κ = e−
1
2

∑

R′,f (DR′−DR′−Cx)
2
coth

β~Ωf
2 < 0.05. Strong coupling regime occurs

in the upper right region for increasing temperature and electronic coupling.

5.5 Mobility of Polarons in CQD Supercrystals

In this section, the expression for mobility (5.13) will be used together with

variational polaron theory in order to obtain mobilities of polarons in CQD

supercrystals. One is interested only in mobility of carrier in the same di-

rection as the direction of applied electric field, i.e. subscript pair ν, µ of the

mobility in Eq. (5.13) changes for example to x, x. Unitary transformation

does not change thermodynamic average in the equation for mobility (5.13)

and transformed version of it reads as

µxx =
1

2e0Nc
β

∫ ∞

−∞
× (5.44)

× Tr

(

ρ̂ (D) ei
Ĥ(D)

~
tĴx (D) e−i

Ĥ(D)
~

tĴx (D)

)

dt
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The current operator in transformed coordinates and in superlattice basis

reads:

Ĵx (D) =
∑

R,S

∑

k,q

JR,S
k,q,xÂ

†
kÂqΘ̂

†
R (D) Θ̂S (D) (5.45)

where

JR,S
k,q,x =

e0
iN~

(Rx − Sx)ER−Se
i(k·R−q·S) (5.46)

One further switches to the interaction picture with the respect to the opera-

tor Ĥ0 (D). This will be denoted with index I, e.g. Âq,I (t) = ei
Ĥ0(D)

~
tÂqe

−i Ĥ0(D)
~

t

This still leaves the S-matrix in a product under trace for the current oper-

ator:

Ŝ (D, t) = ei
Ĥ0(D)

~
te−i

Ĥ(D)
~

t (5.47)

The S-matrix obeys dynamical equation:

i~
dŜ (D, t)

dt
= V̂I

(

t′
)

Ŝ (D, t) (5.48)

which expansion in Dyson series gives

Ŝ (D, t) = Î +

∞
∑

n=1

(

− i
~

)n

n!

∫ t

0
. . .

∫ t

0
× (5.49)

T
[

V̂I (t1) . . . V̂I (tn)
]

dt1 . . . dtn

Putting the expression for the current operator into Eq. (5.44), and expand-

ing the S-operator one gets:

µxy = µ(0)xy + µ(1)xy + . . . (5.50)
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where

µ(0)xy =
β

2e0Nc

∑

R,S

∑

k,q

∑

R′,S′

∑

k′,q′

(

JR,S
k,q,xJ

R′,S′

k′,q′,y

∫ ∞

−∞
dt× (5.51)

×Tr
(

ρ̂ (D) Â†kI (t) ÂqI (t) Θ̂
†
RI (D, t) Θ̂SI (D, t)×

×Â†
k′Âq′Θ̂†

R′ (D) Θ̂S′ (D)
)

)

µ(1)xy =
−iβ

2~e0Nc

∑

R,S

∑

k,q

∑

R′,S′

∑

k′,q′

(

JR,S
k,q,xJ

R′,S′

k′,q′,y

∫ ∞

−∞
dt

∫ t

0
dt′× (5.52)

×Tr
(

ρ̂ (D)
[

V̂I
(

t′
)

, Â†kI (t) ÂqI (t) Θ̂
†
RI (D, t) Θ̂SI (D, t)

]

×

×Â†
k′Âq′Θ̂†

R′ (D) Θ̂S′ (D)
)

)

...

So far, the only two approximations in this model come from linear re-

sponse theory represented by Kubo formula and the model itself. These

cumbersome expressions for zeroth and first order mobility can be signifi-

cantly simplified analytically if certain additional approximations are intro-

duced. Before introducing these approximations one can analytically write

explicit evolutions of the operators of interest since the evolution of those

operators in the interaction picture is given by the disentangled zeroth order

Hamiltonian:

Â†kI (t) = Â†ke
i
Ēk(D)

~
t (5.53)

ÂkI (t) = Âke
−i Ēk(D)

~
t

Θ̂†RI (D, t) = e
−
∑

S,f DS−R,f

(

B̂S,fe
−iΩf t−B̂†

S,f
e
iΩf t

)

Θ̂RI (D, t) = e
∑

S,f DS−R,f

(

B̂S,f e
−iΩf t−B̂†

S,f
e
iΩf t

)

These analytical expressions will be used together with few approximations
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to simplify the expressions for mobility.

5.5.1 Zeroth Order for Mobility

The first required approximation is truncation of expansion in Eq. (5.50).

In this chapter the expression for the zeroth order mobility will be de-

rived. Truncation will be performed later on according to estimated values

of higher orders of mobility and their importance. Thermodynamical aver-

aging in Eqs. (5.51) is defined with respect to the full transformed Hamil-

tonian (5.22). The great advantage of variational polaron theory is that

disentangled statistical operator is introduced as an approximate solution

and optimization is performed after. Argumented with this, it is possible to

introduce the following approximation:

Tr (ρ̂ (D) · · · ) ≈ Tr (ρ̂0 (D) · · · ) = 〈· · · 〉0,

where shorthand notation for averaging according to approximated disen-

tangled statistical operator is introduced.

Since the statistical operator is disentangled, averaging of the product

of fermionic and bosonic operators equals the product of averaged fermionic

and bosonic operators separately. Averaging of fermionic operators is per-

formed by using the Wick’s theorem [122]:

〈Â†kI (t) ÂqI (t) Â
†
k′Âq′〉0 = ei

Ēk(D)−Ēq(D)

~
t× (5.54)

×
(

δk,qδk′,q′nknk′ + δk,q′δk′,qnk (1− nk′)
)

.

Averaging of bosonic operators is performed by using the Feynman disen-
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tangling theorem as described in Ref. 122:

〈Θ̂†RI (D, t) Θ̂SI (D, t) Θ̂†
R′ (D) Θ̂S′ (D)〉0 = (5.55)

= Θ0
R−S,R′−S′ (D)ΘR−S,R′−S′,R−R′ (D, t) ,

where (with new indices R− S = X, R′ − S′ = Y , R−R′ = Z) :

Θ0
X,Y (D) = exp

[

−
∑

f

(

Nf +
1

2

)

× (5.56)

×
∑

U

(

(DU ,f −DU+X,f )
2 + (DU ,f −DU+Y ,f )

2
)

]

,

ΘX,Y ,Z (D, t) = exp

[

−
∑

f

(

(Nf + 1) e−iΩf t +Nf e
iΩf t

)

×

×
∑

U

(DU ,f −DU+X,f ) (DU+Z,f −DU+Z+Y ,f )

]

.

After performed averaging, one applies the low-carrier concentration ap-

proximation, i.e. one takes only terms linear in carrier concentrations from

Eq. (5.54). By putting that together with Eq. (5.55) back to Eq. (5.51) and

retaining new dummy variables X, Y and Z one obtains the expression for

zeroth order mobility:

µ(0)xx =
−βe0

2~2NcN

∑

R,X,Y

∑

k,q

(

EXEYXxYx× (5.57)

× e−i(k·Y +q·X)nk (1− nq)
∫ ∞

−∞
dtei

Ēk(D)−Ēq(D)

~
t×

1

N

∑

Z

ei(k−q)·ZΘ0
X,Y (D)ΘX,Y ,Z (D, t)

)

.

It is important to remark that only the nearest neighbor EX and EY

are relevant, thus the summation over X and Y is finite. In order to divide

contributions to mobility coming from phonon assisted hopping and band-
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like structure, the following splitting is introduced:

Θ0
X,Y (D)ΘX,Y ,Z (D, t) = Θ0

X,Y (D)+ (5.58)

Θ0
X,Y (D) (ΘX,Y ,Z (D, t)− 1)

Due to low concentration carrier approximation one can write:

nk (1− nq) ≈ nk ≈ e−β(Ek−Ef), (5.59)

and thus

Nc =
∑

k

nk =
V

8π3

∫

d3ke−β(Ek−Ef). (5.60)

The term Θ0
X,Y (D) gives rise to the coherent mobility. After exploiting

the relation
∑

Z e−i(k−q)·Z = Nδk,q, the expression for the coherent part of

mobility reads:

µcoh,(0)xx =
1

Nc

∑

k

nkµ
′
k (D) ≈ (5.61)

≈
∫

d3ke−βEkµ′k (D)
∫

d3ke−βEk
,

where

µ′k (D) =
−βe0
2~2

∫ ∞

−∞
e
− t2

τ2e dt× (5.62)

×
∑

X,Y

XxYxEXEY e−ik(X+Y ),Θ0
X,Y (D)

and τe is phenomenologically introduced finite carrier lifetime due to crystal

disorder, defects and impurities. Exploiting the nearest-neighbor approxi-
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mation with spatially isotropic transfer integral

EU = E1

(

δU ,Cx + δU ,Cy + δU ,Cz

)

, (5.63)

one obtains

µ′k (D) = −2βe0
2~2

τe
√
πC2

xE
2
1× (5.64)

×
(

cos (2kxCx)Θ
0
Cx,Cx

(D)−Θ0
−Cx,Cx

(D)
)

.

Without the phenomenological carrier damping, the time integral gives infi-

nite mobility (regardless of phonon coherence) as was expected for coherent

part. We will see that incoherent part gives also infinite mobility due to the

time integral, but only in the case of perfectly coherent phonons. Infinity

of the incoherent part is of lower level then the infinity of coherent part.

Also, if one introduces the phonon damping(e.g. due to anharmonicity) the

incoherent part of the mobility becomes finite, while coherent part remains

infinite. Of course, both coherent and incoherent part become finite if one

introduces damping for crystal Bloch states (e.g. due to crystal disorder,

defects or impurities).

The term Θ0
X,Y (D) (ΘX,Y ,Z (D, t)− 1) gives rise to the incoherent part

of mobility. This term is periodic in time, takes values up to 1, never goes

under the negative value of its positive maximum(this means that certainly

it doesn’t go under -1, but in practice it takes values slightly under zero) and

it is significantly-valued only for near neighbor Z-sites(it has been already

argued that only near-neighbor X and Y are relevant). For far-neighbor

Z-sites this function oscillates around zero with very low amplitude (regard-

less of coupling strength) and can be neglected in the summation over Z.

Therefore, summation over Z-sites will be finite in all regimes. However,
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there is significant difference on the behavior of this function for various

types of the regimes(for near-neighbor Z-sites). In strong coupling regime

this functions is predominantly close to zero at all times, except for certain

points in time where it is narrowly peaked to the value of 1 or some nega-

tive value greater than -1. These narrow peaks appear periodically. In weak

coupling regime this function is plane-wave like, oscillating around the zero.

The time integral gives rise to the Fourier transform of this function:

ΞX,Y ,Z (D, ωk,q) = (5.65)
∫ ∞

−∞
dtei

Ēk(D)−Ēq(D)

~
tΘ0

X,Y (D) (ΘX,Y ,Z (D, t)− 1) .

If we do not introduce any phenomenological damping to the phonon modes,

then periodicity is not destroyed and Fourier transforms of these functions

will be consisted of delta functions. Incoherent part of the mobility finally

takes the form:

µinc,(0)xx =
1

NcN

∑

k,q

nk (1− nq)µ′′k,q ≈ (5.66)

≈ Vcell
8π3

∫

d3ke−βEk
∫

d3qµ′′k,q
∫

d3ke−βEk
,

where

µ′′k,q =
−βe0
2~2

∑

X,Y

(

EXEYXxYxe
−i(k·Y +q·X)× (5.67)

∑

Z

e−i(k−q)·ZΞX,Y ,Z (D, ωk,q)

)

.
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5.5.2 Strong Coupling Limit and Generalized Marcus For-

mula

Charge transport due to the hopping mechanism, together with the localized

electron–phonon interaction has already been studied in the literature(see

Refs. 162, 163). The calculation of mobility in such cases was studied within

the framework of Marcus theory. The mobility is given by Einstein’s relation

µ = βDe, where D is the diffusion constant. The diffusion constant can

be expressed in terms of the small polaron hopping rate W between two

neighboring dots as D =WC2(C is distance two neighboring sites). Within

the Marcus theory, small polaron hopping rate is given as

W =
J2

~

√

βπ

λ
e−βλ/4, (5.68)

where λ = 2
∑

f

G2
f

~Ωf
is the reorganization energy. Marcus theory is valid

only in the high-temperature limit β~Ωf ≪ 1. There is also generalization

of the Marcus theory which goes beyond the limit β~Ωf ≪ 1. The so called

generalized Marcus formula was used in Refs. 162, 163 and it reads

W =
J2

~2

∫ ∞

−∞
dt exp







−2
∑

f

G2
f

(~Ωf )
2×

×
[

(2Nf + 1)− (Nf + 1) e−iΩf t −Nf e
iΩf t

]}

. (5.69)

In the high-temperature limit β~Ωf ≪ 1 generalized Marcus formula reduces

to well known Marcus formula.

For electron–phonon coupling strengths given in Tabs. 3.1 and 3.2 the

high-temperature limit condition is not satisfied and therefore one should

use Eq. (5.72) instead of the simpler Eq. (5.68). Eq. (5.72) can alterna-

tively be obtained by applying presented Kubo’s linear response theory to
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transformed Hamiltonian and taking the limit of strong electron–phonon

coupling. Therefore, this is a full quantum mechanical formula for charge

carrier mobility. The rest of this subsection will be dedicated to deriva-

tion of equivalence of the presented theory in the strong coupling limit and

generalized Marcus formula (5.69).

In strong coupling limit one assumes the situation whereDS,f = δS,0
Gf

~Ωf
.

In such limit, following identities and approximation are valid:

Θ0
X,Y (D) = e

−2
∑

f (2Nf+1)

(

Gf
~Ωf

)2

, (5.70)

with the property that Θ0
X,Y (D)≪ 1, and

Θ0
X,Y (D)ΘX,Y ,Z (D, t) ≈ e

−2
∑

f

(

Gf
~Ωf

)2

(2Nf+1)
× (5.71)

× e
2
∑

f

(

Gf
~Ωf

)2

((2Nf+1) cos (Ωf t)+i sin (Ωf t))
δX,−Y δX,Z .

Additionally, band narrowing in strong coupling is extreme and thus

ei
Ēk(D)−Ēq(D)

~
t ≈ 1. Taking into account equation (5.60) and

∑

q 1 = N

expression for hopping mobility (5.66) in strong coupling regime becomes

µinc,(0)xx =
−βe0E2

1C
2

~2

∫ ∞

−∞
dt exp







−2
∑

f

G2
f

(~Ωf )
2×

×
[

(2Nf + 1)− (Nf + 1) e−iΩf t −Nfe
iΩf t

]}

. (5.72)

which is the same as introduced generalized Marcus formula.
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5.5.3 Small Polaron Mobility in CQD Supercrystals

It has been shown that CQD supercrystals are in the small polaron regime

for the wide range of input temperature and transfer integrals. In such a

regime, phenomenological damping parameters τe and τph are of little im-

portance since their values are smaller then the period of peak appearance in

the integral function of time in Eq. (5.72)(this is what justifies the short time

approximation introduced in Refs. 162, 163). It is now possible to calculate

the charge carrier mobility when the system is in the small polaron regime.

The calculated temperature dependence of the mobility for several dot sizes

and electronic coupling parameters is presented in Fig. 5.4. In all of these

cases the small polaron condition is satisfied, as can be seen from Fig. 5.3.

It was found that in the range of temperatures around room temperature

the mobility decreases with increasing temperature for all the investigated

dot dimensions. Such a temperature dependence was, in several previous

works[86, 6, 7], considered to be a signature of band transport. Here, it

was demonstrated that this type of temperature dependence is present also

in small polaron transport. Therefore, the ”band-like” temperature depen-

dence of the mobility cannot be considered as a proof of band transport. In

fact, it has been shown that electron–phonon interaction in CdSe dots is suf-

ficiently strong for the formation of small polarons whose mobility decreases

with increasing temperature.

One can also examine how the strength of the electron–phonon cou-

pling influences the mobility. By increasing the dot size, the strength of the

electron–phonon coupling decreases(see Tabs. 3.1 and 3.2) and the mobility

increases as presented in Fig. 5.4. This is an expected behavior for the small

polaron regime because weaker electron–phonon coupling leads to a polaron

that is less strongly bound and, therefore, it can hop to a neighboring dot
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Figure 5.4: Mobility vs temperature plot for various dot sizes and two differ-
ent values of electronic coupling between the dots (6 meV for upper and 10
meV for lower plot). These curves resemble those found in experiment [6, 7]

more easily. An increase of mobility with an increase in dot dimensions

has been observed in several experiments [164, 156]. In the small polaron

regime, the mobility has quadratic dependence on electronic coupling J ,

which is direct consequence of Eq. (5.72).

In Ref. 7 the mobilities of the order of (20−30)cm2/Vs were measured in

the linear regime in field-effect transistors with CdSe NSs. These mobilities

gradually increase, exhibit a peak and then gradually decrease with increas-

ing the temperature. The similar behavior in the simulation presented for
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dots whose radius is below 3.0 nm is obtained – the peak of mobility moves

from 230 K for the dot with radius 2.5 nm to 140 K for the dot with radius

of 3.0 nm. One should still note that the comparison of presented theoretical

results with these experiments should be taken with caution due to the ef-

fects of disorder and traps which are present in experiment. Again, despite

the relatively large values of mobility, for these parameters the electrical

transport takes place by small polaron hopping.

In summary in this chapter, a model has been developed which describes

the electronic transport at low carrier concentration in ideal NSs. Elastic

and dielectric continuum models were used to obtain phonon spectra and the

strength of their coupling to electrons. Variational polaron theory was then

used to establish the nature of charge carriers. Hopping rates and carrier

mobility were evaluated using the approach that fully takes into account the

quantum mechanical nature of phonons and their interaction with electrons.

Conditions have been identified for the strong coupling regime where

band narrowing is so strong that small polaron formation takes place. Based

on this and the calculated mobilities one concludes that recently fabricated

NSs do not exhibit band transport but instead reside in the strong electron–

phonon coupling regime where localized carriers exhibit hopping transport.

In such a transport regime, the mobility also decreases by increasing the

temperature.

While the study in this chapter was focused on idealized CQD super-

crystals without disorder or traps, the main conclusion that the presence of

band transport is highly unlikely in CQD supercrystals can be extended to

realistic structures, because it is well understood that disorder and traps act

detrimentally on the possibility of band transport.



Chapter 6

Concluding Remarks and

Future Works

The work presented in this thesis regards the intraband physics of quantum

dot nanostructures with the strong accent on applications. Chap. 1 was

devoted to justification of theoretical approach in intraband engineering.

The key requirement for engineering is the ability to control geometrical

and compositional parameters of semiconductor quantum dots. Therefore,

state of the art technological advancement in the field of nanofabrications

of 3D confining nanostructures such as quantum dot elongation or CQD

supercrystals was presented in introduction section of the thesis. Possible

applications were briefly summarized and great pragmatic importance of

such engineering was elaborated.

The most important issue in the physics of all semiconductor nanos-

tructures is the description of their intrinsic properties. The majority of

experiments conducted on semiconductor nanostructures and consequent

applications are based on the interaction of the free carriers of charge and

external electromagnetic field. The external electromagnetic field needs to
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considered within the two different types of experiments. The first type are

spectroscopic experiments where external electromagnetic field in the form

of radiation is being absorbed or emitted by the object of study and con-

sequent quantum dynamical movement of carriers follows. The second type

are transport experiments, where usually a low frequency electric field is

applied upon samples inducing the transport of carriers. It is obvious that

both type of experiments lead to appropriate optoelectronic applications as

explained in Chap. 1.

Therefore, physics of carriers in nanostructures and their response to

external electromagnetic field is of great importance to this scientific field.

It is intuitively very clear that free electrons from conduction band in semi-

conductor bulk materials play central role in the formation of carriers in

nanostructures. Hence, in order to start a description of carriers inside these

nanostructures one has to answer the question “What happens to electrons

from the conduction band when they find themselves inside the heterostruc-

ture?”. Thus, electronic structure calculation methods which have been

proven to be very reliable in description of semiconductor nanostructures

were elaborated in Chap. 2. 8 band k · p model was firstly introduced ac-

counting for influence of conduction and valence band on carriers. This is

very important when it comes to the study of excitons, but in intraband

physics it turns out that electrons are not that much influenced by valence

bands. For example, electronic features of quantum rods obtained by 8 band

k ·p model does not differ that much from the same features obtained by one

band effective mass method. Therefore, for the rest of the thesis, effective

mass model is solely applied.

The analysis of bound states in the continuum in quantum rods is the

main contribution in the second chapter. It was demonstrated that such
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an exotic state may have applications in design of polarization independent

terahertz detectors. Also, bound state in continuum coupled to surround-

ing continuum can be seen as experimental realization of Fano-Anderson

model, one of the rare exactly solvable many body Hamiltonians [122]. The

future work left on this issue should be exact examination of the proposed

polarization independent terahertz detector. This should be done from the

application point of view by calculating characterization properties of such

device such as mobility of carriers, quantum efficiency, dark current, etc...

However, some fundamental aspects of the condensed matter physics can

be studied as well. For example, one can construct effective Fano-Anderson

Hamiltonian [122]. Coupling between the BIC and the surrounding con-

tinuum states occurs via phonons and one should develop pure electron

Hamiltonian with effective constants of coupling between electronic states

due to phonons. Since Fano-Anderson Hamiltonian is exactly solvable, one

can then exactly calculate physical properties of such system. By compar-

ing the experimental values of these physical properties with theoretically

obtained values one can then study the correctness of the effective coupling

constants due to phonons. This is very important issue in the condensed

matter physics since it enables treatment of the complex electron-phonon

polaron system in a pure electron space via effective coupling constants.

Beside electrons, vibrations of lattice are also present in all condensed

matter systems and they play crucial role in physics of QD structures. The

theoretical treatment of vibrational properties of QDs was given in Chap. 3.

Second quantization of vibrational modes gives rise to phonons. Electrons

and phonons are thus crucial particles in any condensed matter system defin-

ing its optoelectronic properties. Electron-phonon interaction plays very

important role and casts phonons into physical consideration of carriers
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in condensed matter systems. The strong electron-LO phonon interaction

changes the carrier picture of just pure electron to polarons. Polaron states

were introduced in Chaps. 3 and 5 and it was demonstrated that polarons

gives rise to many interesting phenomena observed in the experiment such

as finite carrier lifetime in SAQDs or band-narrowing and hopping trans-

port in CQD supercrystals. Also, it was pointed out that anharmonicity

of vibrational model may drive many effects via polaronic carriers such as

relaxation of excited polaron in SAQDs or possible inhibition of hopping

transport in CQD supercrystal.

Optical properties of SAQDs were studied in Chap. 4. The huge amount

of spectroscopic data on the issue exists in the literature. The reason for

that is possible application of SAQDs in novel intraband lasers. Such expec-

tations are based on theoretical prediction that system with peaked density

of states would perform better in lasing. However, peaked density of states

means stronger confinement of carriers increasing the electron–phonon in-

teraction and decreasing mobility of the carriers. Increased electron–phonon

interaction leads to formation of polarons which coherence and lifetimes are

greatly affected by lattice anharmonicity. These discoveries cast a doubt on

QDs as possible active medium of intraband lasers. However, anharmonicity

driven relaxation of polarons is newly proposed concept and additional mod-

eling and intrinsic relations are needed in order to achieve satisfactory level

of certainty in the theory. The main contribution in Chap. 4 is establishment

of relationship between electron–phonon and electron–photon interaction in

SAQDs. Such relationship when combined with proper theoretical descrip-

tion of non-radiative relaxation processes triggered by phonons gives the

connection between readily measurable radiative and non-radiative lifetimes

and opens new possibilities in testing the theoretical models explaining rela-
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tively short carrier lifetimes observed in experiments. However, many effects

such as thermal backfilling or problem of non-existing efficient extraction of

carriers from lower lasing level are still present as the significant obstacles

for intraband lasing in SAQDs. The future work should address this issue.

Also, derived connection between electron-phonon and electron-photon cou-

pling in quantum dots should be used in order to further experimentally test

the accepted theory that non radiative transitions in quantum rods follow

by anharmonicity driven polaron relaxation.

Transport properties of CQD supercrystals were studied in Chap. 5.

Transport was considered within the tight-binding model with local electron-

phonon interaction. Again, concept of polarons was introduced and its influ-

ence on the nature of transport demonstrated. Electron–phonon interaction

creates polarons strongly bounded to quantum dots, i.e. stronger than pure

electrons. This causes band narrowing and reduces the possibility of achieve-

ment of band-like transport in CQD supercrystals. If achieved, band-like

transport could increase mobilities of carriers sufficiently in order to apply

CQD supercrystal in optoelectronic devices such as photodetectors, solar

cells or even FETs. Such situation could trigger strong technological ad-

vancements since technology of CQD fabrication stands as relatively cheap.

The main contribution of this chapter is to build-up of accurate quantum

mechanical approach in carrier transport which enables clear insight in the

role of vibrations in the transport properties. Such an insight is very im-

portant because technology allows precise engineering of various parameters

inside the CQD supercrystals. It can give prospectives and guidance to the

scientists involved in fabrication of these structures. The model developed

can be extended in order to study CQD supercrystals built of non-polar

semiconductors such as silicon. Electron-phonon interaction is expected to
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be much weaker due to absence of the polar type of coupling between optical

phonons and electrons. However, for such case introduced generalized Mar-

cus formula is not correct approach since the formation of small polarons

does not occur easily as in the polar CQD supercrystals. Therefore, accurate

formalism should be developed for such structures. It is expected that small

polarons would not form that easily due to much weaker electron-phonon

interaction and that bandlike transport is more likely to occur.
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port and terahertz gain in quantum-dot cascades. IEEE Photonic.
Tech. L. 20, 129–131 (2008).

[68] Dmitriev, I. A. & Suris, R. A. Quantum cascade lasers based on
quantum dot superlattice. phys. stat. sol. (a) 202, 987–991 (2005).

[69] Ulbrich, N. et al. Midinfrared intraband electroluminescence from
AlInAs quantum dots. Appl. Phys. Lett. 83, 1530–1532 (2003).

[70] Anders, S. et al. Electroluminescence of a quantum dot cascade struc-
ture. Appl. Phys. Lett. 82, 3862–3864 (2003).

[71] Fischer, C., Bhattacharya, P. & Yu, P.-C. Intersublevel electrolumi-
nescence from In0.4Ga0.6As/GaAs quantum dots in quantum cascade
heterostructure with GaAsN/GaAs superlattice. Electron. Lett. 39,
1537 – 1538 (2003).

[72] Fischer, C. H., Bhattacharya, P. & YU, P. C. Intersublevel electrolumi-
nescence from In0.4Ga0.6As/GaAs quantum dots in quantum cascade
heterostructure with GaAsN/GaAs superlattice. Electron. Lett. 39,
1537–1538 (2003).

[73] Wasserman, D., Ribaudo, T., Lyon, S. A., Lyo, S. K. & Shaner, E. A.
Room temperature midinfrared electroluminescence from InAs quan-
tum dots. Appl. Phys. Lett. 94, 061101 (2009).

[74] Kershaw, S. V., M., H., Rogach, A. L. & A., K. Development of
IR-emitting colloidal IIVI quantum-dot materials. IEEE J. Sel. Top.
Quant. 6, 534 (2000).

[75] Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting
diodes made from cadmium selenide nanocrystals and a semiconduct-
ing polymer. Nat. 370, 354 (1994).

[76] Caruge, J.-M., Halpert, J. E., Bulović, V. & Bawendi, M. G.
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